1
|
Hu S, Chen S, Zhu H, Wang Y, Zhou Y, Cao J, Zhang H, Zhou J. Transcriptome reveals the roles and potential mechanisms of CeRNA in the regulation of salivary gland development in the tick Rhipicephalus haemaphysaloides. Front Cell Infect Microbiol 2025; 15:1573239. [PMID: 40370407 PMCID: PMC12075121 DOI: 10.3389/fcimb.2025.1573239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction The salivary glands of female ticks rapidly degenerate after feeding. The mechanism involves programmed cell death mediated by an ecdysteroid receptor. A competing endogenous RNA (ceRNA) network has been established using miRNA and the competitive binding of three types of RNA (lncRNA, circRNA, and mRNA), that were demonstrated to be involved in the regulation of biological processes. However, the comprehensive expression profile and competing endogenous RNA (ceRNA) regulatory network between mRNAs and ncRNAs involved in salivary gland development remain unclear. Methods In the current study, we employed whole-transcriptome sequencing (RNA sequencing) at various stages of feeding to identify differentially expressed lncRNAs, circRNAs, miRNAs, and mRNAs. The ceRNA networks combining lncRNAs, circRNAs, miRNAs, and mRNAs were predicted and constructed based on the miRanda and TargetScan databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for target mRNAs with significantly different expression levels. Results We identified several pathways related to organ growth and development: Insulin secretion, the Hippo signaling pathway, the Pl3K-Akt signaling pathway, the FoxO signaling pathway, and the Ferroptosis pathway in the lncRNA-miRNA-mRNA network, and Steroid biosynthesis, Cholesterol metabolism, the FoxO signaling pathway, and the Ferroptosis pathway in the circRNA-miRNA-mRNA network, each of which involved insulin and ecdysteroid regulation. Discussion Our findings have advanced our understanding of the underlying mechanisms of salivary gland development and degeneration.
Collapse
Affiliation(s)
- Shanming Hu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Songqin Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haotian Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
2
|
He J, Kang L. Regulation of insect behavior by non-coding RNAs. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1106-1118. [PMID: 38443665 DOI: 10.1007/s11427-023-2482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 03/07/2024]
Abstract
The adaptation of insects to environments relies on a sophisticated set of behaviors controlled by molecular and physiological processes. Over the past several decades, accumulating studies have unveiled the roles of non-coding RNAs (ncRNAs) in regulating insect behaviors. ncRNAs assume particularly pivotal roles in the behavioral plasticity of insects by rapidly responding to environmental stimuli. ncRNAs also contribute to the maintenance of homeostasis of insects by fine-tuning the expression of target genes. However, a comprehensive review of ncRNAs' roles in regulating insect behaviors has yet to be conducted. Here, we present the recent progress in our understanding of how ncRNAs regulate various insect behaviors, including flight and movement, social behavior, reproduction, learning and memory, and feeding. We refine the intricate mechanisms by which ncRNAs modulate the function of neural, motor, reproductive, and other physiological systems, as well as gene expression in insects like fruit flies, social insects, locusts, and mosquitos. Furthermore, we discuss potential avenues for future studies in ncRNA-mediated insect behaviors.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Zhang B, Zhang C, Zhang J, Lu S, Zhao H, Jiang Y, Ma W. Regulatory roles of long non-coding RNAs in short-term heat stress in adult worker bees. BMC Genomics 2024; 25:506. [PMID: 38778290 PMCID: PMC11110378 DOI: 10.1186/s12864-024-10399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial modulators of post-transcriptional gene expression regulation, cell fate determination, and disease development. However, lncRNA functions during short-term heat stress in adult worker bees are poorly understood. Here, we performed deep sequencing and bioinformatic analyses of honeybee lncRNAs. RNA interference was performed by using siRNA targeting the most highly expressed lncRNA. The silencing effect on lncRNA and the relative expression levels of seven heat shock protein (HSP) genes, were subsequently examined. Overall, 7,842 lncRNAs and 115 differentially expressed lncRNAs (DELs) were identified in adult worker bees following heat stress exposure. Structural analysis revealed that the overall expression abundance, length of transcripts, exon number, and open reading frames of lncRNAs were lower than those of mRNAs. GO analysis revealed that the target genes were mainly involved in "metabolism," "protein folding," "response to stress," and "signal transduction" pathways. KEGG analysis indicated that the "protein processing in endoplasmic reticulum" and "longevity regulating pathway-multiple species" pathways were most enriched. Quantitative real-time polymerase chain reaction (qRT-PCR) detection of the selected DELs confirmed the reliability of the sequencing data. Moreover, the siRNA experiment indicated that feeding siRNA yielded a silencing efficiency of 77.51% for lncRNA MSTRG.9645.5. Upon silencing this lncRNA, the expression levels of three HSP genes were significantly downregulated (p < 0.05), whereas those of three other HSP genes were significantly upregulated (p < 0.05). Our results provide a new perspective for understanding the regulatory mechanisms of lncRNAs in adult worker bees under short-term heat stress.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chaoying Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jiangchao Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Surong Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Dayal S, Chaubey D, Joshi DC, Ranmale S, Pillai B. Noncoding RNAs: Emerging regulators of behavioral complexity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1847. [PMID: 38702948 DOI: 10.1002/wrna.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/06/2024]
Abstract
The mammalian genome encodes thousands of non-coding RNAs (ncRNAs), ranging in size from about 20 nucleotides (microRNAs or miRNAs) to kilobases (long non-coding RNAs or lncRNAs). ncRNAs contribute to a layer of gene regulation that could explain the evolution of massive phenotypic complexity even as the number of protein-coding genes remains unaltered. We propose that low conservation, poor expression, and highly restricted spatiotemporal expression patterns-conventionally considered ncRNAs may affect behavior through direct, rapid, and often sustained regulation of gene expression at the transcriptional, post-transcriptional, or translational levels. Besides these direct roles, their effect during neurodevelopment may manifest as behavioral changes later in the organism's life, especially when exposed to environmental cues like stress and seasonal changes. The lncRNAs affect behavior through diverse mechanisms like sponging of miRNAs, recruitment of chromatin modifiers, and regulation of alternative splicing. We highlight the need for synthesis between rigorously designed behavioral paradigms in model organisms and the wide diversity of behaviors documented by ethologists through field studies on organisms exquisitely adapted to their environmental niche. Comparative genomics and the latest advancements in transcriptomics provide an unprecedented scope for merging field and lab studies on model and non-model organisms to shed light on the role of ncRNAs in driving the behavioral responses of individuals and groups. We touch upon the technical challenges and contentious issues that must be resolved to fully understand the role of ncRNAs in regulating complex behavioral traits. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sanovar Dayal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Chaubey
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dheeraj Chandra Joshi
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samruddhi Ranmale
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Liu M, Xiao F, Zhu J, Fu D, Wang Z, Xiao R. Combined PacBio Iso-Seq and Illumina RNA-Seq Analysis of the Tuta absoluta (Meyrick) Transcriptome and Cytochrome P450 Genes. INSECTS 2023; 14:363. [PMID: 37103178 PMCID: PMC10146655 DOI: 10.3390/insects14040363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Tuta absoluta (Meyrick) is a devastating invasive pest worldwide. The abamectin and chlorantraniliprole complex have become an alternative option for chemical control because they can enhance insecticidal activity and delay increased drug resistance. Notably, pests are inevitably resistant to various types of insecticides, and compound insecticides are no exception. To identify potential genes involved in the detoxification of abamectin and chlorantraniliprole complex in T. absoluta, PacBio SMRT-seq transcriptome sequencing and Illumina RNA-seq analysis of abamectin and chlorantraniliprole complex-treated T. absoluta were performed. We obtained 80,492 non-redundant transcripts, 62,762 (77.97%) transcripts that were successfully annotated, and 15,524 differentially expressed transcripts (DETs). GO annotation results showed that most of these DETs were involved in the biological processes of life-sustaining activities, such as cellular, metabolic, and single-organism processes. The KEGG pathway enrichment results showed that the pathways related to glutathione metabolism, fatty acid and amino acid synthesis, and metabolism were related to the response to abamectin and chlorantraniliprole complex in T. absoluta. Among these, 21 P450s were differentially expressed (11 upregulated and 10 downregulated). The qRT-PCR results for the eight upregulated P450 genes after abamectin and chlorantraniliprole complex treatment were consistent with the RNA-Seq data. Our findings provide new full-length transcriptional data and information for further studies on detoxification-related genes in T. absoluta.
Collapse
|
6
|
Recent Advances and Future Potential of Long Non-Coding RNAs in Insects. Int J Mol Sci 2023; 24:ijms24032605. [PMID: 36768922 PMCID: PMC9917219 DOI: 10.3390/ijms24032605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last decade, long non-coding RNAs (lncRNAs) have witnessed a steep rise in interest amongst the scientific community. Because of their functional significance in several biological processes, i.e., alternative splicing, epigenetics, cell cycle, dosage compensation, and gene expression regulation, lncRNAs have transformed our understanding of RNA's regulatory potential. However, most knowledge concerning lncRNAs comes from mammals, and our understanding of the potential role of lncRNAs amongst insects remains unclear. Technological advances such as RNA-seq have enabled entomologists to profile several hundred lncRNAs in insect species, although few are functionally studied. This article will review experimentally validated lncRNAs from different insects and the lncRNAs identified via bioinformatic tools. Lastly, we will discuss the existing research challenges and the future of lncRNAs in insects.
Collapse
|
7
|
Noncoding RNA Regulation of Hormonal and Metabolic Systems in the Fruit Fly Drosophila. Metabolites 2023; 13:metabo13020152. [PMID: 36837772 PMCID: PMC9967906 DOI: 10.3390/metabo13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The importance of RNAs is commonly recognised thanks to protein-coding RNAs, whereas non-coding RNAs (ncRNAs) were conventionally regarded as 'junk'. In the last decade, ncRNAs' significance and roles are becoming noticeable in various biological activities, including those in hormonal and metabolic regulation. Among the ncRNAs: microRNA (miRNA) is a small RNA transcript with ~20 nucleotides in length; long non-coding RNA (lncRNA) is an RNA transcript with >200 nucleotides; and circular RNA (circRNA) is derived from back-splicing of pre-mRNA. These ncRNAs can regulate gene expression levels at epigenetic, transcriptional, and post-transcriptional levels through various mechanisms in insects. A better understanding of these crucial regulators is essential to both basic and applied entomology. In this review, we intend to summarise and discuss the current understanding and knowledge of miRNA, lncRNA, and circRNA in the best-studied insect model, the fruit fly Drosophila.
Collapse
|
8
|
Singh AK. Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010017. [PMID: 36675966 PMCID: PMC9865238 DOI: 10.3390/life13010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) have a crucial role in epigenetic, transcriptional and posttranscriptional regulation of gene expression. Many of these regulatory lncRNAs, such as MALAT1, NEAT1, HOTAIR, etc., are associated with different neurodegenerative diseases in humans. The lncRNAs produced by the hsrω gene are known to modulate neurotoxicity in polyQ and amyotrophic lateral sclerosis disease models of Drosophila. Elevated expression of hsrω lncRNAs exaggerates, while their genetic depletion through hsrω-RNAi or in an hsrω-null mutant background suppresses, the disease pathogenicity. This review discusses the possible mechanistic details and implications of the functions of hsrω lncRNAs in the modulation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Interdisciplinary School of Life Sciences, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
9
|
MacPherson RA, Shankar V, Sunkara LT, Hannah RC, Campbell MR, Anholt RRH, Mackay TFC. Pleiotropic fitness effects of the lncRNA Uhg4 in Drosophila melanogaster. BMC Genomics 2022; 23:781. [PMID: 36451091 PMCID: PMC9710044 DOI: 10.1186/s12864-022-08972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are a diverse class of RNAs that are critical for gene regulation, DNA repair, and splicing, and have been implicated in development, stress response, and cancer. However, the functions of many lncRNAs remain unknown. In Drosophila melanogaster, U snoRNA host gene 4 (Uhg4) encodes an antisense long noncoding RNA that is host to seven small nucleolar RNAs (snoRNAs). Uhg4 is expressed ubiquitously during development and in all adult tissues, with maximal expression in ovaries; however, it has no annotated function(s). RESULTS We used CRISPR-Cas9 germline gene editing to generate multiple deletions spanning the promoter region and first exon of Uhg4. Females showed arrested egg development and both males and females were sterile. In addition, Uhg4 deletion mutants showed delayed development and decreased viability, and changes in sleep and responses to stress. Whole-genome RNA sequencing of Uhg4 deletion flies and their controls identified co-regulated genes and genetic interaction networks associated with Uhg4. Gene ontology analyses highlighted a broad spectrum of biological processes, including regulation of transcription and translation, morphogenesis, and stress response. CONCLUSION Uhg4 is a lncRNA essential for reproduction with pleiotropic effects on multiple fitness traits.
Collapse
Affiliation(s)
- Rebecca A MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Lakshmi T Sunkara
- Present adress: Clemson Veterinary Diagnostic Center, Livestock Poultry Health, Clemson University, 500 Clemson Road, Columbia, SC, 29229, USA
| | - Rachel C Hannah
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Marion R Campbell
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Robert R H Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| | - Trudy F C Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| |
Collapse
|
10
|
Zafar J, Huang J, Xu X, Jin F. Analysis of Long Non-Coding RNA-Mediated Regulatory Networks of Plutella xylostella in Response to Metarhizium anisopliae Infection. INSECTS 2022; 13:916. [PMID: 36292864 PMCID: PMC9604237 DOI: 10.3390/insects13100916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent a diverse class of RNAs that are structurally similar to messenger RNAs (mRNAs) but do not encode proteins. Growing evidence suggests that in response to biotic and abiotic stresses, the lncRNAs play crucial regulatory roles in plants and animals. However, the potential role of lncRNAs during fungal infection has yet to be characterized in Plutella xylostella, a devastating pest of cruciferous crops. In the current study, we performed a strand-specific RNA sequencing of Metarhizium anisopliae-infected (Px36hT, Px72hT) and uninfected (Px36hCK, Px72hCK) P. xylostella fat body tissues. Comprehensive bioinformatic analysis revealed a total of 5665 and 4941 lncRNAs at 36 and 72-h post-infection (hpi), including 563 (Px36hT), 532 (Px72hT) known and 5102 (Px36hT), 4409 (Px72hT) novel lncRNA transcripts. These lncRNAs shared structural similarities with their counterparts in other species, including shorter exon and intron length, fewer exon numbers, and a lower expression profile than mRNAs. LncRNAs regulate the expression of neighboring protein-coding genes by acting in a cis and trans manner. Functional annotation and pathway analysis of cis-acting lncRNAs revealed their role in several immune-related genes, including Toll, serpin, transferrin, βGRP etc. Furthermore, we identified multiple lncRNAs acting as microRNA (miRNA) precursors. These miRNAs can potentially regulate the expression of mRNAs involved in immunity and development, suggesting a crucial lncRNA-miRNA-mRNA complex. Our findings will provide a genetic resource for future functional studies of lncRNAs involved in P. xylostella immune responses to M. anisopliae infection and shed light on understanding insect host-pathogen interactions.
Collapse
Affiliation(s)
| | | | - Xiaoxia Xu
- Correspondence: (X.X.); (F.J.); Tel.: +86-135-6047-8369 (F.J.)
| | - Fengliang Jin
- Correspondence: (X.X.); (F.J.); Tel.: +86-135-6047-8369 (F.J.)
| |
Collapse
|
11
|
Camilleri-Robles C, Amador R, Klein CC, Guigó R, Corominas M, Ruiz-Romero M. Genomic and functional conservation of lncRNAs: lessons from flies. Mamm Genome 2022; 33:328-342. [PMID: 35098341 PMCID: PMC9114055 DOI: 10.1007/s00335-021-09939-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Over the last decade, the increasing interest in long non-coding RNAs (lncRNAs) has led to the discovery of these transcripts in multiple organisms. LncRNAs tend to be specifically, and often lowly, expressed in certain tissues, cell types and biological contexts. Although lncRNAs participate in the regulation of a wide variety of biological processes, including development and disease, most of their functions and mechanisms of action remain unknown. Poor conservation of the DNA sequences encoding for these transcripts makes the identification of lncRNAs orthologues among different species very challenging, especially between evolutionarily distant species such as flies and humans or mice. However, the functions of lncRNAs are unexpectedly preserved among different species supporting the idea that conservation occurs beyond DNA sequences and reinforcing the potential of characterising lncRNAs in animal models. In this review, we describe the features and roles of lncRNAs in the fruit fly Drosophila melanogaster, focusing on genomic and functional comparisons with human and mouse lncRNAs. We also discuss the current state of advances and limitations in the study of lncRNA conservation and future perspectives.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Raziel Amador
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Cecilia C Klein
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain.
| |
Collapse
|
12
|
Zhang X, Zhu YN, Chen B, Kang L. A Gypsy element contributes to the nuclear retention and transcriptional regulation of the resident lncRNA in locusts. RNA Biol 2022; 19:206-220. [PMID: 35067197 PMCID: PMC8786324 DOI: 10.1080/15476286.2021.2024032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The majority of long noncoding RNAs (lncRNAs) contain transposable elements (TEs). PAHAL, a nuclear-retained lncRNA that is inserted by a Gypsy retrotransposon, has been shown to be a vital regulator of phenylalanine hydroxylase (PAH) gene expression that controls dopamine biosynthesis and behavioural aggregation in the migratory locust. However, the role of the Gypsy retrotransposon in the transcriptional regulation of PAHAL remains unknown. Here, we identified a Gypsy retrotransposon (named Gypsy element) as an inverted long terminal repeat located in the 3′ end of PAHAL, representing a feature shared by many other lncRNAs in the locust genome. The embedded Gypsy element contains a RNA nuclear localization signal motif, which promotes the stable accumulation of PAHAL in the nucleus. The Gypsy element also provides high-affinity SRSF2 binding sites for PAHAL that induce the recruitment of SRSF2, resulting in the PAHAL-mediated transcriptional activation of PAH. Thus, our data demonstrate that TEs provide discrete functional domains for lncRNA organization and highlight the contribution of TEs to the regulatory significance of lncRNAs.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Nan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- School of Life Sciences, Hebei University, Baoding, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, Hebei University, Baoding, China.,Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Nag DK, Dieme C, Lapierre P, Lasek-Nesselquist E, Kramer LD. RNA-Seq analysis of blood meal induced gene-expression changes in Aedes aegypti ovaries. BMC Genomics 2021; 22:396. [PMID: 34044772 PMCID: PMC8161926 DOI: 10.1186/s12864-021-07551-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
Background Transmission of pathogens by vector mosquitoes is intrinsically linked with mosquito’s reproductive strategy because anautogenous mosquitoes require vertebrate blood to develop a batch of eggs. Each cycle of egg maturation is tightly linked with the intake of a fresh blood meal for most species. Mosquitoes that acquire pathogens during the first blood feeding can transmit the pathogens to susceptible hosts during subsequent blood feeding and also vertically to the next generation via infected eggs. Large-scale gene-expression changes occur following each blood meal in various tissues, including ovaries. Here we analyzed mosquito ovary transcriptome following a blood meal at three different time points to investigate blood-meal induced changes in gene expression in mosquito ovaries. Results We collected ovaries from Aedes aegypti that received a sugar meal or a blood meal on days 3, 10 and 20 post blood meal for transcriptome analysis. Over 4000 genes responded differentially following ingestion of a blood meal on day 3, and 660 and 780 genes on days 10 and 20, respectively. Proteins encoded by differentially expressed genes (DEGs) on day 3 include odorant binding proteins (OBPs), defense-specific proteins, and cytochrome P450 detoxification enzymes. In addition, we identified 580 long non-coding RNAs that are differentially expressed at three time points. Gene ontology analysis indicated that genes involved in peptidase activity, oxidoreductase activity, extracellular space, and hydrolase activity, among others were enriched on day 3. Although most of the DEGs returned to the nonsignificant level compared to the sugar-fed mosquito ovaries following oviposition on days 10 and 20, there remained differences in the gene expression pattern in sugar-fed and blood-fed mosquitoes. Conclusions Enrichment of OBPs following blood meal ingestion suggests that these genes may have other functions besides being part of the olfactory system. The enrichment of immune-specific genes and cytochrome P450 genes indicates that ovaries become well prepared to protect their germ line from any pathogens that may accompany the blood meal or from environmental contamination during oviposition, and to deal with the detrimental effects of toxic metabolites. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07551-z.
Collapse
Affiliation(s)
- Dilip K Nag
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA.
| | - Constentin Dieme
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Pascal Lapierre
- Bioinformatics Core, Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, NY, 12208, USA
| | - Erica Lasek-Nesselquist
- Bioinformatics Core, Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, NY, 12208, USA.,Department of Biomedical Sciences, State University of New York, School of Public Health, Albany, NY, 12208, USA
| | - Laura D Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA.,Department of Biomedical Sciences, State University of New York, School of Public Health, Albany, NY, 12208, USA
| |
Collapse
|
14
|
Choudhary C, Sharma S, Meghwanshi KK, Patel S, Mehta P, Shukla N, Do DN, Rajpurohit S, Suravajhala P, Shukla JN. Long Non-Coding RNAs in Insects. Animals (Basel) 2021; 11:1118. [PMID: 33919662 PMCID: PMC8069800 DOI: 10.3390/ani11041118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Only a small subset of all the transcribed RNAs are used as a template for protein translation, whereas RNA molecules that are not translated play a very important role as regulatory non-coding RNAs (ncRNAs). Besides traditionally known RNAs (ribosomal and transfer RNAs), ncRNAs also include small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs). The lncRNAs, which were initially thought to be junk, have gained a great deal attention because of their regulatory roles in diverse biological processes in animals and plants. Insects are the most abundant and diverse group of animals on this planet. Recent studies have demonstrated the role of lncRNAs in almost all aspects of insect development, reproduction, and genetic plasticity. In this review, we describe the function and molecular mechanisms of the mode of action of different insect lncRNAs discovered up to date.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| | - Shivasmi Sharma
- Department of Biotechnology, Amity University Jaipur, Jaipur 303002, India; (S.S.); (S.P.)
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| | - Smit Patel
- Department of Biotechnology, Amity University Jaipur, Jaipur 303002, India; (S.S.); (S.P.)
| | - Prachi Mehta
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India; (P.M.); (S.R.)
| | - Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, India;
| | - Duy Ngoc Do
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Subhash Rajpurohit
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India; (P.M.); (S.R.)
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, India;
- Bioclues.org, Vivekananda Nagar, Kukatpally, Hyderabad, Telangana 500072, India
| | - Jayendra Nath Shukla
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| |
Collapse
|
15
|
Comprehensive analysis of long noncoding RNA and mRNA in five colorectal cancer tissues and five normal tissues. Biosci Rep 2021; 40:222043. [PMID: 32016349 PMCID: PMC7028436 DOI: 10.1042/bsr20191139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/08/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the role of abnormally expressed mRNA and long noncoding RNA (lncRNA) in the development of colorectal cancer (CRC). We used lncRNA sequencing to analyze the transcriptome (mRNA and lncRNA) of five pairs of CRC tissues and adjacent normal tissues. The total expression of mRNAs and lncRNAs in each sample was determined using the R package and the gene expression was calculated using normalized FPKM. The structural features and expression of all detected lncRNAs were compared with those of mRNAs. Differentially expressed mRNAs were selected to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The functional analysis of differentially expressed lncRNAs was performed by analyzing the GO and KEGG enrichment of predicted cis-regulated target genes. A total of 18.2 × 108 reads were obtained by sequencing, in which the clean reads reached ≥ 94.67%, with a total of 245.2 G bases. The number of mRNAs and lncRNAs differentially expressed in CRC tissues and normal tissues were 113 and 6, respectively. Further predictive analysis of target genes of lncRNAs revealed that six lncRNA genes had potential cis-regulatory effects on 13 differentially expressed mRNA genes and co-expressed with 53 mRNAs. Up-regulated CTD-2256P15.4 and RP11-229P13.23 were the most important lncRNAs in these CRC tissues and involved in cell proliferation and pathway in cancer. In conclusion, our study provides evidence regarding the mRNA and lncRNA transcription in CRC tissues, as well as new insights into the lncRNAs and mRNAs involved in the development of CRC.
Collapse
|
16
|
Lyons LC, Chatterjee S, Vanrobaeys Y, Gaine ME, Abel T. Translational changes induced by acute sleep deprivation uncovered by TRAP-Seq. Mol Brain 2020; 13:165. [PMID: 33272296 PMCID: PMC7713217 DOI: 10.1186/s13041-020-00702-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Sleep deprivation is a global health problem adversely affecting health as well as causing decrements in learning and performance. Sleep deprivation induces significant changes in gene transcription in many brain regions, with the hippocampus particularly susceptible to acute sleep deprivation. However, less is known about the impacts of sleep deprivation on post-transcriptional gene regulation. To identify the effects of sleep deprivation on the translatome, we took advantage of the RiboTag mouse line to express HA-labeled Rpl22 in CaMKIIα neurons to selectively isolate and sequence mRNA transcripts associated with ribosomes in excitatory neurons. We found 198 differentially expressed genes in the ribosome-associated mRNA subset after sleep deprivation. In comparison with previously published data on gene expression in the hippocampus after sleep deprivation, we found that the subset of genes affected by sleep deprivation was considerably different in the translatome compared with the transcriptome, with only 49 genes regulated similarly. Interestingly, we found 478 genes differentially regulated by sleep deprivation in the transcriptome that were not significantly regulated in the translatome of excitatory neurons. Conversely, there were 149 genes differentially regulated by sleep deprivation in the translatome but not in the whole transcriptome. Pathway analysis revealed differences in the biological functions of genes exclusively regulated in the transcriptome or translatome, with protein deacetylase activity and small GTPase binding regulated in the transcriptome and unfolded protein binding, kinase inhibitor activity, neurotransmitter receptors and circadian rhythms regulated in the translatome. These results indicate that sleep deprivation induces significant changes affecting the pool of actively translated mRNAs.
Collapse
Affiliation(s)
- Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
17
|
Chen H, Shan G. The physiological function of long-noncoding RNAs. Noncoding RNA Res 2020; 5:178-184. [PMID: 32959025 PMCID: PMC7494506 DOI: 10.1016/j.ncrna.2020.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
The physiological processes of cells and organisms are regulated by various biological macromolecules, including long-noncoding RNAs (lncRNAs), which cannot be translated into protein and are different from small-noncoding RNAs on their length. In animals, lncRNAs are involved in development, metabolism, reproduction, aging and other life events by cis or trans effects. For many functional lncRNAs, there is growing evidence that they play different roles on cellular level and organismal level. On the other hand, many annotated lncRNAs are not essential and could be transcription noises. In this minireview, we investigate the physiological function of lncRNAs in cells and focus on their functions and functional mechanisms on the organismal level. The studies on lncRNAs using different classic animal models such as worms and flies are summarized and discussed in this article.
Collapse
Affiliation(s)
- He Chen
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| |
Collapse
|
18
|
Melnikova LS, Georgiev PG, Golovnin AK. The Functions and Mechanisms of Action of Insulators in the Genomes of Higher Eukaryotes. Acta Naturae 2020; 12:15-33. [PMID: 33456975 PMCID: PMC7800606 DOI: 10.32607/actanaturae.11144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The mechanisms underlying long-range interactions between chromatin regions and the principles of chromosomal architecture formation are currently under extensive scrutiny. A special class of regulatory elements known as insulators is believed to be involved in the regulation of specific long-range interactions between enhancers and promoters. This review focuses on the insulators of Drosophila and mammals, and it also briefly characterizes the proteins responsible for their functional activity. It was initially believed that the main properties of insulators are blocking of enhancers and the formation of independent transcription domains. We present experimental data proving that the chromatin loops formed by insulators play only an auxiliary role in enhancer blocking. The review also discusses the mechanisms involved in the formation of topologically associating domains and their role in the formation of the chromosomal architecture and regulation of gene transcription.
Collapse
Affiliation(s)
- L. S. Melnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - P. G. Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. K. Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
19
|
Chang ZX, Ajayi OE, Guo DY, Wu QF. Genome-wide characterization and developmental expression profiling of long non-coding RNAs in Sogatella furcifera. INSECT SCIENCE 2020; 27:987-997. [PMID: 31264303 DOI: 10.1111/1744-7917.12707] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The genome-wide characterization of long non-coding RNA (lncRNA) in insects demonstrates their importance in fundamental biological processes. Essentially, an in-depth understanding of the functional repertoire of lncRNA in insects is pivotal to insect resources utilization and sustainable pest control. Using a custom bioinformatics pipeline, we identified 1861 lncRNAs encoded by 1852 loci in the Sogatella furcifera genome. We profiled lncRNA expression in different developmental stages and observed that the expression of lncRNAs is more highly temporally restricted compared to protein-coding genes. More up-regulated Sogatella furcifera lncRNA expressed in the embryo, 4th and 5th instars, suggesting that increased lncRNA levels may play a role in these developmental stages. We compared the relationship between the expression of Sogatella furcifera lncRNA and its nearest protein gene and found that lncRNAs were more correlated to their downstream coding neighbors on the opposite strand. Our genome-wide profiling of lncRNAs in Sogatella furcifera identifies exciting candidates for characterization of lncRNAs, and also provides information on lncRNA regulation during insect development.
Collapse
Affiliation(s)
- Zhao-Xia Chang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Olugbenga Emmanuel Ajayi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dong-Yang Guo
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
21
|
Li T, Chen B, Yang P, Wang D, Du B, Kang L. Long Non-coding RNA Derived from lncRNA-mRNA Co-expression Networks Modulates the Locust Phase Change. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:664-678. [PMID: 32866667 PMCID: PMC8377017 DOI: 10.1016/j.gpb.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/14/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022]
Abstract
Long non-coding RNAs (lncRNAs) regulate various biological processes ranging from gene expression to animal behavior. Although protein-coding genes, microRNAs, and neuropeptides play important roles in the regulation of phenotypic plasticity in migratory locust, empirical studies on the function of lncRNAs in this process remain limited. Here, we applied high-throughput RNA-seq to compare the expression patterns of lncRNAs and mRNAs in the time course of locust phase change. We found that lncRNAs responded more rapidly at the early stages of phase transition. Functional annotations demonstrated that early changed lncRNAs employed different pathways in isolation and crowding phases to cope with changes in the population density. Two overlapping hub lncRNA loci in the crowding and isolation networks were screened for functional verification. One of them, LNC1010057, was validated as a potential regulator of locust phase change. This work offers insights into the molecular mechanism underlying locust phase change and expands the scope of lncRNA functions in animal behavior.
Collapse
Affiliation(s)
- Ting Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Chen
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Depin Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baozhen Du
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
22
|
Qasim M, Xiao H, He K, Omar MAA, Liu F, Ahmed S, Li F. Genetic engineering and bacterial pathogenesis against the vectorial capacity of mosquitoes. Microb Pathog 2020; 147:104391. [PMID: 32679245 DOI: 10.1016/j.micpath.2020.104391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
Mosquitoes are the main vector of multiple diseases worldwide and transmit viral (malaria, chikungunya, encephalitis, yellow fever, as well as dengue fever), as well as bacterial diseases (tularemia). To manage the outbreak of mosquito populations, various management programs include the application of chemicals, followed by biological and genetic control. Here we aimed to focus on the role of bacterial pathogenesis and molecular tactics for the management of mosquitoes and their vectorial capacity. Bacterial pathogenesis and molecular manipulations have a substantial impact on the biology of mosquitoes, and both strategies change the gene expression and regulation of disease vectors. The strategy for genetic modification is also proved to be excellent for the management of mosquitoes, which halt the development of population via incompatibility of different sex. Therefore, the purpose of the present discussion is to illustrate the impact of both approaches against the vectorial capacity of mosquitoes. Moreover, it could be helpful to understand the relationship of insect-pathogen and to manage various insect vectors as well as diseases.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Huamei Xiao
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; College of Life Sciences and Resource Environment, Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun University, Yichun, 336000, China
| | - Kang He
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed A A Omar
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Feiling Liu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sohail Ahmed
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Fei Li
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Chen J, Yu Y, Kang K, Zhang D. SMRT sequencing of the full-length transcriptome of the white-backed planthopper Sogatella furcifera. PeerJ 2020; 8:e9320. [PMID: 32551204 PMCID: PMC7292024 DOI: 10.7717/peerj.9320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/18/2020] [Indexed: 12/28/2022] Open
Abstract
The white-backed planthopper Sogatella furcifera is an economically important rice pest distributed throughout Asia. It damages rice crops by sucking phloem sap, resulting in stunted growth and plant virus transmission. We aimed to obtain the full-length transcriptome data of S. furcifera using PacBio single-molecule real-time (SMRT) sequencing. Total RNA extracted from S. furcifera at various developmental stages (egg, larval, and adult stages) was mixed and used to generate a full-length transcriptome for SMRT sequencing. Long non-coding RNA (lncRNA) identification, full-length coding sequence prediction, full-length non-chimeric (FLNC) read detection, simple sequence repeat (SSR) analysis, transcription factor detection, and transcript functional annotation were performed. A total of 12,514,449 subreads (15.64 Gbp, clean reads) were generated, including 630,447 circular consensus sequences and 388,348 FLNC reads. Transcript cluster analysis of the FLNC reads revealed 251,109 consensus reads including 29,700 high-quality reads. Additionally, 100,360 SSRs and 121,395 coding sequences were identified using SSR analysis and ANGEL software, respectively. Furthermore, 44,324 lncRNAs were annotated using four tools and 1,288 transcription factors were identified. In total, 95,495 transcripts were functionally annotated based on searches of seven different databases. To the best of our knowledge, this is the first study of the full-length transcriptome of the white-backed planthopper obtained using SMRT sequencing. The acquired transcriptome data can facilitate further studies on the ecological and viral-host interactions of this agricultural pest.
Collapse
Affiliation(s)
- Jing Chen
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Yaya Yu
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Kui Kang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Daowei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| |
Collapse
|
24
|
Yang H, Xu D, Zhuo Z, Hu J, Lu B. SMRT sequencing of the full-length transcriptome of the Rhynchophorus ferrugineus (Coleoptera: Curculionidae). PeerJ 2020; 8:e9133. [PMID: 32509454 PMCID: PMC7246026 DOI: 10.7717/peerj.9133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background Red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) is one of the most destructive insects for palm trees in the world. However, its genome resources are still in the blank stage, which limits the study of molecular and growth development analysis. Methods In this study, we used PacBio Iso-Seq and Illumina RNA-seq to first generate transcriptome from three developmental stages of R. ferrugineus (pupa, 7th larva, female and male) to increase our understanding of the life cycle and molecular characteristics of R. ferrugineus. Results A total of 63,801 nonredundant full-length transcripts were generated with an average length of 2,964 bp from three developmental stages, including the 7th instar larva, pupa, female adult and male adult. These transcripts showed a high annotation rate in seven public databases, with 54,999 (86.20%) successfully annotated. Meanwhile, 2,184 alternative splicing (AS) events, 2,084 transcription factors (TFs), 66,230 simple sequence repeats (SSR) and 9,618 Long noncoding RNAs (lncRNAs) were identified. In summary, our results provide a new source of full-length transcriptional data and information for the further study of gene expression and genetics in R. ferrugineus.
Collapse
Affiliation(s)
- Hongjun Yang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Danping Xu
- Sichuan Provincial Key Laboratory of Agricultural Products Processing and Preservative, College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Zhihang Zhuo
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China.,Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiameng Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Baoqian Lu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture China, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
25
|
Zhang X, Xu Y, Chen B, Kang L. Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis. PLoS Genet 2020; 16:e1008771. [PMID: 32348314 PMCID: PMC7241820 DOI: 10.1371/journal.pgen.1008771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/21/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
Some long noncoding RNAs (lncRNAs) are specifically expressed in brain cells, implying their neural and behavioural functions. However, how lncRNAs contribute to neural regulatory networks governing the precise behaviour of animals is less explored. Here, we report the regulatory mechanism of the nuclear-enriched lncRNA PAHAL for dopamine biosynthesis and behavioural adjustment in migratory locusts (Locusta migratoria), a species with extreme behavioral plasticity. PAHAL is transcribed from the sense (coding) strand of the gene encoding phenylalanine hydroxylase (PAH), which is responsible for the synthesis of dopamine from phenylalanine. PAHAL positively regulates PAH expression resulting in dopamine production in the brain. In addition, PAHAL modulates locust behavioral aggregation in a population density-dependent manner. Mechanistically, PAHAL mediates PAH transcriptional activation by recruiting serine/arginine-rich splicing factor 2 (SRSF2), a transcription/splicing factor, to the PAH proximal promoter. The co-activation effect of PAHAL requires the interaction of the PAHAL/SRSF2 complex with the promoter-associated nascent RNA of PAH. Thus, the data support a model of feedback modulation of animal behavioural plasticity by an lncRNA. In this model, the lncRNA mediates neurotransmitter metabolism through orchestrating a local transcriptional loop. The neurotransmitter dopamine is crucial for the neuronal and behavioral response in animals. Phenylalanine hydroxylase (PAH) is involved in dopamine biosynthesis and behavioral regulation in the migratory locust. However, the molecular mechanism for the fine tuning of PAH expression in behavioral response remains ambiguous. Here we discovered a nuclear-enriched lncRNA PAHAL that is transcribed from the coding strand of the PAH gene in the locust (i.e., sense lncRNA). PAHAL positively regulated PAH expression and dopamine production in the brain. In addition, PAHAL modulated behavioral aggregation of the locust. Mechanistically, PAHAL mediated the transcriptional activation of PAH by recruiting SRSF2, a transcription/splicing factor, to the promoter-associated nascent RNA of PAH. These data support a model of feedback modulation of dopamine biosynthesis and behavioral plasticity via a sense lncRNA in the catecholamine metabolic pathway.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ya'nan Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, China
- * E-mail: (BC); (KL)
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, China
- * E-mail: (BC); (KL)
| |
Collapse
|
26
|
Insights into the Functions of LncRNAs in Drosophila. Int J Mol Sci 2019; 20:ijms20184646. [PMID: 31546813 PMCID: PMC6770079 DOI: 10.3390/ijms20184646] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides (nt). LncRNAs have high spatiotemporal specificity, and secondary structures have been preserved throughout evolution. They have been implicated in a range of biological processes and diseases and are emerging as key regulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Comparative analyses of lncRNA functions among multiple organisms have suggested that some of their mechanisms seem to be conserved. Transcriptome studies have found that some Drosophila lncRNAs have highly specific expression patterns in embryos, nerves, and gonads. In vivo studies of lncRNAs have revealed that dysregulated expression of lncRNAs in Drosophila may result in impaired embryo development, impaired neurological and gonadal functions, and poor stress resistance. In this review, we summarize the epigenetic, transcriptional, and post-transcriptional mechanisms of lncRNAs and mainly focus on recent insights into the transcriptome studies and biological functions of lncRNAs in Drosophila.
Collapse
|
27
|
Liu F, Shi T, Qi L, Su X, Wang D, Dong J, Huang ZY. lncRNA profile of Apis mellifera and its possible role in behavioural transition from nurses to foragers. BMC Genomics 2019; 20:393. [PMID: 31113365 PMCID: PMC6528240 DOI: 10.1186/s12864-019-5664-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/01/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The behavioural transition from nurses to foragers in honey bees is known to be affected by intrinsic and extrinsic factors, including colony demography, hormone levels, brain chemistry and structure, and gene expression in the brain. However, the molecular mechanism underlying this behavioural transition of honey bees is still obscure. RESULTS Through RNA sequencing, we performed a comprehensive analysis of lncRNAs and mRNAs in honey bee nurses and foragers. Nurses and foragers from both typical colonies and single-cohort colonies were used to prepare six libraries to generate 49 to 100 million clear reads per sample. We obtained 6863 novel lncRNAs, 1480 differentially expressed lncRNAs between nurses and foragers, and 9308 mRNAs. Consistent with previous studies, lncRNAs showed features distinct from mRNAs, such as shorter lengths, lower exon numbers, and lower expression levels compared to mRNAs. Bioinformatic analysis showed that differentially expressed genes were mostly involved in the regulation of sensory-related events, such as olfactory receptor activity and odorant binding, and enriched Wnt and FoxO signaling pathways. Moreover, we found that lncRNAs TCONS_00356023, TCONS_00357367, TCONS_00159909 and mRNAs dop1, Kr-h1 and HR38 may play important roles in behavioural transition in honey bees. CONCLUSION This study characterized the expression profile of lncRNAs in nurses and foragers and provided a framework for further study of the role of lncRNAs in honey bee behavioural transition.
Collapse
Affiliation(s)
- Fang Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230000 Anhui China
| | - Tengfei Shi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230000 Anhui China
| | - Lei Qi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230000 Anhui China
| | - Xin Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230000 Anhui China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021 Hangzhou China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021 Hangzhou China
| | - Zachary Y. Huang
- Department of Entomology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
28
|
Melnikova LS, Kostyuchenko MV, Molodina VV, Georgiev PG, Golovnin AK. Functional properties of the Su(Hw) complex are determined by its regulatory environment and multiple interactions on the Su(Hw) protein platform. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Su(Hw) protein was first identified as a DNA-binding component of an insulator complex in Drosophila. Insulators are regulatory elements that can block the enhancer-promoter communication and exhibit boundary activity. Some insulator complexes contribute to the higher-order organization of chromatin in topologically associated domains that are fundamental elements of the eukaryotic genomic structure. The Su(Hw)-dependent protein complex is a unique model for studying the insulator, since its basic structural components affecting its activity are already known. However, the mechanisms involving this complex in various regulatory processes and the precise interaction between the components of the Su(Hw) insulators remain poorly understood. Our recent studies reveal the fine mechanism of formation and function of the Su(Hw) insulator. Our results provide, for the first time, an example of a high complexity of interactions between the insulator proteins that are required to form the (Su(Hw)/Mod(mdg4)-67.2/CP190) complex. All interactions between the proteins are to a greater or lesser extent redundant, which increases the reliability of the complex formation. We conclude that both association with CP190 and Mod(mdg4)-67.2 partners and the proper organization of the DNA binding site are essential for the efficient recruitment of the Su(Hw) complex to chromatin insulators. In this review, we demonstrate the role of multiple interactions between the major components of the Su(Hw) insulator complex (Su(Hw)/Mod(mdg4)-67.2/CP190) in its activity. It was shown that Su(Hw) may regulate the enhancer–promoter communication via the newly described insulator neutralization mechanism. Moreover, Su(Hw) participates in direct regulation of activity of vicinity promoters. Finally, we demonstrate the mechanism of organization of “insulator bodies” and suggest a model describing their role in proper binding of the Su(Hw) complex to chromatin.
Collapse
|
29
|
Zhou QZ, Fang SM, Zhang Q, Yu QY, Zhang Z. Identification and comparison of long non-coding RNAs in the silk gland between domestic and wild silkworms. INSECT SCIENCE 2018; 25:604-616. [PMID: 28111905 DOI: 10.1111/1744-7917.12443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/03/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Under long-term artificial selection, the domestic silkworm (Bombyx mori) has increased its silk yield tremendously in comparison with its wild progenitor, Bombyx mandarina. However, the molecular mechanism of silk yield increase is still unknown. Comparative analysis of long non-coding RNAs (lncRNAs) may provide some insights into understanding this phenotypic variation. In this study, using RNA sequencing technology data of silk gland in domestic and wild silkworms, we identified 599 lncRNAs in the silk gland of the silkworm. Compared with protein-coding genes, the silk gland lncRNA genes tend to have fewer exon numbers, shorter transcript length and lower GC-content. Moreover, we found that three lncRNA genes are significantly and differentially expressed between domestic and wild silkworms. The potential targets of two differentially expressed lncRNAs (DELs) (dw4sg_0040 and dw4sg_0483) and the expression-correlated genes with the two DELs are mainly enriched in the related processes of silk protein translation. This implies that these DELs may affect the phenotypic variation in silk yield between the domestic and wild silkworms through the post-transcriptional regulation of silk protein.
Collapse
Affiliation(s)
- Qiu-Zhong Zhou
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Qiang Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
30
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
31
|
Lo Piccolo L. Drosophila as a Model to Gain Insight into the Role of lncRNAs in Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:119-146. [PMID: 29951818 DOI: 10.1007/978-981-13-0529-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is now clear that the majority of transcription in humans results in the production of long non-protein-coding RNAs (lncRNAs) with a variable length spanning from 200 bp up to several kilobases. To date, we have a limited understanding of the lncRNA function, but a huge number of evidences have suggested that lncRNAs represent an outstanding asset for cells. In particular, temporal and spatial expression of lncRNAs appears to be important for proper neurological functioning. Stunningly, abnormal lncRNA function has been found as being critical for the onset of neurological disorders. This chapter focus on the lncRNAs with a role in diseases affecting the central nervous system with particular regard for the lncRNAs causing those neurodegenerative diseases that exhibit dementia and/or motor dysfunctions. A specific section will be dedicated to the human neuronal lncRNAs that have been modelled in Drosophila. Finally, even if only few examples have been reported so far, an overview of the Drosophila lncRNAs with neurological functions will be also included in this chapter.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine 2-2 Yamadaoka, Suita Osaka, 565-0871, Japan.
| |
Collapse
|
32
|
O'Callaghan EK, Green EW, Franken P, Mongrain V. Omics Approaches in Sleep-Wake Regulation. Handb Exp Pharmacol 2018; 253:59-81. [PMID: 29796779 DOI: 10.1007/164_2018_125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although sleep seems an obvious and simple behaviour, it is extremely complex involving numerous interactions both at the neuronal and the molecular levels. While we have gained detailed insight into the molecules and neuronal networks responsible for the circadian organization of sleep and wakefulness, the molecular underpinnings of the homeostatic aspect of sleep regulation are still unknown and the focus of a considerable research effort. In the last 20 years, the development of techniques allowing the simultaneous measurement of hundreds to thousands of molecular targets (i.e. 'omics' approaches) has enabled the unbiased study of the molecular pathways regulated by and regulating sleep. In this chapter, we will review how the different omics approaches, including transcriptomics, epigenomics, proteomics, and metabolomics, have advanced sleep research. We present relevant data in the framework of the two-process model in which circadian and homeostatic processes interact to regulate sleep. The integration of the different omics levels, known as 'systems genetics', will eventually lead to a better understanding of how information flows from the genome, to molecules, to networks, and finally to sleep both in health and disease.
Collapse
Affiliation(s)
- Emma K O'Callaghan
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Edward W Green
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada. .,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
33
|
Liu F, Guo D, Yuan Z, Chen C, Xiao H. Genome-wide identification of long non-coding RNA genes and their association with insecticide resistance and metamorphosis in diamondback moth, Plutella xylostella. Sci Rep 2017; 7:15870. [PMID: 29158595 PMCID: PMC5696462 DOI: 10.1038/s41598-017-16057-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNA (lncRNA) is a class of noncoding RNA >200 bp in length that has essential roles in regulating a variety of biological processes. Here, we constructed a computational pipeline to identify lncRNA genes in the diamondback moth (Plutella xylostella), a major insect pest of cruciferous vegetables. In total, 3,324 lncRNAs corresponding to 2,475 loci were identified from 13 RNA-Seq datasets, including samples from parasitized, insecticide-resistant strains and different developmental stages. The identified P. xylostella lncRNAs had shorter transcripts and fewer exons than protein-coding genes. Seven out of nine randomly selected lncRNAs were validated by strand-specific RT-PCR. In total, 54-172 lncRNAs were specifically expressed in the insecticide resistant strains, among which one lncRNA was located adjacent to the sodium channel gene. In addition, 63-135 lncRNAs were specifically expressed in different developmental stages, among which three lncRNAs overlapped or were located adjacent to the metamorphosis-associated genes. These lncRNAs were either strongly or weakly co-expressed with their overlapping or neighboring mRNA genes. In summary, we identified thousands of lncRNAs and presented evidence that lncRNAs might have key roles in conferring insecticide resistance and regulating the metamorphosis development in P. xylostella.
Collapse
Affiliation(s)
- Feiling Liu
- College of Life Sciences and Resource Environment, Yichun University, Yichun, 336000, China
| | - Dianhao Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuting Yuan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Chen
- College of Life Sciences and Resource Environment, Yichun University, Yichun, 336000, China
| | - Huamei Xiao
- College of Life Sciences and Resource Environment, Yichun University, Yichun, 336000, China.
- The Center for Translational Medicine, Yichun University, Yichun, 336000, China.
| |
Collapse
|
34
|
Wang A, Wang J, Liu Y, Zhou Y. Mechanisms of Long Non-Coding RNAs in the Assembly and Plasticity of Neural Circuitry. Front Neural Circuits 2017; 11:76. [PMID: 29109677 PMCID: PMC5660110 DOI: 10.3389/fncir.2017.00076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/28/2017] [Indexed: 12/31/2022] Open
Abstract
The mechanisms underlying development processes and functional dynamics of neural circuits are far from understood. Long non-coding RNAs (lncRNAs) have emerged as essential players in defining identities of neural cells, and in modulating neural activities. In this review, we summarized latest advances concerning roles and mechanisms of lncRNAs in assembly, maintenance and plasticity of neural circuitry, as well as lncRNAs' implications in neurological disorders. We also discussed technical advances and challenges in studying functions and mechanisms of lncRNAs in neural circuitry. Finally, we proposed that lncRNA studies would advance our understanding on how neural circuits develop and function in physiology and disease conditions.
Collapse
Affiliation(s)
- Andi Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junbao Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Liu
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Yan Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Qian Y, Cao Y, Deng B, Yang G, Li J, Xu R, Zhang D, Huang J, Rao Y. Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila. eLife 2017; 6:26519. [PMID: 28984573 PMCID: PMC5648528 DOI: 10.7554/elife.26519] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the molecular mechanisms underlying sleep homeostasis is limited. We have taken a systematic approach to study neural signaling by the transmitter 5-hydroxytryptamine (5-HT) in drosophila. We have generated knockout and knockin lines for Trh, the 5-HT synthesizing enzyme and all five 5-HT receptors, making it possible for us to determine their expression patterns and to investigate their functional roles. Loss of the Trh, 5HT1a or 5HT2b gene decreased sleep time whereas loss of the Trh or 5HT2b gene diminished sleep rebound after sleep deprivation. 5HT2b expression in a small subset of, probably a single pair of, neurons in the dorsal fan-shaped body (dFB) is functionally essential: elimination of the 5HT2b gene from these neurons led to loss of sleep homeostasis. Genetic ablation of 5HT2b neurons in the dFB decreased sleep and impaired sleep homeostasis. Our results have shown that serotonergic signaling in specific neurons is required for the regulation of sleep homeostasis.
Collapse
Affiliation(s)
- Yongjun Qian
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Yue Cao
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Bowen Deng
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Guang Yang
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Jiayun Li
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Dandan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Juan Huang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Rao
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Biomembrane and Membrane Biology, PKU-IDG/McGovern Institute For Brain Research, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
36
|
Cagirici HB, Biyiklioglu S, Budak H. Assembly and Annotation of Transcriptome Provided Evidence of miRNA Mobility between Wheat and Wheat Stem Sawfly. FRONTIERS IN PLANT SCIENCE 2017; 8:1653. [PMID: 29038661 PMCID: PMC5630980 DOI: 10.3389/fpls.2017.01653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 05/23/2023]
Abstract
Wheat Stem Sawfly (WSS), Cephus Cinctus Norton (Hymenoptera: Cephidae), is one of the most important pests, causing yield and economic losses in wheat and barley. The lack of information about molecular mechanisms of WSS for defeating plant's resistance prevents application of effective pest control strategies therefore, it is essential to identify the genes and their regulators behind WSS infestations. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are recognized with their regulatory functions on gene expression, tuning protein production by controlling transcriptional and post-transcriptional activities. A transcriptome-guided approach was followed in order to identify miRNAs, lncRNAs, and mRNA of WSS, and their interaction networks. A total of 1,893 were presented here as differentially expressed between larva and adult WSS insects. There were 11 miRNA families detected in WSS transcriptome. Together with the annotation of 1,251 novel mRNAs, the amount of genetic information available for WSS was expanded. The network between WSS miRNAs, lncRNAs, and mRNAs suggested miRNA-mediated regulatory roles of lncRNAs as competing endogenous RNAs. In the light of the previous evidence that small RNA molecules of a pathogen could suppress the immune response of host plant, we analyzed the putative interactions between larvae and wheat at the miRNA level. Overall, this study provides a profile of larva and adult WSS life stages in terms of coding and non-coding elements. These findings also emphasize the potential roles of wheat and larval miRNAs in wheat resistance to infestation and in the suppression of resistance which is critical for the development of effective pest control strategies.
Collapse
Affiliation(s)
- Halise B. Cagirici
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Sezgi Biyiklioglu
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
37
|
Wang Y, Xu T, He W, Shen X, Zhao Q, Bai J, You M. Genome-wide identification and characterization of putative lncRNAs in the diamondback moth, Plutella xylostella (L.). Genomics 2017; 110:35-42. [PMID: 28789862 DOI: 10.1016/j.ygeno.2017.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are of particular interest because of their contributions to many biological processes. Here, we present the genome-wide identification and characterization of putative lncRNAs in a global insect pest, Plutella xylostella. A total of 8096 lncRNAs were identified and classified into three groups. The average length of exons in lncRNAs was longer than that in coding genes and the GC content was lower than that in mRNAs. Most lncRNAs were flanked by canonical splice sites, similar to mRNAs. Expression profiling identified 114 differentially expressed lncRNAs during the DBM development and found that majority were temporally specific. While the biological functions of lncRNAs remain uncharacterized, many are microRNA precursors or competing endogenous RNAs involved in micro-RNA regulatory pathways. This work provides a valuable resource for further studies on molecular bases for development of DBM and lay the foundation for discovery of lncRNA functions in P. xylostella.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Tingting Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Xiujing Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Qian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Jianlin Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.
| |
Collapse
|
38
|
Liu W, Yu E, Chen S, Ma X, Lu Y, Liu X. Spatiotemporal expression profiling of long intervening noncoding RNAs in Caenorhabditis elegans. Sci Rep 2017; 7:5195. [PMID: 28701691 PMCID: PMC5507858 DOI: 10.1038/s41598-017-05427-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 06/05/2017] [Indexed: 11/12/2022] Open
Abstract
To better understand the biological function of long noncoding RNAs, it is critical to determine their spatiotemporal expression patterns. We generated transgenic reporter strains for 149 out of the 170 annotated C. elegans long intervening noncoding RNAs (lincRNAs) and profiled their temporal activity. For the 68 lincRNAs with integrated reporter lines, we profiled their expression at the resolution of single cells in L1 larvae, and revealed that the expression of lincRNAs is more specific, heterogeneous and at lower level than transcription factors (TFs). These expression patterns can be largely attributed to transcriptional regulation because they were observed in assays using reporters of promoter activity. The spatial expression patterns of the 68 lincRNAs were further examined in 18 tissue categories throughout eight developmental stages. We compared the expression dynamics of lincRNAs, miRNAs and TFs during development. lincRNA and miRNA promoters are less active at embryo stage than those of TFs, but become comparable to TFs after embryogenesis. Finally, the lincRNA gene set shows a similar tissue distribution to that of miRNAs and TFs. We also generated a database, CELE, for the storage and retrieval of lincRNA reporter expression patterns and other relevant information. The data and strains described here will provide a valuable guide and resource for future functional exploration of C. elegans lincRNAs.
Collapse
Affiliation(s)
- Weihong Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Enchao Yu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaopeng Ma
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,PTN (Peking University-Tsinghua University-National Institute of Biological Sciences) Joint Graduate Program, Beijing, 100084, China
| | - Yiwen Lu
- Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xiao Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
39
|
Functions of long non-coding RNAs in human disease and their conservation in Drosophila development. Biochem Soc Trans 2017; 45:895-904. [PMID: 28673935 DOI: 10.1042/bst20160428] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
Genomic analysis has found that the transcriptome in both humans and Drosophila melanogaster features large numbers of long non-coding RNA transcripts (lncRNAs). This recently discovered class of RNAs regulates gene expression in diverse ways and has been involved in a large variety of important biological functions. Importantly, an increasing number of lncRNAs have also been associated with a range of human diseases, including cancer. Comparative analyses of their functions among these organisms suggest that some of their modes of action appear to be conserved. This highlights the importance of model organisms such as Drosophila, which shares many gene regulatory networks with humans, in understanding lncRNA function and its possible impact in human health. This review discusses some known functions and mechanisms of action of lncRNAs and their implication in human diseases, together with their functional conservation and relevance in Drosophila development.
Collapse
|
40
|
Détrée C, Núñez-Acuña G, Tapia F, Gallardo-Escárate C. Long non-coding RNAs are associated with spatiotemporal gene expression profiles in the marine gastropod Tegula atra. Mar Genomics 2017; 33:39-45. [DOI: 10.1016/j.margen.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/27/2016] [Accepted: 01/07/2017] [Indexed: 01/05/2023]
|
41
|
Long Non-Coding RNAs Regulating Immunity in Insects. Noncoding RNA 2017; 3:ncrna3010014. [PMID: 29657286 PMCID: PMC5832008 DOI: 10.3390/ncrna3010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 02/06/2023] Open
Abstract
Recent advances in modern technology have led to the understanding that not all genetic information is coded into protein and that the genomes of each and every organism including insects produce non-coding RNAs that can control different biological processes. Among RNAs identified in the last decade, long non-coding RNAs (lncRNAs) represent a repertoire of a hidden layer of internal signals that can regulate gene expression in physiological, pathological, and immunological processes. Evidence shows the importance of lncRNAs in the regulation of host–pathogen interactions. In this review, an attempt has been made to view the role of lncRNAs regulating immune responses in insects.
Collapse
|
42
|
Wang X, Lin J, Li F, Zhang C, Li J, Wang C, Dahlgren RA, Zhang H, Wang H. Screening and functional identification of lncRNAs under β-diketone antibiotic exposure to zebrafish (Danio rerio) using high-throughput sequencing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:214-225. [PMID: 27951453 DOI: 10.1016/j.aquatox.2016.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) have attracted considerable research interest, but so far no data are available on the roles of lncRNAs and their target genes under chronic β-diketone antibiotic (DKAs) exposure to zebrafish (Danio rerio). Herein, we identified 1.66, 3.07 and 3.36×104 unique lncRNAs from the 0, 6.25 and 12.5mg/L DKA treatment groups, respectively. In comparison with the control group, the 6.25 and 12.5mg/L treatments led to up-regulation of 2064 and 2479 lncRNAs, and down-regulation of 778 and 954 lncRNAs, respectively. Of these, 44 and 39 lncRNAs in the respective 6.25 and 12.5mg/L treatments displayed significant differential expression. Volcano and Venn diagrams of the differentially expressed lncRNAs were constructed on the basis of the differentially expressed lncRNAs. After analyzing 10 lncRNAs and potential target genes, a complex interaction network was constructed between them. The consistency of 7 target genes (tenm3, smarcc1b, myo9ab, ubr4, hoxb3a, mycbp2 and CR388046.3), co-regulated by 3 lncRNAs (TCONS_00129029, TCONS_00027240 and TCONS_00017790), was observed between their qRT-PCR and transcriptomic sequencing. By in situ hybridization (ISH), abnormal expression of 3 lncRNAs was observed in hepatic and spleen tissues, suggesting that they might be target organs for DKAs. A similar abnormal expression of two immune-related target genes (plk3 and syt10), co-regulated by the 3 identified lncRNAs, was observed in liver and spleen by ISH. Histopathological observations demonstrated hepatic parenchyma vacuolar degeneration and clot formation in hepatic tissues, and uneven distribution of brown metachromatic granules and larger nucleus in spleen tissues resulting from DKA exposure. Overall, DKA exposure led to abnormal expression of some lncRNAs and their potential target genes, and these genes might play a role in immune functions of zebrafish.
Collapse
Affiliation(s)
- Xuedong Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiebo Lin
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fanghui Li
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Cao Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jieyi Li
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Caihong Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy A Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongqin Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
43
|
Abstract
Sleep is essential for health and cognition, but the molecular and neural mechanisms of sleep regulation are not well understood. We recently reported the identification of TARANIS (TARA) as a sleep-promoting factor that acts in a previously unknown arousal center in Drosophila. tara mutants exhibit a dose-dependent reduction in sleep amount of up to ∼60%. TARA and its mammalian homologs, the Trip-Br (Transcriptional Regulators Interacting with PHD zinc fingers and/or Bromodomains) family of proteins, are primarily known as transcriptional coregulators involved in cell cycle progression, and contain a conserved Cyclin-A (CycA) binding homology domain. We found that tara and CycA synergistically promote sleep, and CycA levels are reduced in tara mutants. Additional data demonstrated that Cyclin-dependent kinase 1 (Cdk1) antagonizes tara and CycA to promote wakefulness. Moreover, we identified a subset of CycA expressing neurons in the pars lateralis, a brain region proposed to be analogous to the mammalian hypothalamus, as an arousal center. In this Extra View article, we report further characterization of tara mutants and provide an extended discussion of our findings and future directions within the framework of a working model, in which a network of cell cycle genes, tara, CycA, and Cdk1, interact in an arousal center to regulate sleep.
Collapse
Affiliation(s)
- Dinis J S Afonso
- a Department of Neuroscience ; the Farber Institute for Neurosciences; and Kimmel Cancer Center; Thomas Jefferson University ; Philadelphia , PA USA.,b Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho ; 4710-057 Braga , Portugal.,c ICVS/3B's; PT Government Associate Laboratory ; 4710-057 Braga/Guimarães ; Portugal
| | - Daniel R Machado
- a Department of Neuroscience ; the Farber Institute for Neurosciences; and Kimmel Cancer Center; Thomas Jefferson University ; Philadelphia , PA USA.,b Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho ; 4710-057 Braga , Portugal.,c ICVS/3B's; PT Government Associate Laboratory ; 4710-057 Braga/Guimarães ; Portugal
| | - Kyunghee Koh
- a Department of Neuroscience ; the Farber Institute for Neurosciences; and Kimmel Cancer Center; Thomas Jefferson University ; Philadelphia , PA USA
| |
Collapse
|
44
|
Davis CJ, Taishi P, Honn KA, Koberstein JN, Krueger JM. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1004-R1012. [PMID: 27707719 DOI: 10.1152/ajpregu.00167.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling.
Collapse
Affiliation(s)
- Christopher J Davis
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington; .,Sleep and Performance Research Center, Washington State University-Spokane, Spokane, Washington.,Program in Neuroscience, Washington State University-Spokane, Spokane, Washington; and
| | - Ping Taishi
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington
| | - Kimberly A Honn
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington.,Sleep and Performance Research Center, Washington State University-Spokane, Spokane, Washington.,Elson S. Floyd College of Medicine, Department of Medical Education and Clinical Sciences, Washington State University-Spokane, Spokane, Washington
| | - John N Koberstein
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington
| | - James M Krueger
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington.,Program in Neuroscience, Washington State University-Spokane, Spokane, Washington; and
| |
Collapse
|
45
|
Chen B, Zhang Y, Zhang X, Jia S, Chen S, Kang L. Genome-wide identification and developmental expression profiling of long noncoding RNAs during Drosophila metamorphosis. Sci Rep 2016; 6:23330. [PMID: 26996731 PMCID: PMC4800424 DOI: 10.1038/srep23330] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/29/2016] [Indexed: 12/27/2022] Open
Abstract
An increasing number of long noncoding RNAs (lncRNAs) have been discovered with the recent advances in RNA-sequencing technologies. lncRNAs play key roles across diverse biological processes, and are involved in developmental regulation. However, knowledge about how the genome-wide expression of lncRNAs is developmentally regulated is still limited. We here performed a whole-genome identification of lncRNAs followed by a global expression profiling of these lncRNAs during development in Drosophila melanogaster. We combined bioinformatic prediction of lncRNAs with stringent filtering of protein-coding transcripts and experimental validation to define a high-confidence set of Drosophila lncRNAs. We identified 1,077 lncRNAs in the given transcriptomes that contain 43,967 transcripts; among these, 646 lncRNAs are novel. In vivo expression profiling of these lncRNAs in 27 developmental processes revealed that the expression of lncRNAs is highly temporally restricted relative to that of protein-coding genes. Remarkably, 21% and 42% lncRNAs were significantly upregulated at late embryonic and larval stage, the critical time for developmental transition. The results highlight the developmental specificity of lncRNA expression, and reflect the regulatory significance of a large subclass of lncRNAs for the onset of metamorphosis. The systematic annotation and expression analysis of lncRNAs during Drosophila development form the foundation for future functional exploration.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Mathematics, Hebei University of Science and Technology/Hebei Laboratory of Pharmaceutical Molecular Chemistry, Shijiazhuang 050018, China
| | - Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Shili Jia
- Department of Mathematics, Hebei University of Science and Technology/Hebei Laboratory of Pharmaceutical Molecular Chemistry, Shijiazhuang 050018, China
| | - Shuang Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
46
|
Wu Y, Cheng T, Liu C, Liu D, Zhang Q, Long R, Zhao P, Xia Q. Systematic Identification and Characterization of Long Non-Coding RNAs in the Silkworm, Bombyx mori. PLoS One 2016; 11:e0147147. [PMID: 26771876 PMCID: PMC4714849 DOI: 10.1371/journal.pone.0147147] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/22/2015] [Indexed: 02/04/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators in various biological processes. However, to date, no systematic characterization of lncRNAs has been reported in the silkworm Bombyx mori. In the present study, we generated eighteen RNA-seq datasets with relatively high depth. Using an in-house designed lncRNA identification pipeline, 11,810 lncRNAs were identified for 5,556 loci. Among these lncRNAs, 474 transcripts were intronic lncRNAs (ilncRNAs), 6,250 transcripts were intergenic lncRNAs (lincRNAs), and 5,086 were natural antisense lncRNAs (lncNATs). Compared with protein-coding mRNAs, silkworm lncRNAs are shorter in terms of full length but longer in terms of exon and intron length. In addition, lncRNAs exhibit a lower level of sequence conservation, more repeat sequences overlapped and higher tissue specificity than protein-coding mRNAs in the silkworm. We found that 69 lncRNA transcripts from 33 gene loci may function as miRNA precursors, and 104 lncRNA transcripts from 72 gene loci may act as competing endogenous RNAs (ceRNAs). In total, 49.47% of all gene loci (2,749/5,556) for which lncRNAs were identified showed sex-biased expression. Co-expression network analysis resulted in 19 modules, 12 of which revealed relatively high tissue specificity. The highlighted darkgoldenrod module was specifically associated with middle and posterior silk glands, and the hub lncRNAs within this module were co-expressed with proteins involved in translation, translocation, and secretory processes, suggesting that these hub lncRNAs may function as regulators of the biosynthesis, translocation, and secretion of silk proteins. This study presents the first comprehensive genome-wide analysis of silkworm lncRNAs and provides an invaluable resource for genetic, evolutionary, and genomic studies of B. mori.
Collapse
Affiliation(s)
- Yuqian Wu
- School of Life Sciences, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Duolian Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Quan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Renwen Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- * E-mail:
| |
Collapse
|
47
|
Xiao H, Yuan Z, Guo D, Hou B, Yin C, Zhang W, Li F. Genome-wide identification of long noncoding RNA genes and their potential association with fecundity and virulence in rice brown planthopper, Nilaparvata lugens. BMC Genomics 2015; 16:749. [PMID: 26437919 PMCID: PMC4594746 DOI: 10.1186/s12864-015-1953-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
Background The functional repertoire of long noncoding RNA (lncRNA) has been characterized in several model organisms, demonstrating that lncRNA plays important roles in fundamental biological processes. However, they remain largely unidentified in most species. Understanding the characteristics and functions of lncRNA in insects would be useful for insect resources utilization and sustainable pest control. Methods A computational pipeline was developed to identify lncRNA genes in the rice brown planthopper, Nilaparvata lugens, a destructive rice pest causing huge yield losses. Strand specific RT-PCR were used to determine the transcription orientation of lncRNAs. Results In total, 2,439 lncRNA transcripts corresponding to 1,882 loci were detected from 12 whole transcriptomes (RNA-seq) datasets, including samples from high fecundity (HFP), low fecundity (LFP), I87i and C89i populations, in addition Mudgo and TN1 virulence strains. The identified N. lugens lncRNAs had low sequence similarities with other known lncRNAs. However, their structural features were similar with mammalian counterparts. N. lugens lncRNAs had shorter transcripts than protein-coding genes due to the lower exon number though their exons and introns were longer. Only 19.9% of N. lugens lncRNAs had multiple alternatively spliced isoforms. We observed biases in the genome location of N. lugens lncRNAs. More than 30% of the lncRNAs overlapped with known protein-coding genes. These lncRNAs tend to be co-expressed with their neighboring genes (Pearson correlation, p < 0.01, T-test) and might interact with adjacent protein-coding genes. In total, 19-148 lncRNAs were specifically-expressed in the samples of HFP, LFP, Mudgo, TN1, I87i and C89i populations. Three lncRNAs specifically expressed in HFP and LFP populations overlapped with reproductive-associated genes. Discussion The structural features of N. lugens lncRNAs are similar to mammalian counterparts. Coexpression and function analysis suggeste that N. lugens lncRNAs might have important functions in high fecundity and virulence adaptability. Conclusions This study provided the first catalog of lncRNA genes in rice brown planthopper. Gene expression and genome location analysis indicated that lncRNAs might play important roles in high fecundity and virulence adaptation in N. lugens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1953-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huamei Xiao
- Department of Entomology, College of Plant protection, Nanjing Agricultural University, Nanjing, 210095, China.,Department of City Construction, Shaoyang University, Shaoyang, 422000, China
| | - Zhuting Yuan
- Department of Entomology, College of Plant protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianhao Guo
- Department of Entomology, College of Plant protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bofeng Hou
- Department of Entomology, College of Plant protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuanlin Yin
- Department of Entomology, College of Plant protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqing Zhang
- State Key Laboratory for Biocontrol/Institute of Entomology, Sun Yat Sen University, Guangzhou, 510275, China
| | - Fei Li
- Department of Entomology, College of Plant protection, Nanjing Agricultural University, Nanjing, 210095, China. .,Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
48
|
Etebari K, Furlong MJ, Asgari S. Genome wide discovery of long intergenic non-coding RNAs in Diamondback moth (Plutella xylostella) and their expression in insecticide resistant strains. Sci Rep 2015; 5:14642. [PMID: 26411386 PMCID: PMC4585956 DOI: 10.1038/srep14642] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/02/2015] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in genomic imprinting, cancer, differentiation and regulation of gene expression. Here, we identified 3844 long intergenic ncRNAs (lincRNA) in Plutella xylostella, which is a notorious pest of cruciferous plants that has developed field resistance to all classes of insecticides, including Bacillus thuringiensis (Bt) endotoxins. Further, we found that some of those lincRNAs may potentially serve as precursors for the production of small ncRNAs. We found 280 and 350 lincRNAs that are differentially expressed in Chlorpyrifos and Fipronil resistant larvae. A survey on P. xylostella midgut transcriptome data from Bt-resistant populations revealed 59 altered lincRNA in two resistant strains compared with the susceptible population. We validated the transcript levels of a number of putative lincRNAs in deltamethrin-resistant larvae that were exposed to deltamethrin, which indicated that this group of lincRNAs might be involved in the response to xenobiotics in this insect. To functionally characterize DBM lincRNAs, gene ontology (GO) enrichment of their associated protein-coding genes was extracted and showed over representation of protein, DNA and RNA binding GO terms. The data presented here will facilitate future studies to unravel the function of lincRNAs in insecticide resistance or the response to xenobiotics of eukaryotic cells.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane QLD 4072 Australia
| |
Collapse
|
49
|
The Nature, Extent, and Consequences of Genetic Variation in the opa Repeats of Notch in Drosophila. G3-GENES GENOMES GENETICS 2015; 5:2405-19. [PMID: 26362765 PMCID: PMC4632060 DOI: 10.1534/g3.115.021659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyglutamine (pQ) tracts are abundant in proteins co-interacting on DNA. The lengths of these pQ tracts can modulate their interaction strengths. However, pQ tracts >40 residues are pathologically prone to amyloidogenic self-assembly. Here, we assess the extent and consequences of variation in the pQ-encoding opa repeats of Notch in Drosophila melanogaster. We use Sanger sequencing to genotype opa sequences (5′-CAX repeats), which have resisted assembly using short sequence reads. While most sampled lines carry the major allele opa31 encoding Q13HQ17 or the opa32 allele encoding Q13HQ18, many lines carry rare alleles encoding pQ tracts >32 residues: opa33a (Q14HQ18), opa33b (Q15HQ17), opa34 (Q16HQ17), opa35a1/opa35a2 (Q13HQ21), opa36 (Q13HQ22), and opa37 (Q13HQ23). Only one rare allele encodes a tract <31 residues: opa23 (Q13–Q10). This opa23 allele shortens the pQ tract while simultaneously eliminating the interrupting histidine. We introgressed these opa variant alleles into common backgrounds and measured the frequency of Notch-type phenotypes. Homozygotes for the short and long opa alleles have defects in embryonic survival and sensory bristle organ patterning, and sometimes show wing notching. Consistent with functional differences between Notch opa variants, we find that a scute inversion carrying the rare opa33b allele suppresses the bristle patterning defect caused by achaete/scute insufficiency, while an equivalent scute inversion carrying opa31 manifests the patterning defect. Our results demonstrate the existence of potent pQ variants of Notch and the need for long read genotyping of key repeat variables underlying gene regulatory networks.
Collapse
|
50
|
Dhiman H, Kapoor S, Sivadas A, Sivasubbu S, Scaria V. zflncRNApedia: A Comprehensive Online Resource for Zebrafish Long Non-Coding RNAs. PLoS One 2015; 10:e0129997. [PMID: 26065909 PMCID: PMC4466246 DOI: 10.1371/journal.pone.0129997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/15/2015] [Indexed: 12/13/2022] Open
Abstract
Recent transcriptome annotation using deep sequencing approaches have annotated a large number of long non-coding RNAs in zebrafish, a popular model organism for human diseases. These studies characterized lncRNAs in critical developmental stages as well as adult tissues. Each of the studies has uncovered a distinct set of lncRNAs, with minor overlaps. The availability of the raw RNA-Seq datasets in public domain encompassing critical developmental time-points and adult tissues provides us with a unique opportunity to understand the spatiotemporal expression patterns of lncRNAs. In the present report, we created a catalog of lncRNAs in zebrafish, derived largely from the three annotation sets, as well as manual curation of literature to compile a total of 2,267 lncRNA transcripts in zebrafish. The lncRNAs were further classified based on the genomic context and relationship with protein coding gene neighbors into 4 categories. Analysis revealed a total of 86 intronic, 309 promoter associated, 485 overlapping and 1,386 lincRNAs. We created a comprehensive resource which houses the annotation of lncRNAs as well as associated information including expression levels, promoter epigenetic marks, genomic variants and retroviral insertion mutants. The resource also hosts a genome browser where the datasets could be browsed in the genome context. To the best of our knowledge, this is the first comprehensive resource providing a unified catalog of lncRNAs in zebrafish. The resource is freely available at URL: http://genome.igib.res.in/zflncRNApedia
Collapse
Affiliation(s)
- Heena Dhiman
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR–Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110020, India
| | - Shruti Kapoor
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR–Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110020, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Delhi, 110001, India
| | - Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR–Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110020, India
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110025, India
- * E-mail: (SS); (VS)
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR–Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110020, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Delhi, 110001, India
- * E-mail: (SS); (VS)
| |
Collapse
|