1
|
Genestier A, Duret L, Lartillot N. Bridging the gap between the evolutionary dynamics and the molecular mechanisms of meiosis: A model based exploration of the PRDM9 intra-genomic Red Queen. PLoS Genet 2024; 20:e1011274. [PMID: 38768268 PMCID: PMC11142677 DOI: 10.1371/journal.pgen.1011274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Molecular dissection of meiotic recombination in mammals, combined with population-genetic and comparative studies, have revealed a complex evolutionary dynamic characterized by short-lived recombination hotspots. Hotspots are chromosome positions containing DNA sequences where the protein PRDM9 can bind and cause crossing-over. To explain these fast evolutionary dynamic, a so-called intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hotspot extinction (the hotspot conversion paradox), followed by positive selection favoring mutant PRDM9 alleles recognizing new sequence motifs. Although this model predicts many empirical observations, the exact causes of the positive selection acting on new PRDM9 alleles is still not well understood. In this direction, experiment on mouse hybrids have suggested that, in addition to targeting double strand breaks, PRDM9 has another role during meiosis. Specifically, PRDM9 symmetric binding (simultaneous binding at the same site on both homologues) would facilitate homology search and, as a result, the pairing of the homologues. Although discovered in hybrids, this second function of PRDM9 could also be involved in the evolutionary dynamic observed within populations. To address this point, here, we present a theoretical model of the evolutionary dynamic of meiotic recombination integrating current knowledge about the molecular function of PRDM9. Our modeling work gives important insights into the selective forces driving the turnover of recombination hotspots. Specifically, the reduced symmetrical binding of PRDM9 caused by the loss of high affinity binding sites induces a net positive selection eliciting new PRDM9 alleles recognizing new targets. The model also offers new insights about the influence of the gene dosage of PRDM9, which can paradoxically result in negative selection on new PRDM9 alleles entering the population, driving their eviction and thus reducing standing variation at this locus.
Collapse
Affiliation(s)
- Alice Genestier
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, France
| | - Laurent Duret
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, France
| | - Nicolas Lartillot
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, France
| |
Collapse
|
2
|
Chen Z, Zhou M, Sun Y, Tang X, Zhang Z, Huang L. Exploration of Genome-Wide Recombination Rate Variation Patterns at Different Scales in Pigs. Animals (Basel) 2024; 14:1345. [PMID: 38731349 PMCID: PMC11083071 DOI: 10.3390/ani14091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Meiotic recombination is a prevalent process in eukaryotic sexual reproduction organisms that plays key roles in genetic diversity, breed selection, and species evolution. However, the recombination events differ across breeds and even within breeds. In this study, we initially computed large-scale population recombination rates of both sexes using approximately 52 K SNP genotypes in a total of 3279 pigs from four different Chinese and Western breeds. We then constructed a high-resolution historical recombination map using approximately 16 million SNPs from a sample of unrelated individuals. Comparative analysis of porcine recombination events from different breeds and at different resolutions revealed the following observations: Firstly, the 1Mb-scale pig recombination maps of the same sex are moderately conserved among different breeds, with the similarity of recombination events between Western pigs and Chinese indigenous pigs being lower than within their respective groups. Secondly, we identified 3861 recombination hotspots in the genome and observed medium- to high-level correlation between historical recombination rates (0.542~0.683) and estimates of meiotic recombination rates. Third, we observed that recombination hotspots are significantly far from the transcription start sites of pig genes, and the silico-predicted PRDM9 zinc finger domain DNA recognition motif is significantly enriched in the regions of recombination hotspots compared to recombination coldspots, highlighting the potential role of PRDM9 in regulating recombination hotspots in pigs. Our study analyzed the variation patterns of the pig recombination map at broad and fine scales, providing a valuable reference for genomic selection breeding and laying a crucial foundation for further understanding the molecular mechanisms of pig genome recombination.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyan Zhang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang 330045, China
| | | |
Collapse
|
3
|
Versoza CJ, Weiss S, Johal R, La Rosa B, Jensen JD, Pfeifer SP. Novel Insights into the Landscape of Crossover and Noncrossover Events in Rhesus Macaques (Macaca mulatta). Genome Biol Evol 2024; 16:evad223. [PMID: 38051960 PMCID: PMC10773715 DOI: 10.1093/gbe/evad223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Meiotic recombination landscapes differ greatly between distantly and closely related taxa, populations, individuals, sexes, and even within genomes; however, the factors driving this variation are yet to be well elucidated. Here, we directly estimate contemporary crossover rates and, for the first time, noncrossover rates in rhesus macaques (Macaca mulatta) from four three-generation pedigrees comprising 32 individuals. We further compare these results with historical, demography-aware, linkage disequilibrium-based recombination rate estimates. From paternal meioses in the pedigrees, 165 crossover events with a median resolution of 22.3 kb were observed, corresponding to a male autosomal map length of 2,357 cM-approximately 15% longer than an existing linkage map based on human microsatellite loci. In addition, 85 noncrossover events with a mean tract length of 155 bp were identified-similar to the tract lengths observed in the only other two primates in which noncrossovers have been studied to date, humans and baboons. Consistent with observations in other placental mammals with PRDM9-directed recombination, crossover (and to a lesser extent noncrossover) events in rhesus macaques clustered in intergenic regions and toward the chromosomal ends in males-a pattern in broad agreement with the historical, sex-averaged recombination rate estimates-and evidence of GC-biased gene conversion was observed at noncrossover sites.
Collapse
Affiliation(s)
- Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Sarah Weiss
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ravneet Johal
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bruno La Rosa
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
4
|
Seth A, Yokokura Y, Choi JY, Shyer JA, Vidyarthi A, Craft J. AP-1-independent NFAT signaling maintains follicular T cell function in infection and autoimmunity. J Exp Med 2023; 220:e20211110. [PMID: 36820828 PMCID: PMC9998660 DOI: 10.1084/jem.20211110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/05/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Coordinated gene expression programs enable development and function of T cell subsets. Follicular helper T (Tfh) cells coordinate humoral immune responses by providing selective and instructive cues to germinal center B cells. Here, we show that AP-1-independent NFAT gene expression, a program associated with hyporesponsive T cell states like anergy or exhaustion, is also a distinguishing feature of Tfh cells. NFAT signaling in Tfh cells, maintained by NFAT2 autoamplification, is required for their survival. ICOS signaling upregulates Bcl6 and induces an AP-1-independent NFAT program in primary T cells. Using lupus-prone mice, we demonstrate that genetic disruption or pharmacologic inhibition of NFAT signaling specifically impacts Tfh cell maintenance and leads to amelioration of autoantibody production and renal injury. Our data provide important conceptual and therapeutic insights into the signaling mechanisms that regulate Tfh cell development and function.
Collapse
Affiliation(s)
- Abhinav Seth
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Yoshiyuki Yokokura
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Jin-Young Choi
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Justin A. Shyer
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Aurobind Vidyarthi
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Joe Craft
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Wooldridge LK, Dumont BL. Rapid Evolution of the Fine-scale Recombination Landscape in Wild House Mouse (Mus musculus) Populations. Mol Biol Evol 2022; 40:6889355. [PMID: 36508360 PMCID: PMC9825251 DOI: 10.1093/molbev/msac267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination is an important evolutionary force and an essential meiotic process. In many species, recombination events concentrate into hotspots defined by the site-specific binding of PRMD9. Rapid evolution of Prdm9's zinc finger DNA-binding array leads to remarkably abrupt shifts in the genomic distribution of hotspots between species, but the question of how Prdm9 allelic variation shapes the landscape of recombination between populations remains less well understood. Wild house mice (Mus musculus) harbor exceptional Prdm9 diversity, with >150 alleles identified to date, and pose a particularly powerful system for addressing this open question. We employed a coalescent-based approach to construct broad- and fine-scale sex-averaged recombination maps from contemporary patterns of linkage disequilibrium in nine geographically isolated wild house mouse populations, including multiple populations from each of three subspecies. Comparing maps between wild mouse populations and subspecies reveals several themes. First, we report weak fine- and broad-scale recombination map conservation across subspecies and populations, with genetic divergence offering no clear prediction for recombination map divergence. Second, most hotspots are unique to one population, an outcome consistent with minimal sharing of Prdm9 alleles between surveyed populations. Finally, by contrasting aggregate hotspot activity on the X versus autosomes, we uncover evidence for population-specific differences in the degree and direction of sex dimorphism for recombination. Overall, our findings illuminate the variability of both the broad- and fine-scale recombination landscape in M. musculus and underscore the functional impact of Prdm9 allelic variation in wild mouse populations.
Collapse
|
6
|
NanoCross: A pipeline that detecting recombinant crossover using ONT sequencing data. Genomics 2022; 114:110499. [PMID: 36174880 DOI: 10.1016/j.ygeno.2022.110499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Accepted: 09/25/2022] [Indexed: 01/14/2023]
Abstract
Meiotic recombination is crucial for eukaryotes but varies among taxonomic scales (between individuals, groups, species, etc.) and genome resolutions. Studying how and why recombination rates change can help us understand the molecular basis and mechanisms of genetics and evolution. We introduce a genome-wide identification script called NanoCross, which uses ONT sequences to detect pooled gamete DNA cross recombination events. NanoCross first reduced sequencing errors and then constructed individual haplotypes based on homopolymer-filtered ONT sequences. Then, each molecule read is used to estimate cross recombination. In the case of moderate heterozygous variation density and sequencing depth, simulations revealed that our technique offers a good level of sensitivity and specificity. We constructed a high-resolution recombination map of wild boar genomes using NanoCross and compared it to recombination maps of male breeding pig populations. NanoCross provides us with a method and scripts for constructing a high-resolution individual genome recombination map utilizing long-read sequencing, as well as a novel approach for examining the variation in individual recombination rate. The source code and data mechanism are hosted on GitHub (https://github.com/zuoquanchen/NanoCross).
Collapse
|
7
|
PRDM9-directed recombination hotspots depleted near meiotically transcribed genes. Gene 2021; 813:146123. [PMID: 34952174 DOI: 10.1016/j.gene.2021.146123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022]
Abstract
PRDM9 drives recombination hotspots in some mammals, including mice and apes. Non-functional orthologs of PRDM9 are present in a wide variety of vertebrates, but why it is functionally maintained in some lineages is not clear. One possible explanation is that PRDM9 plays a role in ensuring that meiosis is successful. During meiosis, available DNA may be a limiting resource given the tight packaging of chromosomes and could lead to competition between two key processes: meiotic transcription and recombination. Here we explore this potential competition and the role that PRDM9 might play in their interaction. Leveraging existing mouse genomic data, we use resampling schemes that simulate shuffled features along the genome and models that account for the rarity of features in the genome, to test if PRDM9 influences interactions between recombination hotspots and meiotic transcription in a whole genome framework. We also explored possible DNA sequence motifs associated to clusters of hotspots not tied to transcription or PRDM9. We find evidence of competition between meiotic transcription and recombination, with PRDM9 appearing to relocate recombination to avoid said conflict. We also find that retrotransposons may be playing a role in directing hotspots in the absence of other factors.
Collapse
|
8
|
Fuentes RR, de Ridder D, van Dijk ADJ, Peters SA. Domestication shapes recombination patterns in tomato. Mol Biol Evol 2021; 39:6379725. [PMID: 34597400 PMCID: PMC8763028 DOI: 10.1093/molbev/msab287] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Meiotic recombination is a biological process of key importance in breeding, to generate genetic diversity and develop novel or agronomically relevant haplotypes. In crop tomato, recombination is curtailed as manifested by linkage disequilibrium decay over a longer distance and reduced diversity compared with wild relatives. Here, we compared domesticated and wild populations of tomato and found an overall conserved recombination landscape, with local changes in effective recombination rate in specific genomic regions. We also studied the dynamics of recombination hotspots resulting from domestication and found that loss of such hotspots is associated with selective sweeps, most notably in the pericentromeric heterochromatin. We detected footprints of genetic changes and structural variants, among them associated with transposable elements, linked with hotspot divergence during domestication, likely causing fine-scale alterations to recombination patterns and resulting in linkage drag.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Sander A Peters
- Applied Bioinformatics, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
9
|
Johnsson M, Whalen A, Ros-Freixedes R, Gorjanc G, Chen CY, Herring WO, de Koning DJ, Hickey JM. Genetic variation in recombination rate in the pig. Genet Sel Evol 2021; 53:54. [PMID: 34171988 PMCID: PMC8235837 DOI: 10.1186/s12711-021-00643-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Meiotic recombination results in the exchange of genetic material between homologous chromosomes. Recombination rate varies between different parts of the genome, between individuals, and is influenced by genetics. In this paper, we assessed the genetic variation in recombination rate along the genome and between individuals in the pig using multilocus iterative peeling on 150,000 individuals across nine genotyped pedigrees. We used these data to estimate the heritability of recombination and perform a genome-wide association study of recombination in the pig. Results Our results confirmed known features of the recombination landscape of the pig genome, including differences in genetic length of chromosomes and marked sex differences. The recombination landscape was repeatable between lines, but at the same time, there were differences in average autosome-wide recombination rate between lines. The heritability of autosome-wide recombination rate was low but not zero (on average 0.07 for females and 0.05 for males). We found six genomic regions that are associated with recombination rate, among which five harbour known candidate genes involved in recombination: RNF212, SHOC1, SYCP2, MSH4 and HFM1. Conclusions Our results on the variation in recombination rate in the pig genome agree with those reported for other vertebrates, with a low but nonzero heritability, and the identification of a major quantitative trait locus for recombination rate that is homologous to that detected in several other species. This work also highlights the utility of using large-scale livestock data to understand biological processes. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00643-0.
Collapse
Affiliation(s)
- Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK. .,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7023, 750 07, Uppsala, Sweden.
| | - Andrew Whalen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK
| | - Roger Ros-Freixedes
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK.,Departament de Ciència Animal, Universitat de Lleida-Agrotecnio-CERCA Center, Lleida, Spain
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK
| | - Ching-Yi Chen
- Pig Improvement Company, Genus plc, 100 Bluegrass Commons Blvd., Ste2200, Hendersonville, TN, 37075, USA
| | - William O Herring
- Pig Improvement Company, Genus plc, 100 Bluegrass Commons Blvd., Ste2200, Hendersonville, TN, 37075, USA
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7023, 750 07, Uppsala, Sweden
| | - John M Hickey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
10
|
Bergero R, Ellis P, Haerty W, Larcombe L, Macaulay I, Mehta T, Mogensen M, Murray D, Nash W, Neale MJ, O'Connor R, Ottolini C, Peel N, Ramsey L, Skinner B, Suh A, Summers M, Sun Y, Tidy A, Rahbari R, Rathje C, Immler S. Meiosis and beyond - understanding the mechanistic and evolutionary processes shaping the germline genome. Biol Rev Camb Philos Soc 2021; 96:822-841. [PMID: 33615674 PMCID: PMC8246768 DOI: 10.1111/brv.12680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghEH9 3JTU.K.
| | - Peter Ellis
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | | | - Lee Larcombe
- Applied Exomics LtdStevenage Bioscience CatalystStevenageSG1 2FXU.K.
| | - Iain Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Tarang Mehta
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Mette Mogensen
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - David Murray
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - Will Nash
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonBN1 9RHU.K.
| | | | | | - Ned Peel
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Luke Ramsey
- The James Hutton InstituteInvergowrieDundeeDD2 5DAU.K.
| | - Ben Skinner
- School of Life SciencesUniversity of EssexColchesterCO4 3SQU.K.
| | - Alexander Suh
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
- Department of Organismal BiologyUppsala UniversityNorbyvägen 18DUppsala752 36Sweden
| | - Michael Summers
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
- The Bridge Centre1 St Thomas Street, London BridgeLondonSE1 9RYU.K.
| | - Yu Sun
- Norwich Medical SchoolUniversity of East AngliaNorwich Research Park, Colney LnNorwichNR4 7UGU.K.
| | - Alison Tidy
- School of BiosciencesUniversity of Nottingham, Plant Science, Sutton Bonington CampusSutton BoningtonLE12 5RDU.K.
| | | | - Claudia Rathje
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | - Simone Immler
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| |
Collapse
|
11
|
Wang X, Pepling ME. Regulation of Meiotic Prophase One in Mammalian Oocytes. Front Cell Dev Biol 2021; 9:667306. [PMID: 34095134 PMCID: PMC8172968 DOI: 10.3389/fcell.2021.667306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022] Open
Abstract
In female mammals, meiotic prophase one begins during fetal development. Oocytes transition through the prophase one substages consisting of leptotene, zygotene, and pachytene, and are finally arrested at the diplotene substage, for months in mice and years in humans. After puberty, luteinizing hormone induces ovulation and meiotic resumption in a cohort of oocytes, driving the progression from meiotic prophase one to metaphase two. If fertilization occurs, the oocyte completes meiosis two followed by fusion with the sperm nucleus and preparation for zygotic divisions; otherwise, it is passed into the uterus and degenerates. Specifically in the mouse, oocytes enter meiosis at 13.5 days post coitum. As meiotic prophase one proceeds, chromosomes find their homologous partner, synapse, exchange genetic material between homologs and then begin to separate, remaining connected at recombination sites. At postnatal day 5, most of the oocytes have reached the late diplotene (or dictyate) substage of prophase one where they remain arrested until ovulation. This review focuses on events and mechanisms controlling the progression through meiotic prophase one, which include recombination, synapsis and control by signaling pathways. These events are prerequisites for proper chromosome segregation in meiotic divisions; and if they go awry, chromosomes mis-segregate resulting in aneuploidy. Therefore, elucidating the mechanisms regulating meiotic progression is important to provide a foundation for developing improved treatments of female infertility.
Collapse
|
12
|
Qanbari S, Wittenburg D. Male recombination map of the autosomal genome in German Holstein. Genet Sel Evol 2020; 52:73. [PMID: 33317445 PMCID: PMC7734841 DOI: 10.1186/s12711-020-00593-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Recombination is a process by which chromosomes are broken and recombine to generate new combinations of alleles, therefore playing a major role in shaping genome variation. Recombination frequencies (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta$$\end{document}θ) between markers are used to construct genetic maps, which have important implications in genomic studies. Here, we report a recombination map for 44,696 autosomal single nucleotide polymorphisms (SNPs) according to the coordinates of the most recent bovine reference assembly. The recombination frequencies were estimated across 876 half-sib families with a minimum number of 39 and maximum number of 4236 progeny, comprising over 367 K genotyped German Holstein animals. Results Genome-wide, over 8.9 million paternal recombination events were identified by investigating adjacent markers. The recombination map spans 24.43 Morgan (M) for a chromosomal length of 2486 Mbp and an average of ~ 0.98 cM/Mbp, which concords with the available pedigree-based linkage maps. Furthermore, we identified 971 putative recombination hotspot intervals (defined as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta$$\end{document}θ > 2.5 standard deviations greater than the mean). The hotspot regions were non-uniformly distributed as sharp and narrow peaks, corresponding to ~ 5.8% of the recombination that has taken place in only ~ 2.4% of the genome. We verified genetic map length by applying a likelihood-based approach for the estimation of recombination rate between all intra-chromosomal marker pairs. This resulted in a longer autosomal genetic length for male cattle (25.35 cM) and in the localization of 51 putatively misplaced SNPs in the genome assembly. Conclusions Given the fact that this map is built on the coordinates of the ARS-UCD1.2 assembly, our results provide the most updated genetic map yet available for the cattle genome.
Collapse
Affiliation(s)
- Saber Qanbari
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genetics and Biometry, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Dörte Wittenburg
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genetics and Biometry, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| |
Collapse
|
13
|
Schwarzkopf EJ, Motamayor JC, Cornejo OE. Genetic differentiation and intrinsic genomic features explain variation in recombination hotspots among cocoa tree populations. BMC Genomics 2020; 21:332. [PMID: 32349675 PMCID: PMC7191684 DOI: 10.1186/s12864-020-6746-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recombination plays an important evolutionary role by breaking up haplotypes and shuffling genetic variation. This process impacts the ability of selection to eliminate deleterious mutations or increase the frequency of beneficial mutations in a population. To understand the role of recombination generating and maintaining haplotypic variation in a population, we can construct fine-scale recombination maps. Such maps have been used to study a variety of model organisms and proven to be informative of how selection and demographics shape species-wide variation. Here we present a fine-scale recombination map for ten populations of Theobroma cacao – a non-model, long-lived, woody crop. We use this map to elucidate the dynamics of recombination rates in distinct populations of the same species, one of which is domesticated. Results Mean recombination rates in range between 2.5 and 8.6 cM/Mb for most populations of T. cacao with the exception of the domesticated Criollo (525 cM/Mb) and Guianna, a more recently established population (46.5 cM/Mb). We found little overlap in the location of hotspots of recombination across populations. We also found that hotspot regions contained fewer known retroelement sequences than expected and were overrepresented near transcription start and termination sites. We find mutations in FIGL-1, a protein shown to downregulate cross-over frequency in Arabidopsis, statistically associated to higher recombination rates in domesticated Criollo. Conclusions We generated fine-scale recombination maps for ten populations of Theobroma cacao and used them to understand what processes are associated with population-level variation in this species. Our results provide support to the hypothesis of increased recombination rates in domesticated plants (Criollo population). We propose a testable mechanistic hypothesis for the change in recombination rate in domesticated populations in the form of mutations to a previously identified recombination-suppressing protein. Finally, we establish a number of possible correlates of recombination hotspots that help explain general patterns of recombination in this species.
Collapse
Affiliation(s)
| | | | - Omar E Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
14
|
Abstract
Mice (Mus musculus) and rats (Rattus norvegicus) have long served as model systems for biomedical research. However, they are also excellent models for studying the evolution of populations, subspecies, and species. Within the past million years, they have spread in various waves across large parts of the globe, with the most recent spread in the wake of human civilization. They have developed into commensal species, but have also been able to colonize extreme environments on islands free of human civilization. Given that ample genomic and genetic resources are available for these species, they have thus also become ideal mammalian systems for evolutionary studies on adaptation and speciation, particularly in the combination with the rapid developments in population genomics. The chapter provides an overview of the systems and their history, as well as of available resources.
Collapse
Affiliation(s)
- Kristian K Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
15
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biol Evol 2019; 11:1552-1572. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories. In analyses with different elevation thresholds, positively selected genes reflected similar functions and pathways, even though there were almost no specific genes in common. For example, EPAS1 (HIF2α), which has been implicated in high-elevation adaptation in other vertebrates, shows a signature of positive selection when high-elevation is defined broadly (>1,500 m), but not when defined narrowly (>2,500 m). Although a few biochemical pathways and genes change predictably as part of hummingbird adaptation to high-elevation conditions, independent lineages have rarely adapted via the same substitutions.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
16
|
Li R, Bitoun E, Altemose N, Davies RW, Davies B, Myers SR. A high-resolution map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination. Nat Commun 2019; 10:3900. [PMID: 31467277 PMCID: PMC6715734 DOI: 10.1038/s41467-019-11675-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
During meiotic recombination, homologue-templated repair of programmed DNA double-strand breaks (DSBs) produces relatively few crossovers and many difficult-to-detect non-crossovers. By intercrossing two diverged mouse subspecies over five generations and deep-sequencing 119 offspring, we detect thousands of crossover and non-crossover events genome-wide with unprecedented power and spatial resolution. We find that both crossovers and non-crossovers are strongly depleted at DSB hotspots where the DSB-positioning protein PRDM9 fails to bind to the unbroken homologous chromosome, revealing that PRDM9 also functions to promote homologue-templated repair. Our results show that complex non-crossovers are much rarer in mice than humans, consistent with complex events arising from accumulated non-programmed DNA damage. Unexpectedly, we also find that GC-biased gene conversion is restricted to non-crossover tracts containing only one mismatch. These results demonstrate that local genetic diversity profoundly alters meiotic repair pathway decisions via at least two distinct mechanisms, impacting genome evolution and Prdm9-related hybrid infertility. During meiotic recombination, genetic information is transferred or exchanged between parental chromosome copies. Using a large hybrid mouse pedigree, the authors generated high-resolution maps of these transfer/exchange events and discovered new properties governing their processing and resolution.
Collapse
Affiliation(s)
- Ran Li
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.,Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
| | - Emmanuelle Bitoun
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Nicolas Altemose
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.,Department of Bioengineering, Stanley Hall, University of California, Berkeley, CA, 94720, USA
| | - Robert W Davies
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Benjamin Davies
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon R Myers
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK. .,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
| |
Collapse
|
17
|
Beeson SK, Mickelson JR, McCue ME. Exploration of fine-scale recombination rate variation in the domestic horse. Genome Res 2019; 29:1744-1752. [PMID: 31434677 PMCID: PMC6771410 DOI: 10.1101/gr.243311.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/15/2019] [Indexed: 01/17/2023]
Abstract
Total genetic map length and local recombination landscapes typically vary within and across populations. As a first step to understanding the recombination landscape in the domestic horse, we calculated population recombination rates and identified likely recombination hotspots using approximately 1.8 million SNP genotypes for 485 horses from 32 distinct breeds. The resulting breed-averaged recombination map spans 2.36 Gb and accounts for 2939.07 cM. Recombination hotspots occur once per 23.8 Mb on average and account for ∼9% of the physical map length. Regions with elevated recombination rates in the entire cohort were enriched for genes in pathways involving interaction with the environment: immune system processes (specifically, MHC class I and class II genes), responses to stimuli, and serotonin receptor pathways. We found significant correlations between differences in local recombination rates and population differentiation quantified by F ST Analysis of breed-specific maps revealed thousands of hotspot regions unique to particular breeds, as well as unique "coldspots," regions where a particular breed showed below-average recombination, whereas all other breeds had evidence of a hotspot. Finally, we identified relative enrichment (P = 5.88 × 10-27) for the in silico-predicted recognition motif for equine PR/SET domain 9 (PRDM9) in recombination hotspots. These results indicate that selective pressures and PRDM9 function contribute to variation in recombination rates across the domestic horse genome.
Collapse
Affiliation(s)
- Samantha K Beeson
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - James R Mickelson
- Veterinary and Biomedical Sciences Department, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Molly E McCue
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, Minnesota 55108, USA
| |
Collapse
|
18
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Divergent Fine-Scale Recombination Landscapes between a Freshwater and Marine Population of Threespine Stickleback Fish. Genome Biol Evol 2019; 11:1573-1585. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/27/2022] Open
Abstract
Meiotic recombination is a highly conserved process that has profound effects on genome evolution. At a fine-scale, recombination rates can vary drastically across genomes, often localized into small recombination "hotspots" with highly elevated rates, surrounded by regions with little recombination. In most species studied, the location of hotspots within genomes is highly conserved across broad evolutionary timescales. The main exception to this pattern is in mammals, where hotspot location can evolve rapidly among closely related species and even among populations within a species. Hotspot position in mammals is controlled by the gene, Prdm9, whereas in species with conserved hotspots, a functional Prdm9 is typically absent. Due to a limited number of species where recombination rates have been estimated at a fine-scale, it remains unclear whether hotspot conservation is always associated with the absence of a functional Prdm9. Threespine stickleback fish (Gasterosteus aculeatus) are an excellent model to examine the evolution of recombination over short evolutionary timescales. Using a linkage disequilibrium-based approach, we found recombination rates indeed varied at a fine-scale across the genome, with many regions organized into narrow hotspots. Hotspots had highly divergent landscapes between stickleback populations, where only ∼15% of these hotspots were shared. Our results indicate that fine-scale recombination rates may be diverging between closely related populations of threespine stickleback fish. Interestingly, we found only a weak association of a PRDM9 binding motif within hotspots, which suggests that threespine stickleback fish may possess a novel mechanism for targeting recombination hotspots at a fine-scale.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
19
|
Weng Z, Wolc A, Su H, Fernando RL, Dekkers JCM, Arango J, Settar P, Fulton JE, O'Sullivan NP, Garrick DJ. Identification of recombination hotspots and quantitative trait loci for recombination rate in layer chickens. J Anim Sci Biotechnol 2019; 10:20. [PMID: 30891237 PMCID: PMC6390344 DOI: 10.1186/s40104-019-0332-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background The frequency of recombination events varies across the genome and between individuals, which may be related to some genomic features. The objective of this study was to assess the frequency of recombination events and to identify QTL (quantitative trait loci) for recombination rate in two purebred layer chicken lines. Methods A total of 1200 white-egg layers (WL) were genotyped with 580 K SNPs and 5108 brown-egg layers (BL) were genotyped with 42 K SNPs (single nucleotide polymorphisms). Recombination events were identified within half-sib families and both the number of recombination events and the recombination rate was calculated within each 0.5 Mb window of the genome. The 10% of windows with the highest recombination rate on each chromosome were considered to be recombination hotspots. A BayesB model was used separately for each line to identify genomic regions associated with the genome-wide number of recombination event per meiosis. Regions that explained more than 0.8% of genetic variance of recombination rate were considered to harbor QTL. Results Heritability of recombination rate was estimated at 0.17 in WL and 0.16 in BL. On average, 11.3 and 23.2 recombination events were detected per individual across the genome in 1301 and 9292 meioses in the WL and BL, respectively. The estimated recombination rates differed significantly between the lines, which could be due to differences in inbreeding levels, and haplotype structures. Dams had about 5% to 20% higher recombination rates per meiosis than sires in both lines. Recombination rate per 0.5 Mb window had a strong negative correlation with chromosome size and a strong positive correlation with GC content and with CpG island density across the genome in both lines. Different QTL for recombination rate were identified in the two lines. There were 190 and 199 non-overlapping recombination hotspots detected in WL and BL respectively, 28 of which were common to both lines. Conclusions Differences in the recombination rates, hotspot locations, and QTL regions associated with genome-wide recombination were observed between lines, indicating the breed-specific feature of detected recombination events and the control of recombination events is a complex polygenic trait. Electronic supplementary material The online version of this article (10.1186/s40104-019-0332-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ziqing Weng
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA
| | - Anna Wolc
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA.,2Hy-Line International, Dallas Center, IA 50063 USA
| | - Hailin Su
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA
| | - Rohan L Fernando
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA
| | - Jack C M Dekkers
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA
| | - Jesus Arango
- 2Hy-Line International, Dallas Center, IA 50063 USA
| | - Petek Settar
- 2Hy-Line International, Dallas Center, IA 50063 USA
| | | | | | - Dorian J Garrick
- 1Department of Animal Science, Iowa State University, Ames, IA 50010 USA.,3AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North, 4442 New Zealand
| |
Collapse
|
20
|
Huang J, Wang C, Wang H, Lu P, Zheng B, Ma H, Copenhaver GP, Wang Y. Meiocyte-Specific and AtSPO11-1-Dependent Small RNAs and Their Association with Meiotic Gene Expression and Recombination. THE PLANT CELL 2019; 31:444-464. [PMID: 30674694 PMCID: PMC6447014 DOI: 10.1105/tpc.18.00511] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 05/04/2023]
Abstract
Meiotic recombination ensures accurate chromosome segregation and results in genetic diversity in sexually reproducing eukaryotes. Over the last few decades, the genetic regulation of meiotic recombination has been extensively studied in many organisms. However, the role of endogenous meiocyte-specific small RNAs (ms-sRNAs; 21-24 nucleotide [nt]) and their involvement in meiotic recombination are unclear. Here, we sequenced the total small RNA (sRNA) and messenger RNA populations from meiocytes and leaves of wild type Arabidopsis (Arabidopsis thaliana) and meiocytes of spo11-1, a mutant defective in double-strand break formation, and we discovered 2,409 ms-sRNA clusters, 1,660 of which areSPORULATION 11-1 (AtSPO11-1)-dependent. Unlike mitotic small interfering RNAs that are enriched in intergenic regions and associated with gene silencing, ms-sRNAs are significantly enriched in genic regions and exhibit a positive correlation with genes that are preferentially expressed in meiocytes (i.e. Arabidopsis SKP1-LIKE1 and RAD51), in a fashion unrelated to DNA methylation. We also found that AtSPO11-1-dependent sRNAs have distinct characteristics compared with ms-sRNAs and tend to be associated with two known types of meiotic recombination hotspot motifs (i.e. CTT-repeat and A-rich motifs). These results reveal different meiotic and mitotic sRNA landscapes and provide new insights into how sRNAs relate to gene expression in meiocytes and meiotic recombination.
Collapse
Affiliation(s)
- Jiyue Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- University of North Carolina at Chapel Hill Department of Biology and the Integrative Program for Biological and Genome Sciences, Chapel Hill, North Carolina 27599-3280
| | - Cong Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, 530005, Nanning, Guangxi, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- Department of Biology, the Pennsylvania State University, University Park, Pennsylvania 16802
| | - Gregory P Copenhaver
- University of North Carolina at Chapel Hill Department of Biology and the Integrative Program for Biological and Genome Sciences, Chapel Hill, North Carolina 27599-3280
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
21
|
Gonzales NM, Seo J, Hernandez Cordero AI, St Pierre CL, Gregory JS, Distler MG, Abney M, Canzar S, Lionikas A, Palmer AA. Genome wide association analysis in a mouse advanced intercross line. Nat Commun 2018; 9:5162. [PMID: 30514929 PMCID: PMC6279738 DOI: 10.1038/s41467-018-07642-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
The LG/J x SM/J advanced intercross line of mice (LG x SM AIL) is a multigenerational outbred population. High minor allele frequencies, a simple genetic background, and the fully sequenced LG and SM genomes make it a powerful population for genome-wide association studies. Here we use 1,063 AIL mice to identify 126 significant associations for 50 traits relevant to human health and disease. We also identify thousands of cis- and trans-eQTLs in the hippocampus, striatum, and prefrontal cortex of ~200 mice. We replicate an association between locomotor activity and Csmd1, which we identified in an earlier generation of this AIL, and show that Csmd1 mutant mice recapitulate the locomotor phenotype. Our results demonstrate the utility of the LG x SM AIL as a mapping population, identify numerous novel associations, and shed light on the genetic architecture of mammalian behavior.
Collapse
Affiliation(s)
- Natalia M Gonzales
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Jungkyun Seo
- Center for Genomic & Computational Biology, Duke University, Durham, NC, 27708, USA
- Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, 27708, USA
| | - Ana I Hernandez Cordero
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Celine L St Pierre
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Jennifer S Gregory
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Margaret G Distler
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mark Abney
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
22
|
Subramanian S. Influence of Effective Population Size on Genes under Varying Levels of Selection Pressure. Genome Biol Evol 2018; 10:756-762. [PMID: 29608718 PMCID: PMC5841380 DOI: 10.1093/gbe/evy047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 11/14/2022] Open
Abstract
The ratio of diversities at amino acid changing (nonsynonymous) and neutral (synonymous) sites (ω = πN/πS) is routinely used to measure the intensity of selection pressure. It is well known that this ratio is influenced by the effective population size (Ne) and selection coefficient (s). Here, we examined the effects of effective population size on ω by comparing protein-coding genes from Mus musculus castaneus and Mus musculus musculus-two mouse subspecies with different Ne. Our results revealed a positive relationship between the magnitude of selection intensity and the ω estimated for genes. For genes under high selective constraints, the ω estimated for the subspecies with small Ne (M. m. musculus) was three times higher than that observed for that with large Ne (M. m. castaneus). However, this difference was only 18% for genes under relaxed selective constraints. We showed that the observed relationship is qualitatively similar to the theoretical predictions. We also showed that, for highly expressed genes, the ω of M. m. musculus was 2.1 times higher than that of M.m. castaneus and this difference was only 27% for genes with low expression levels. These results suggest that the effect of effective population size is more pronounced in genes under high purifying selection. Hence the choice of genes is important when ω is used to infer the effective size of a population.
Collapse
Affiliation(s)
- Sankar Subramanian
- GeneCology Research Centre, The University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
23
|
Structured illumination microscopy imaging reveals localization of replication protein A between chromosome lateral elements during mammalian meiosis. Exp Mol Med 2018; 50:1-12. [PMID: 30154456 PMCID: PMC6113238 DOI: 10.1038/s12276-018-0139-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
An important event enabling meiotic prophase I to proceed is the close juxtaposition of conjoined chromosome axes of homologs and their assembly via an array of transverse filaments and meiosis-specific axial elements into the synaptonemal complex (SC). During meiosis, recombination requires the establishment of a platform for recombinational interactions between the chromosome axes and their subsequent stabilization. This is essential for ensuring crossover recombination and proper segregation of homologous chromosomes. Thus, well-established SCs are essential for supporting these processes. The regulation of recombination intermediates on the chromosome axis/SC and dynamic positioning of double-strand breaks are not well understood. Here, using super-resolution microscopy (structured illumination microscopy), we determined the localization of the replication protein A (RPA) complex on the chromosome axes in the early phase of leptonema/zygonema and within the CEs of SC in the pachynema during meiotic prophase in mouse spermatocytes. RPA, which marks the intermediate steps of pairing and recombination, appears in large numbers and is positioned on the chromosome axes at the zygonema. In the pachynema, RPA foci are reduced but do not completely disappear; instead, they are placed between lateral elements. Our results reveal the precise structure of SC and localization dynamics of recombination intermediates on meiocyte chromosomes undergoing homolog pairing and meiotic recombination.
Collapse
|
24
|
In silico mapping of quantitative trait loci (QTL) regulating the milk ionome in mice identifies a milk iron locus on chromosome 1. Mamm Genome 2018; 29:632-655. [DOI: 10.1007/s00335-018-9762-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Indexed: 01/06/2023]
|
25
|
Kianian PMA, Wang M, Simons K, Ghavami F, He Y, Dukowic-Schulze S, Sundararajan A, Sun Q, Pillardy J, Mudge J, Chen C, Kianian SF, Pawlowski WP. High-resolution crossover mapping reveals similarities and differences of male and female recombination in maize. Nat Commun 2018; 9:2370. [PMID: 29915302 PMCID: PMC6006299 DOI: 10.1038/s41467-018-04562-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
Meiotic crossovers (COs) are not uniformly distributed across the genome. Factors affecting this phenomenon are not well understood. Although many species exhibit large differences in CO numbers between sexes, sex-specific aspects of CO landscape are particularly poorly elucidated. Here, we conduct high-resolution CO mapping in maize. Our results show that CO numbers as well as their overall distribution are similar in male and female meioses. There are, nevertheless, dissimilarities at local scale. Male and female COs differ in their locations relative to transcription start sites in gene promoters and chromatin marks, including nucleosome occupancy and tri-methylation of lysine 4 of histone H3 (H3K4me3). Our data suggest that sex-specific factors not only affect male–female CO number disparities but also cause fine differences in CO positions. Differences between male and female CO landscapes indicate that recombination has distinct implications for population structure and gene evolution in male and in female meioses. Sex-specific meiotic crossover (CO) landscapes have been identified in multiple species. Here, the authors show that male and female meioses in maize have similar CO landscapes, and differences between COs in the two sexes only exists in their location relative to transcription start sites and some chromatin marks.
Collapse
Affiliation(s)
- Penny M A Kianian
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Minghui Wang
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.,Bioinformatics Facility, Cornell University, Ithaca, NY, 14853, USA
| | - Kristin Simons
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Farhad Ghavami
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.,Eurofins BioDiagnostics, River Falls, WI, 54022, USA
| | - Yan He
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.,National Maize Improvement Center, China Agricultural University, Beijing, China
| | | | | | - Qi Sun
- Bioinformatics Facility, Cornell University, Ithaca, NY, 14853, USA
| | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Wojciech P Pawlowski
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
26
|
Latrille T, Duret L, Lartillot N. The Red Queen model of recombination hot-spot evolution: a theoretical investigation. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0463. [PMID: 29109226 PMCID: PMC5698625 DOI: 10.1098/rstb.2016.0463] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 11/12/2022] Open
Abstract
In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright–Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.
Collapse
Affiliation(s)
- Thibault Latrille
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Laurent Duret
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Nicolas Lartillot
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| |
Collapse
|
27
|
Buckley RM, Kortschak RD, Adelson DL. Divergent genome evolution caused by regional variation in DNA gain and loss between human and mouse. PLoS Comput Biol 2018; 14:e1006091. [PMID: 29677183 PMCID: PMC5931693 DOI: 10.1371/journal.pcbi.1006091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/02/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
The forces driving the accumulation and removal of non-coding DNA and ultimately the evolution of genome size in complex organisms are intimately linked to genome structure and organisation. Our analysis provides a novel method for capturing the regional variation of lineage-specific DNA gain and loss events in their respective genomic contexts. To further understand this connection we used comparative genomics to identify genome-wide individual DNA gain and loss events in the human and mouse genomes. Focusing on the distribution of DNA gains and losses, relationships to important structural features and potential impact on biological processes, we found that in autosomes, DNA gains and losses both followed separate lineage-specific accumulation patterns. However, in both species chromosome X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon content required for X inactivation. We found that DNA loss was associated with gene-rich open chromatin regions and DNA gain events with gene-poor closed chromatin regions. Additionally, we found that DNA loss events tended to be smaller than DNA gain events suggesting that they were able to accumulate in gene-rich open chromatin regions due to their reduced capacity to interrupt gene regulatory architecture. GO term enrichment showed that mouse loss hotspots were strongly enriched for terms related to developmental processes. However, these genes were also located in regions with a high density of conserved elements, suggesting that despite high levels of DNA loss, gene regulatory architecture remained conserved. This is consistent with a model in which DNA gain and loss results in turnover or "churning" in regulatory element dense regions of open chromatin, where interruption of regulatory elements is selected against.
Collapse
Affiliation(s)
- Reuben M. Buckley
- Department of Genetics and Evolution, The University of Adelaide, North Tce, Adelaide, Australia
| | - R. Daniel Kortschak
- Department of Genetics and Evolution, The University of Adelaide, North Tce, Adelaide, Australia
| | - David L. Adelson
- Department of Genetics and Evolution, The University of Adelaide, North Tce, Adelaide, Australia
- * E-mail:
| |
Collapse
|
28
|
Murray GGR, Soares AER, Novak BJ, Schaefer NK, Cahill JA, Baker AJ, Demboski JR, Doll A, Da Fonseca RR, Fulton TL, Gilbert MTP, Heintzman PD, Letts B, McIntosh G, O'Connell BL, Peck M, Pipes ML, Rice ES, Santos KM, Sohrweide AG, Vohr SH, Corbett-Detig RB, Green RE, Shapiro B. Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 2018; 358:951-954. [PMID: 29146814 DOI: 10.1126/science.aao0960] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Abstract
The extinct passenger pigeon was once the most abundant bird in North America, and possibly the world. Although theory predicts that large populations will be more genetically diverse, passenger pigeon genetic diversity was surprisingly low. To investigate this disconnect, we analyzed 41 mitochondrial and 4 nuclear genomes from passenger pigeons and 2 genomes from band-tailed pigeons, which are passenger pigeons' closest living relatives. Passenger pigeons' large population size appears to have allowed for faster adaptive evolution and removal of harmful mutations, driving a huge loss in their neutral genetic diversity. These results demonstrate the effect that selection can have on a vertebrate genome and contradict results that suggested that population instability contributed to this species's surprisingly rapid extinction.
Collapse
Affiliation(s)
- Gemma G R Murray
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - André E R Soares
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Ben J Novak
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Revive & Restore, Sausalito, CA 94965, USA
| | - Nathan K Schaefer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James A Cahill
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Allan J Baker
- Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - John R Demboski
- Department of Zoology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | - Andrew Doll
- Department of Zoology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | - Rute R Da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Tara L Fulton
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Environment and Climate Change Canada, 9250-49th Street, Edmonton, AB T6B 1K5, Canada
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,NTNU University Museum, 7491 Trondheim, Norway
| | - Peter D Heintzman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Tromsø University Museum, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Brandon Letts
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - George McIntosh
- Collections Department, Rochester Museum and Science Center, Rochester, NY 14607, USA
| | - Brendan L O'Connell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mark Peck
- Department of Zoology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | | | - Edward S Rice
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kathryn M Santos
- Collections Department, Rochester Museum and Science Center, Rochester, NY 14607, USA
| | | | - Samuel H Vohr
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Russell B Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,University of California Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,University of California Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA. .,University of California Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
29
|
Gregorova S, Gergelits V, Chvatalova I, Bhattacharyya T, Valiskova B, Fotopulosova V, Jansa P, Wiatrowska D, Forejt J. Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice. eLife 2018. [PMID: 29537370 PMCID: PMC5902161 DOI: 10.7554/elife.34282] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hybrid sterility is one of the reproductive isolation mechanisms leading to speciation. Prdm9, the only known vertebrate hybrid-sterility gene, causes failure of meiotic chromosome synapsis and infertility in male hybrids that are the offspring of two mouse subspecies. Within species, Prdm9 determines the sites of programmed DNA double-strand breaks (DSBs) and meiotic recombination hotspots. To investigate the relation between Prdm9-controlled meiotic arrest and asynapsis, we inserted random stretches of consubspecific homology on several autosomal pairs in sterile hybrids, and analyzed their ability to form synaptonemal complexes and to rescue male fertility. Twenty-seven or more megabases of consubspecific (belonging to the same subspecies) homology fully restored synapsis in a given autosomal pair, and we predicted that two or more DSBs within symmetric hotspots per chromosome are necessary for successful meiosis. We hypothesize that impaired recombination between evolutionarily diverged chromosomes could function as one of the mechanisms of hybrid sterility occurring in various sexually reproducing species.
Collapse
Affiliation(s)
- Sona Gregorova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Vaclav Gergelits
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Irena Chvatalova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Tanmoy Bhattacharyya
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Barbora Valiskova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladana Fotopulosova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Petr Jansa
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Diana Wiatrowska
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Jiri Forejt
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| |
Collapse
|
30
|
Dapper AL, Payseur BA. Effects of Demographic History on the Detection of Recombination Hotspots from Linkage Disequilibrium. Mol Biol Evol 2018; 35:335-353. [PMID: 29045724 PMCID: PMC5850621 DOI: 10.1093/molbev/msx272] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In some species, meiotic recombination is concentrated in small genomic regions. These "recombination hotspots" leave signatures in fine-scale patterns of linkage disequilibrium, raising the prospect that the genomic landscape of hotspots can be characterized from sequence variation. This approach has led to the inference that hotspots evolve rapidly in some species, but are conserved in others. Historic demographic events, such as population bottlenecks, are known to affect patterns of linkage disequilibrium across the genome, violating population genetic assumptions of this approach. Although such events are prevalent, demographic history is generally ignored when making inferences about the evolution of recombination hotspots. To determine the effect of demography on the detection of recombination hotspots, we use the coalescent to simulate haplotypes with a known recombination landscape. We measure the ability of popular linkage disequilibrium-based programs to detect hotspots across a range of demographic histories, including population bottlenecks, hidden population structure, population expansions, and population contractions. We find that demographic events have the potential to greatly reduce the power and increase the false positive rate of hotspot discovery. Neither the power nor the false positive rate of hotspot detection can be predicted without also knowing the demographic history of the sample. Our results suggest that ignoring demographic history likely overestimates the power to detect hotspots and therefore underestimates the degree of hotspot sharing between species. We suggest strategies for incorporating demographic history into population genetic inferences about recombination hotspots.
Collapse
Affiliation(s)
- Amy L Dapper
- Laboratory of Genetics, University of Wisconsin, Madison, WI
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI
| |
Collapse
|
31
|
Capilla L, Sánchez-Guillén RA, Farré M, Paytuví-Gallart A, Malinverni R, Ventura J, Larkin DM, Ruiz-Herrera A. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia. Genome Biol Evol 2018; 8:3703-3717. [PMID: 28175287 PMCID: PMC5521730 DOI: 10.1093/gbe/evw276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints.
Collapse
Affiliation(s)
- Laia Capilla
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Rosa Ana Sánchez-Guillén
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz, Apartado, Mexico
| | - Marta Farré
- Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz, Apartado, Mexico
| | - Andreu Paytuví-Gallart
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.,Sequentia Biotech S.L. Calle Comte d'Urgell, Barcelona, Spain
| | - Roberto Malinverni
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Denis M Larkin
- Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz, Apartado, Mexico
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Sequentia Biotech S.L. Calle Comte d'Urgell, Barcelona, Spain
| |
Collapse
|
32
|
Paigen K, Petkov PM. PRDM9 and Its Role in Genetic Recombination. Trends Genet 2018; 34:291-300. [PMID: 29366606 DOI: 10.1016/j.tig.2017.12.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
PRDM9 is a zinc finger protein that binds DNA at specific locations in the genome where it trimethylates histone H3 at lysines 4 and 36 at surrounding nucleosomes. During meiosis in many species, including humans and mice where PRDM9 has been most intensely studied, these actions determine the location of recombination hotspots, where genetic recombination occurs. In addition, PRDM9 facilitates the association of hotspots with the chromosome axis, the site of the programmed DNA double-strand breaks (DSBs) that give rise to genetic exchange between chromosomes. In the absence of PRDM9 DSBs are not properly repaired. Collectively, these actions determine patterns of genetic linkage and the possibilities for chromosome reorganization over successive generations.
Collapse
|
33
|
Liu Y, Sarkar A, Kheradpour P, Ernst J, Kellis M. Evidence of reduced recombination rate in human regulatory domains. Genome Biol 2017; 18:193. [PMID: 29058599 PMCID: PMC5651596 DOI: 10.1186/s13059-017-1308-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombination rate is non-uniformly distributed across the human genome. The variation of recombination rate at both fine and large scales cannot be fully explained by DNA sequences alone. Epigenetic factors, particularly DNA methylation, have recently been proposed to influence the variation in recombination rate. RESULTS We study the relationship between recombination rate and gene regulatory domains, defined by a gene and its linked control elements. We define these links using expression quantitative trait loci (eQTLs), methylation quantitative trait loci (meQTLs), chromatin conformation from publicly available datasets (Hi-C and ChIA-PET), and correlated activity links that we infer across cell types. Each link type shows a "recombination rate valley" of significantly reduced recombination rate compared to matched control regions. This recombination rate valley is most pronounced for gene regulatory domains of early embryonic development genes, housekeeping genes, and constitutive regulatory elements, which are known to show increased evolutionary constraint across species. Recombination rate valleys show increased DNA methylation, reduced doublestranded break initiation, and increased repair efficiency, specifically in the lineage leading to the germ line. Moreover, by using only the overlap of functional links and DNA methylation in germ cells, we are able to predict the recombination rate with high accuracy. CONCLUSIONS Our results suggest the existence of a recombination rate valley at regulatory domains and provide a potential molecular mechanism to interpret the interplay between genetic and epigenetic variations.
Collapse
Affiliation(s)
- Yaping Liu
- Computer Science and Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Abhishek Sarkar
- Computer Science and Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Pouya Kheradpour
- Computer Science and Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jason Ernst
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, California, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Massachusetts, USA. .,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| |
Collapse
|
34
|
Petit M, Astruc JM, Sarry J, Drouilhet L, Fabre S, Moreno CR, Servin B. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations. Genetics 2017; 207:767-784. [PMID: 28978774 PMCID: PMC5629338 DOI: 10.1534/genetics.117.300123] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023] Open
Abstract
Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism.
Collapse
Affiliation(s)
- Morgane Petit
- INRA, Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
| | | | - Julien Sarry
- INRA, Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
| | - Laurence Drouilhet
- INRA, Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
| | - Stéphane Fabre
- INRA, Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
| | - Carole R Moreno
- INRA, Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
| | - Bertrand Servin
- INRA, Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
| |
Collapse
|
35
|
Booker TR, Ness RW, Keightley PD. The Recombination Landscape in Wild House Mice Inferred Using Population Genomic Data. Genetics 2017; 207:297-309. [PMID: 28751421 PMCID: PMC5586380 DOI: 10.1534/genetics.117.300063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/19/2017] [Indexed: 11/29/2022] Open
Abstract
Characterizing variation in the rate of recombination across the genome is important for understanding several evolutionary processes. Previous analysis of the recombination landscape in laboratory mice has revealed that the different subspecies have different suites of recombination hotspots. It is unknown, however, whether hotspots identified in laboratory strains reflect the hotspot diversity of natural populations or whether broad-scale variation in the rate of recombination is conserved between subspecies. In this study, we constructed fine-scale recombination rate maps for a natural population of the Eastern house mouse, Mus musculus castaneus We performed simulations to assess the accuracy of recombination rate inference in the presence of phase errors, and we used a novel approach to quantify phase error. The spatial distribution of recombination events is strongly positively correlated between our castaneus map, and a map constructed using inbred lines derived predominantly from M. m. domesticus Recombination hotspots in wild castaneus show little overlap, however, with the locations of double-strand breaks in wild-derived house mouse strains. Finally, we also find that genetic diversity in M. m. castaneus is positively correlated with the rate of recombination, consistent with pervasive natural selection operating in the genome. Our study suggests that recombination rate variation is conserved at broad scales between house mouse subspecies, but it is not strongly conserved at fine scales.
Collapse
Affiliation(s)
- Tom R Booker
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL, United Kingdom
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Ontario, L5L 1C6, Canada
| | - Peter D Keightley
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL, United Kingdom
| |
Collapse
|
36
|
Baker Z, Schumer M, Haba Y, Bashkirova L, Holland C, Rosenthal GG, Przeworski M. Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates. eLife 2017; 6:e24133. [PMID: 28590247 PMCID: PMC5519329 DOI: 10.7554/elife.24133] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 06/03/2017] [Indexed: 01/01/2023] Open
Abstract
Studies of highly diverged species have revealed two mechanisms by which meiotic recombination is directed to the genome-through PRDM9 binding or by targeting promoter-like features-that lead to dramatically different evolutionary dynamics of hotspots. Here, we identify PRDM9 orthologs from genome and transcriptome data in 225 species. We find the complete PRDM9 ortholog across distantly related vertebrates but, despite this broad conservation, infer a minimum of six partial and three complete losses. Strikingly, taxa carrying the complete ortholog of PRDM9 are precisely those with rapid evolution of its predicted binding affinity, suggesting that all domains are necessary for directing recombination. Indeed, as we show, swordtail fish carrying only a partial but conserved ortholog share recombination properties with PRDM9 knock-outs.
Collapse
Affiliation(s)
- Zachary Baker
- Department of Systems Biology, Columbia University, New York City, United States
| | - Molly Schumer
- Department of Biological Sciences, Columbia University, New York City, United States
- Harvard Society of Fellows, Harvard University, Cambridge, United States
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', Hidalgo, Mexico
| | - Yuki Haba
- Department of Evolution, Ecology and Environmental Biology, Columbia University, New York City, United States
| | - Lisa Bashkirova
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, United States
| | - Chris Holland
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, United States
| | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, United States
| | - Molly Przeworski
- Department of Systems Biology, Columbia University, New York City, United States
- Department of Biological Sciences, Columbia University, New York City, United States
| |
Collapse
|
37
|
Terekhanova NV, Seplyarskiy VB, Soldatov RA, Bazykin GA. Evolution of Local Mutation Rate and Its Determinants. Mol Biol Evol 2017; 34:1100-1109. [PMID: 28138076 PMCID: PMC5850301 DOI: 10.1093/molbev/msx060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutation rate varies along the human genome, and part of this variation is explainable by measurable local properties of the DNA molecule. Moreover, mutation rates differ between orthologous genomic regions of different species, but the drivers of this change are unclear. Here, we use data on human divergence from chimpanzee, human rare polymorphism, and human de novo mutations to predict the substitution rate at orthologous regions of non-human mammals. We show that the local mutation rates are very similar between human and apes, implying that their variation has a strong underlying cryptic component not explainable by the known genomic features. Mutation rates become progressively less similar in more distant species, and these changes are partially explainable by changes in the local genomic features of orthologous regions, most importantly, in the recombination rate. However, they are much more rapid, implying that the cryptic component underlying the mutation rate is more ephemeral than the known genomic features. These findings shed light on the determinants of mutation rate evolution. Key words local mutation rate, molecular evolution, recombination rate.
Collapse
Affiliation(s)
- Nadezhda V. Terekhanova
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir B. Seplyarskiy
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
| | - Ruslan A. Soldatov
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgii A. Bazykin
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
38
|
Wang RJ, Gray MM, Parmenter MD, Broman KW, Payseur BA. Recombination rate variation in mice from an isolated island. Mol Ecol 2016; 26:457-470. [PMID: 27864900 DOI: 10.1111/mec.13932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 01/14/2023]
Abstract
Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including subchromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genomewide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbour a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales.
Collapse
Affiliation(s)
- Richard J Wang
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, 2428 Genetics, Madison, WI, 53706, USA
| | - Melissa M Gray
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, 2428 Genetics, Madison, WI, 53706, USA
| | - Michelle D Parmenter
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, 2428 Genetics, Madison, WI, 53706, USA
| | - Karl W Broman
- Department of Biostatistics & Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, 2428 Genetics, Madison, WI, 53706, USA
| |
Collapse
|
39
|
Abstract
Background The most widely used state-of-the-art methods for reconstructing species phylogenies from genomic sequence data assume that sampled loci are identically and independently distributed. In principle, free recombination between loci and a lack of intra-locus recombination are necessary to satisfy this assumption. Few studies have quantified the practical impact of recombination on species tree inference methods, and even fewer have used genomic sequence data for this purpose. One prominent exception is the 2012 study of Lanier and Knowles. A main finding from the study was that species tree inference methods are relatively robust to intra-locus recombination, assuming free recombination between loci. The latter assumption means that the open question regarding the impact of recombination on species tree analysis is not fully resolved. Results The goal of this study is to further investigate this open question. Using simulations based upon the multi-species coalescent-with-recombination model as well as empirical datasets, we compared common pipeline-based techniques for inferring species phylogenies. The simulation conditions included a range of dataset sizes and several choices for recombination rate which was either uniform across loci or incorporated recombination hotspots. We found that pipelines which explicitly utilize inferred recombination breakpoints to delineate recombination-free intervals result in greater accuracy compared to widely used alternatives that preprocess sequences based upon linkage disequilibrium decay. Furthermore, the use of a relatively simple approach for recombination breakpoint inference does not degrade the accuracy of downstream species tree inference compared to more accurate alternatives. Conclusions Our findings clarify the impact of recombination upon current phylogenomic pipelines for species tree inference. Pipeline-based approaches which utilize inferred recombination breakpoints to densely sample loci across genomic sequences can tolerate intra-locus recombination and violations of the assumption of free recombination between loci. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3104-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Computer Science and Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, 48824, USA
| | - Kevin J Liu
- Department of Computer Science and Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, 48824, USA.
| |
Collapse
|
40
|
Dowell R, Odell A, Richmond P, Malmer D, Halper-Stromberg E, Bennett B, Larson C, Leach S, Radcliffe RA. Genome characterization of the selected long- and short-sleep mouse lines. Mamm Genome 2016; 27:574-586. [PMID: 27651241 PMCID: PMC5110614 DOI: 10.1007/s00335-016-9663-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023]
Abstract
The Inbred Long- and Short-Sleep (ILS, ISS) mouse lines were selected for differences in acute ethanol sensitivity using the loss of righting response (LORR) as the selection trait. The lines show an over tenfold difference in LORR and, along with a recombinant inbred panel derived from them (the LXS), have been widely used to dissect the genetic underpinnings of acute ethanol sensitivity. Here we have sequenced the genomes of the ILS and ISS to investigate the DNA variants that contribute to their sensitivity difference. We identified ~2.7 million high-confidence SNPs and small indels and ~7000 structural variants between the lines; variants were found to occur in 6382 annotated genes. Using a hidden Markov model, we were able to reconstruct the genome-wide ancestry patterns of the eight inbred progenitor strains from which the ILS and ISS were derived, and found that quantitative trait loci that have been mapped for LORR were slightly enriched for DNA variants. Finally, by mapping and quantifying RNA-seq reads from the ILS and ISS to their strain-specific genomes rather than to the reference genome, we found a substantial improvement in a differential expression analysis between the lines. This work will help in identifying and characterizing the DNA sequence variants that contribute to the difference in ethanol sensitivity between the ILS and ISS and will also aid in accurate quantification of RNA-seq data generated from the LXS RIs.
Collapse
Affiliation(s)
- Robin Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA. .,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA. .,Department of Computer Science, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Aaron Odell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Phillip Richmond
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Daniel Malmer
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Eitan Halper-Stromberg
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Beth Bennett
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Colin Larson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Sonia Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Richard A Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
41
|
Gante HF, Matschiner M, Malmstrøm M, Jakobsen KS, Jentoft S, Salzburger W. Genomics of speciation and introgression in Princess cichlid fishes from Lake Tanganyika. Mol Ecol 2016; 25:6143-6161. [DOI: 10.1111/mec.13767] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/30/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Hugo F. Gante
- Zoological Institute University of Basel Vesalgasse 1 4051 Basel Switzerland
| | - Michael Matschiner
- Department of Biosciences CEES (Centre for Ecological and Evolutionary Synthesis) University of Oslo 0316 Oslo Norway
| | - Martin Malmstrøm
- Department of Biosciences CEES (Centre for Ecological and Evolutionary Synthesis) University of Oslo 0316 Oslo Norway
| | - Kjetill S. Jakobsen
- Department of Biosciences CEES (Centre for Ecological and Evolutionary Synthesis) University of Oslo 0316 Oslo Norway
| | - Sissel Jentoft
- Department of Biosciences CEES (Centre for Ecological and Evolutionary Synthesis) University of Oslo 0316 Oslo Norway
- Department of Natural Sciences University of Agder 4604 Kristiansand Norway
| | - Walter Salzburger
- Zoological Institute University of Basel Vesalgasse 1 4051 Basel Switzerland
- Department of Biosciences CEES (Centre for Ecological and Evolutionary Synthesis) University of Oslo 0316 Oslo Norway
| |
Collapse
|
42
|
Abstract
With recent advances in DNA sequencing technologies, it has become increasingly easy to use whole-genome sequencing of unrelated individuals to assay patterns of linkage disequilibrium (LD) across the genome. One type of analysis that is commonly performed is to estimate local recombination rates and identify recombination hotspots from patterns of LD. One method for detecting recombination hotspots, LDhot, has been used in a handful of species to further our understanding of the basic biology of recombination. For the most part, the effectiveness of this method (e.g., power and false positive rate) is unknown. In this study, we run extensive simulations to compare the effectiveness of three different implementations of LDhot. We find large differences in the power and false positive rates of these different approaches, as well as a strong sensitivity to the window size used (with smaller window sizes leading to more accurate estimation of hotspot locations). We also compared our LDhot simulation results with comparable simulation results obtained from a Bayesian maximum-likelihood approach for identifying hotspots. Surprisingly, we found that the latter computationally intensive approach had substantially lower power over the parameter values considered in our simulations.
Collapse
|
43
|
Campos-Sánchez R, Cremona MA, Pini A, Chiaromonte F, Makova KD. Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis. PLoS Comput Biol 2016; 12:e1004956. [PMID: 27309962 PMCID: PMC4911145 DOI: 10.1371/journal.pcbi.1004956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome. We investigated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40 human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and histone modifications) in ±32 kb of these ERVs' integration sites and in control regions, and analyzed them using Functional Data Analysis (FDA) methodology. In one of the first applications of FDA in genomics, we identified genomic scales and locations at which these features display their influence, and how they work in concert, to provide signals essential for integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integration vs. fixation preferences. As a result of these analyses, we built a comprehensive model explaining the uneven distribution of ERVs along the genome. We found that ERVs integrate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and repressive histone marks. Regions favoring fixation are depleted of genes and evolutionarily conserved elements, and have low recombination rates, reflecting the effects of purifying selection and ectopic recombination removing ERVs from the genome. In addition to providing these biological insights, our study demonstrates the power of exploiting multiple scales and localization with FDA. These powerful techniques are expected to be applicable to many other genomic investigations.
Collapse
Affiliation(s)
- Rebeca Campos-Sánchez
- Genetics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Marzia A. Cremona
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
| | - Alessia Pini
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
44
|
Smeds L, Mugal CF, Qvarnström A, Ellegren H. High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree. PLoS Genet 2016; 12:e1006044. [PMID: 27219623 PMCID: PMC4878770 DOI: 10.1371/journal.pgen.1006044] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/19/2016] [Indexed: 01/04/2023] Open
Abstract
Recombination is an engine of genetic diversity and therefore constitutes a key process in evolutionary biology and genetics. While the outcome of crossover recombination can readily be detected as shuffled alleles by following the inheritance of markers in pedigreed families, the more precise location of both crossover and non-crossover recombination events has been difficult to pinpoint. As a consequence, we lack a detailed portrait of the recombination landscape for most organisms and knowledge on how this landscape impacts on sequence evolution at a local scale. To localize recombination events with high resolution in an avian system, we performed whole-genome re-sequencing at high coverage of a complete three-generation collared flycatcher pedigree. We identified 325 crossovers at a median resolution of 1.4 kb, with 86% of the events localized to <10 kb intervals. Observed crossover rates were in excellent agreement with data from linkage mapping, were 52% higher in male (3.56 cM/Mb) than in female meiosis (2.28 cM/Mb), and increased towards chromosome ends in male but not female meiosis. Crossover events were non-randomly distributed in the genome with several distinct hot-spots and a concentration to genic regions, with the highest density in promoters and CpG islands. We further identified 267 non-crossovers, whose location was significantly associated with crossover locations. We detected a significant transmission bias (0.18) in favour of 'strong' (G, C) over 'weak' (A, T) alleles at non-crossover events, providing direct evidence for the process of GC-biased gene conversion in an avian system. The approach taken in this study should be applicable to any species and would thereby help to provide a more comprehensive portray of the recombination landscape across organism groups.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Carina F. Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Stevison LS, Woerner AE, Kidd JM, Kelley JL, Veeramah KR, McManus KF, Bustamante CD, Hammer MF, Wall JD. The Time Scale of Recombination Rate Evolution in Great Apes. Mol Biol Evol 2016; 33:928-45. [PMID: 26671457 PMCID: PMC5870646 DOI: 10.1093/molbev/msv331] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives.
Collapse
Affiliation(s)
- Laurie S Stevison
- Institute for Human Genetics, University of California San Francisco Department of Biological Sciences, Auburn University
| | - August E Woerner
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona Department of Genetics, University of Arizona
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Department of Computational Medicine & Bioinformatics, University of Michigan
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University Department of Genetics, Stanford University
| | - Krishna R Veeramah
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona Department of Ecology and Evolution, Stony Brook University
| | - Kimberly F McManus
- Department of Biology, Stanford University Department of Biomedical Informatics, Stanford University
| | | | - Michael F Hammer
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona Department of Ecology and Evolutionary Biology, University of Arizona Department of Anthropology, University of Arizona
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California San Francisco Department of Epidemiology & Biostatistics, University of California San Francisco
| |
Collapse
|
46
|
Melamed-Bessudo C, Shilo S, Levy AA. Meiotic recombination and genome evolution in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:82-7. [PMID: 26939088 DOI: 10.1016/j.pbi.2016.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 05/22/2023]
Abstract
Homologous recombination affects genome evolution through crossover, gene conversion and point mutations. Whole genome sequencing together with a detailed epigenome analysis have shed new light on our understanding of how meiotic recombination shapes plant genes and genome structure. Crossover events are associated with DNA sequence motifs, together with an open chromatin signature (hypomethylated CpGs, low nucleosome occupancy or specific histone modifications). The crossover landscape may differ between male and female meiocytes and between species. At the gene level, crossovers occur preferentially in promoter regions in Arabidopsis. In recent years, there is rising support suggesting that biased mismatch repair during meiotic recombination may increase GC content genome-wide and may be responsible for the GC content gradient found in many plant genes.
Collapse
Affiliation(s)
- Cathy Melamed-Bessudo
- Plant and Environmental Sciences Department, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shay Shilo
- Plant and Environmental Sciences Department, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avraham A Levy
- Plant and Environmental Sciences Department, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
47
|
Levy R, Mott RF, Iraqi FA, Gabet Y. Collaborative cross mice in a genetic association study reveal new candidate genes for bone microarchitecture. BMC Genomics 2015; 16:1013. [PMID: 26611327 PMCID: PMC4661944 DOI: 10.1186/s12864-015-2213-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022] Open
Abstract
Background The microstructure of trabecular bone is a composite trait governed by a complex interaction of multiple genetic determinants. Identifying these genetic factors should significantly improve our ability to predict of osteoporosis and its associated risks. Genetic mapping using collaborative cross mice (CC), a genetically diverse recombinant inbred mouse reference panel, offers a powerful tool to identify causal loci at a resolution under one mega base-pairs, with a relatively small cohort size. Here, we utilized 31 CC lines (160 mice of both sexes in total) to perform genome-wide haplotype mapping across 77,808 single-nucleotide polymorphisms (SNPs). Haplotype scans were refined by imputation with the catalogue of sequence variation segregating in the CC to suggest potential candidate genes. Trabecular traits were obtained following microtomographic analysis, performed on 10-μm resolution scans of the femoral distal metaphysis. We measured the trabecular bone volume fraction (BV/TV), number (Tb.N), thickness (Tb.Th), and connectivity density (Conn.D). Results Heritability of these traits ranged from 0.6 to 0.7. In addition there was a significant (P < 0.01) sex effect in all traits except Tb.Th. Our haplotype scans yielded six quantitative trait loci (QTL) at 1 % false discovery rate; BV/TV and Tb.Th produced two proximal loci each, on chromosome 2 and 7, respectively, and Tb.N and Conn.D yielded one locus on chromosomes 8 and 14, respectively. We identified candidate genes with previously-reported functions in bone biology, and implicated unexpected genes whose function in bone biology has yet to be assigned. Based on the literature, among the genes that ranked particularly high in our analyses (P < 10-6) and which have a validated causal role in skeletal biology, are Avp, Oxt, B2m (associated with BV/TV), Cnot7 (with Tb.N), Pcsk6, Rgma (with Tb.Th), Rb1, and Cpb2 (with Conn.D). Other candidate genes strongly suggested by our analyses are Sgcz, Fgf20 (associated with Tb.N), and Chd2 (with Tb.Th). Conclusion We have demonstrated for the first time genome-wide significant association between several genetic loci and trabecular microstructural parameters for genes with previously reported experimental observations, as well as proposing a role for new candidate genes with no previously characterized skeletal function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2213-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roei Levy
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Richard F Mott
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
48
|
Zamudio N, Barau J, Teissandier A, Walter M, Borsos M, Servant N, Bourc'his D. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev 2015; 29:1256-70. [PMID: 26109049 PMCID: PMC4495397 DOI: 10.1101/gad.257840.114] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Zamudio et al. demonstrate that DNA methylation restrains transposons from adopting chromatin characteristics amenable to meiotic recombination, which they propose prevents the occurrence of erratic chromosomal events. DNA methylation is essential for protecting the mammalian germline against transposons. When DNA methylation-based transposon control is defective, meiotic chromosome pairing is consistently impaired during spermatogenesis: How and why meiosis is vulnerable to transposon activity is unknown. Using two DNA methylation-deficient backgrounds, the Dnmt3L and Miwi2 mutant mice, we reveal that DNA methylation is largely dispensable for silencing transposons before meiosis onset. After this, it becomes crucial to back up to a developmentally programmed H3K9me2 loss. Massive retrotransposition does not occur following transposon derepression, but the meiotic chromatin landscape is profoundly affected. Indeed, H3K4me3 marks gained over transcriptionally active transposons correlate with formation of SPO11-dependent double-strand breaks and recruitment of the DMC1 repair enzyme in Dnmt3L−/− meiotic cells, whereas these features are normally exclusive to meiotic recombination hot spots. Here, we demonstrate that DNA methylation restrains transposons from adopting chromatin characteristics amenable to meiotic recombination, which we propose prevents the occurrence of erratic chromosomal events.
Collapse
Affiliation(s)
- Natasha Zamudio
- UMR3215, CNRS, Paris 75005, France; U934, INSERM Institut Curie, Paris 75005, France
| | - Joan Barau
- UMR3215, CNRS, Paris 75005, France; U934, INSERM Institut Curie, Paris 75005, France
| | - Aurélie Teissandier
- UMR3215, CNRS, Paris 75005, France; U934, INSERM Institut Curie, Paris 75005, France; U900, INSERM, Paris 75005, France; Mines ParisTech, Institut Curie, Paris 75005, France
| | - Marius Walter
- UMR3215, CNRS, Paris 75005, France; U934, INSERM Institut Curie, Paris 75005, France
| | - Maté Borsos
- UMR3215, CNRS, Paris 75005, France; U934, INSERM Institut Curie, Paris 75005, France
| | - Nicolas Servant
- U900, INSERM, Paris 75005, France; Mines ParisTech, Institut Curie, Paris 75005, France
| | - Déborah Bourc'his
- UMR3215, CNRS, Paris 75005, France; U934, INSERM Institut Curie, Paris 75005, France
| |
Collapse
|
49
|
Shilo S, Melamed-Bessudo C, Dorone Y, Barkai N, Levy AA. DNA Crossover Motifs Associated with Epigenetic Modifications Delineate Open Chromatin Regions in Arabidopsis. THE PLANT CELL 2015; 27:2427-36. [PMID: 26381163 PMCID: PMC4815091 DOI: 10.1105/tpc.15.00391] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/31/2015] [Indexed: 05/14/2023]
Abstract
The rate of crossover, the reciprocal exchanges of homologous chromosomal segments, is not uniform along chromosomes differing between male and female meiocytes. To better understand the factors regulating this variable landscape, we performed a detailed genetic and epigenetic analysis of 737 crossover events in Arabidopsis thaliana. Crossovers were more frequent than expected in promoters. Three DNA motifs enriched in crossover regions and less abundant in crossover-poor pericentric regions were identified. One of these motifs, the CCN repeat, was previously unknown in plants. The A-rich motif was preferentially associated with promoters, while the CCN repeat and the CTT repeat motifs were preferentially associated with genes. Analysis of epigenetic modifications around the motifs showed, in most cases, a specific epigenetic architecture. For example, we show that there is a peak of nucleosome occupancy and of H3K4me3 around the CCN and CTT repeat motifs while nucleosome occupancy was lowest around the A-rich motif. Cytosine methylation levels showed a gradual decrease within ∼2 kb of the three motifs, being lowest at sites where crossover occurred. This landscape was conserved in the decreased DNA methylation1 mutant. In summary, the crossover motifs are associated with epigenetic landscapes corresponding to open chromatin and contributing to the nonuniformity of crossovers in Arabidopsis.
Collapse
Affiliation(s)
- Shay Shilo
- Plant and Environmental Sciences Department, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Cathy Melamed-Bessudo
- Plant and Environmental Sciences Department, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yanniv Dorone
- Plant and Environmental Sciences Department, The Weizmann Institute of Science, Rehovot 76100, Israel Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Naama Barkai
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avraham A Levy
- Plant and Environmental Sciences Department, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
50
|
Hadsell DL, Hadsell LA, Olea W, Rijnkels M, Creighton CJ, Smyth I, Short KM, Cox LL, Cox TC. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci. Mamm Genome 2015; 26:57-79. [PMID: 25552398 DOI: 10.1007/s00335-014-9551-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
Abstract
Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structural variation in mammary ductal development, and determined if these QTL correlated with genomic intervals conferring BrCa susceptibility in humans. For about half of the traits, developmental variation among the complete set of strains in this study was greater (P < 0.05) than that of previously studied strains, or strains in current common use for mammary gland biology. Correlations were also detected with previously reported variation in mammary tumor latency and metastasis. In-silico genome-wide association identified 20 mammary development QTL (Mdq). Of these, five were syntenic with previously reported human BrCa loci. The most significant (P = 1 × 10(-11)) association of the study was on MMU6 and contained the genes Plxna4, Plxna4os1, and Chchd3. On MMU5, a QTL was detected (P = 8 × 10(-7)) that was syntenic to a human BrCa locus on h12q24.5 containing the genes Tbx3 and Tbx5. Intersection of linked SNP (r(2) > 0.8) with genomic and epigenomic features, and intersection of candidate genes with gene expression and survival data from human BrCa highlighted several for further study. These results support the conclusion that mammary tumorigenesis and normal ductal development are influenced by common genetic factors and that further studies of genetically diverse mice can improve our understanding of BrCa in humans.
Collapse
Affiliation(s)
- Darryl L Hadsell
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates St. Suite 10072, Mail Stop: BCM-320, Houston, TX, 77030-2600, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|