1
|
Freund F, Wirtz J, Zheng Y, Schäfer Y, Wiehe T. Muller's ratchet and gene duplication. Theor Popul Biol 2025; 164:12-22. [PMID: 40374144 DOI: 10.1016/j.tpb.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/17/2025]
Abstract
Copy number of genes in gene families can be highly variable among individuals and may continue to change across generations. Here, we study a model of duplication-selection interaction, which is related to Haigh's mutation-selection model of Muller's ratchet. New gene copies are generated by duplication but fitness of individuals decreases as copy number increases. Our model comes in two flavors: duplicates are copied either from a single template or from any existing copy. A duplication-selection equilibrium exists in both cases for infinite size populations and is given by a shifted Poisson or a negative binomial distribution. Unless counteracted by synergistic epistasis, finite populations suffer from loss of low copy-number haplotypes by drift, forcing them into a regime called 'run-away evolution' in which new copies accumulate without bound nor equilibrium. We discuss a few empirical examples and interpret them in the light of our models. Generally, large gene families appear too over-dispersed to fit the single template model suggesting a dynamic, and potentially accelerating, duplication process.
Collapse
Affiliation(s)
- Fabian Freund
- University of Leicester, University Street, Leicester, LE1 7RH, United Kingdom
| | - Johannes Wirtz
- CEFE, Route de Mende 1819, Montpellier, France(1); Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany
| | - Yichen Zheng
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany; Institut für Nutztiergenetik, Friedrich-Loeffler-Institut, Höltystrasse 10, 31535 Neustadt am Rübenberge, Germany (1)
| | - Yannick Schäfer
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany
| | - Thomas Wiehe
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany.
| |
Collapse
|
2
|
Matheson J, Hernández U, Bertram J, Masel J. Human deleterious mutation rate slows adaptation and implies high fitness variance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.01.555871. [PMID: 37732183 PMCID: PMC10508744 DOI: 10.1101/2023.09.01.555871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Each new human has an expectedU d = 2 - 10 new deleterious mutations. Using a novel approach to capture complex linkage disequilibria from highU d using genome-wide simulations, we confirm that fitness decline due to the fixation of many slightly deleterious mutations can be compensated by rarer beneficial mutations of larger effect. The evolution of increased genome size and complexity have previously been attributed to a similarly asymmetric pattern of fixations, but we propose that the cause might be highU d rather than the small population size posited as causal by drift barrier theory. High within-population variance in relative fitness is an inevitable consequence of highU d ∼ 2 - 10 combined with inferred human deleterious effect sizes; two individuals will typically differ in fitness by 15-40%. The need to compensate for the deluge of deleterious mutations slows net adaptation (i.e. to the external environment) by ~13%-55%. The rate of beneficial fixations is more sensitive to changes in the mutation rate than the rate of deleterious fixations is. As a surprising consequence of this, an increase (e.g. 10%) in overall mutation rate leads to faster adaptation; this puts to rest dysgenic fears about increasing mutation rates due to rising paternal age.
Collapse
Affiliation(s)
- Joseph Matheson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, San Diego, CA, 92093, USA
| | - Ulises Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jason Bertram
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Mathematics, University of Western Ontario, London ON, Canada
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
3
|
Erdoğan AN, Dasmeh P, Socha RD, Chen JZ, Life BE, Jun R, Kiritchkov L, Kehila D, Serohijos AWR, Tokuriki N. Neutral drift upon threshold-like selection promotes variation in antibiotic resistance phenotype. Nat Commun 2024; 15:10813. [PMID: 39737968 PMCID: PMC11685847 DOI: 10.1038/s41467-024-55012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Heritable phenotypic variation plays a central role in evolution by conferring rapid adaptive capacity to populations. Mechanisms that can explain genetic diversity by describing connections between genotype and organismal fitness have been described. However, the difficulty of acquiring comprehensive data on genotype-phenotype-environment relationships has hindered the efforts to explain how the ubiquitously observed phenotypic variation in populations emerges and is maintained. To address this challenge, we establish an experimental system where we can examine the genotype-phenotype relationships in a controlled environment. We perform long-term experimental evolution on VIM-2 β-lactamase, an antibiotic-resistance enzyme, to explore the conditions that promote the emergence and maintenance of phenotypic variation. We found that evolution in a static environment with low antibiotic concentrations can promote and maintain significant phenotypic variation within populations. Notably, evolution of VIM-2 under selection with a low antibiotic concentration led to variants that conferred resistance to over 100-fold higher antibiotic concentrations than used in selection. A model based on the previously described threshold-like relationship between enzyme phenotype and fitness generated using VIM-2's all single amino acid variants, sufficiently explains the emergence of standing phenotypic variation under static environmental conditions. Overall, our approach provides a tractable model for studying phenotypic variation and evolvability at the population level.
Collapse
Affiliation(s)
- Ayşe Nisan Erdoğan
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Pouria Dasmeh
- Département de biochimie, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada
- Centre Robert Cedergren en Bioinformatique et Génomique, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada
- Centre for Human Genetics, Marburg University, Marburg, Germany
| | - Raymond D Socha
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - John Z Chen
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Benjamin E Life
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Rachel Jun
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Linda Kiritchkov
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Dan Kehila
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Adrian W R Serohijos
- Département de biochimie, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada
- Centre Robert Cedergren en Bioinformatique et Génomique, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| |
Collapse
|
4
|
Yang Q, Tang Y, Gao D. Agent-based evolutionary game dynamics uncover the dual role of resource heterogeneity in the evolution of cooperation. J Theor Biol 2024; 595:111952. [PMID: 39322113 DOI: 10.1016/j.jtbi.2024.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/27/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Cooperation is a cornerstone of social harmony and group success. Environmental feedbacks that provide information about resource availability play a crucial role in encouraging cooperation. Previous work indicates that the impact of resource heterogeneity on cooperation depends on the incentive to act in self-interest presented by a situation, demonstrating its potential to both hinder and facilitate cooperation. However, little is known about the underlying evolutionary drivers behind this phenomenon. Leveraging agent-based modeling and game theory, we explore how differences in resource availability across environments influence the evolution of cooperation. Our results show that resource variation hinders cooperation when resources are slowly replenished but supports cooperation when resources are more readily available. Furthermore, simulations in different scenarios suggest that discerning the rate of natural selection acts on strategies under distinct evolutionary dynamics is instrumental in elucidating the intricate nexus between resource variability and cooperation. When evolutionary forces are strong, resource heterogeneity tends to work against cooperation, yet relaxed selection conditions enable it to facilitate cooperation. Inspired by these findings, we also propose a potential application in improving the performance of artificial intelligence systems through policy optimization in multi-agent reinforcement learning. These explorations promise a novel perspective in understanding the evolution of social organisms and the impact of different interactions on the function of natural systems.
Collapse
Affiliation(s)
- Qin Yang
- School of Emergency Management, Institute of Disaster Prevention, Sanhe 065201, China; School of Life Science, Liaoning University, Shenyang 110036, China
| | - Yi Tang
- School of Emergency Management, Institute of Disaster Prevention, Sanhe 065201, China.
| | - Dehua Gao
- School of Management Science and Engineering, Shandong Technology and Business University, Yantai 264005, China
| |
Collapse
|
5
|
Péron G. The effect of the demographic history on the evolution of senescence: A potential new test of the mutation accumulation theory. Mech Ageing Dev 2024; 219:111927. [PMID: 38499252 DOI: 10.1016/j.mad.2024.111927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
The different evolutionary theories of senescence predict different directions for the correlation between the population size and the intensity of senescence. Using simulations, I highlighted how the effect of the population size on the intensity of senescence could be reinforced by the time since populations have been large or small. I devised a mutation-selection model in which the effect of the mutations was age-specific. Several small populations diverged from a same large population at different points in time. At the end of the simulation, the correlation between the time since the populations had been small and the rate of senescence was positive under the mutation accumulation theory and negative under the antagonistic pleiotropy theory. The phenomenon was strong enough to reverse the usually negative relationship between the intensity of senescence and the generation time. These mutually-exclusive predictions could help broaden the taxonomic support for the mutation accumulation theory of senescence, currently mostly supported in humans and lab invertebrates. I briefly mention a few potential applications in real-life systems.
Collapse
Affiliation(s)
- Guillaume Péron
- CNRS, Université Lyon 1, 43 bd du 11 novembre 1918, VILLEURBANNE cedex 69622, France.
| |
Collapse
|
6
|
Boyd BM, James I, Johnson KP, Weiss RB, Bush SE, Clayton DH, Dale C. Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria. Nat Commun 2024; 15:4571. [PMID: 38811551 PMCID: PMC11137140 DOI: 10.1038/s41467-024-48784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Evolution results from the interaction of stochastic and deterministic processes that create a web of historical contingency, shaping gene content and organismal function. To understand the scope of this interaction, we examine the relative contributions of stochasticity, determinism, and contingency in shaping gene inactivation in 34 lineages of endosymbiotic bacteria, Sodalis, found in parasitic lice, Columbicola, that are independently undergoing genome degeneration. Here we show that the process of genome degeneration in this system is largely deterministic: genes involved in amino acid biosynthesis are lost while those involved in providing B-vitamins to the host are retained. In contrast, many genes encoding redundant functions, including components of the respiratory chain and DNA repair pathways, are subject to stochastic loss, yielding historical contingencies that constrain subsequent losses. Thus, while selection results in functional convergence between symbiont lineages, stochastic mutations initiate distinct evolutionary trajectories, generating diverse gene inventories that lack the functional redundancy typically found in free-living relatives.
Collapse
Affiliation(s)
- Bret M Boyd
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, US.
| | - Ian James
- School of Biological Sciences, University of Utah, Salt Lake City, UT, US
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, US
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, UT, US
| | - Sarah E Bush
- School of Biological Sciences, University of Utah, Salt Lake City, UT, US
| | - Dale H Clayton
- School of Biological Sciences, University of Utah, Salt Lake City, UT, US
| | - Colin Dale
- School of Biological Sciences, University of Utah, Salt Lake City, UT, US
| |
Collapse
|
7
|
Matheson J, Masel J. Background Selection From Unlinked Sites Causes Nonindependent Evolution of Deleterious Mutations. Genome Biol Evol 2024; 16:evae050. [PMID: 38482769 PMCID: PMC10972689 DOI: 10.1093/gbe/evae050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
Background selection describes the reduction in neutral diversity caused by selection against deleterious alleles at other loci. It is typically assumed that the purging of deleterious alleles affects linked neutral variants, and indeed simulations typically only treat a genomic window. However, background selection at unlinked loci also depresses neutral diversity. In agreement with previous analytical approximations, in our simulations of a human-like genome with a realistically high genome-wide deleterious mutation rate, the effects of unlinked background selection exceed those of linked background selection. Background selection reduces neutral genetic diversity by a factor that is independent of census population size. Outside of genic regions, the strength of background selection increases with the mean selection coefficient, contradicting the linked theory but in agreement with the unlinked theory. Neutral diversity within genic regions is fairly independent of the strength of selection. Deleterious genetic load among haploid individuals is underdispersed, indicating nonindependent evolution of deleterious mutations. Empirical evidence for underdispersion was previously interpreted as evidence for global epistasis, but we recover it from a non-epistatic model.
Collapse
Affiliation(s)
- Joseph Matheson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, San Diego, CA 92093, USA
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Melissa MJ, Desai MM. A dynamical limit to evolutionary adaptation. Proc Natl Acad Sci U S A 2024; 121:e2312845121. [PMID: 38241432 PMCID: PMC10823227 DOI: 10.1073/pnas.2312845121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
Natural selection makes evolutionary adaptation possible even if the overwhelming majority of new mutations are deleterious. However, in rapidly evolving populations where numerous linked mutations occur and segregate simultaneously, clonal interference and genetic hitchhiking can limit the efficiency of selection, allowing deleterious mutations to accumulate over time. This can in principle overwhelm the fitness increases provided by beneficial mutations, leading to an overall fitness decline. Here, we analyze the conditions under which evolution will tend to drive populations to higher versus lower fitness. Our analysis focuses on quantifying the boundary between these two regimes, as a function of parameters such as population size, mutation rates, and selection pressures. This boundary represents a state in which adaptation is precisely balanced by Muller's ratchet, and we show that it can be characterized by rapid molecular evolution without any net fitness change. Finally, we consider the implications of global fitness-mediated epistasis and find that under some circumstances, this can drive populations toward the boundary state, which can thus represent a long-term evolutionary attractor.
Collapse
Affiliation(s)
- Matthew J. Melissa
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
- Quantitative Biology Initiative, Harvard University, Cambridge, MA02138
- National Science Foundation (NSF)-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA02138
| | - Michael M. Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
- Quantitative Biology Initiative, Harvard University, Cambridge, MA02138
- National Science Foundation (NSF)-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
9
|
Olofsson P, Chipkin L, Daileda RC, Azevedo RBR. Mutational meltdown in asexual populations doomed to extinction. J Math Biol 2023; 87:88. [PMID: 37994999 DOI: 10.1007/s00285-023-02019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Asexual populations are expected to accumulate deleterious mutations through a process known as Muller's ratchet. Lynch and colleagues proposed that the ratchet eventually results in a vicious cycle of mutation accumulation and population decline that drives populations to extinction. They called this phenomenon mutational meltdown. Here, we analyze mutational meltdown using a multi-type branching process model where, in the presence of mutation, populations are doomed to extinction. We analyse the change in size and composition of the population and the time of extinction under this model.
Collapse
Affiliation(s)
- Peter Olofsson
- Department of Mathematics, Trinity University, San Antonio, TX, 78212, USA
- Department of Mathematics, Physics and Chemical Engineering, Jönköping University, 551 11, Jönköping, Sweden
| | - Logan Chipkin
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Ryan C Daileda
- Department of Mathematics, Trinity University, San Antonio, TX, 78212, USA
| | - Ricardo B R Azevedo
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
10
|
Li X, Habibipour S, Chou T, Yang OO. The role of APOBEC3-induced mutations in the differential evolution of monkeypox virus. Virus Evol 2023; 9:vead058. [PMID: 37841642 PMCID: PMC10569380 DOI: 10.1093/ve/vead058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Recent studies show that newly sampled monkeypox virus (MPXV) genomes exhibit mutations consistent with Apolipoprotein B mRNA Editing Catalytic Polypeptide-like3 (APOBEC3)-mediated editing compared to MPXV genomes collected earlier. It is unclear whether these single-nucleotide polymorphisms (SNPs) result from APOBEC3-induced editing or are a consequence of genetic drift within one or more MPXV animal reservoirs. We develop a simple method based on a generalization of the General-Time-Reversible model to show that the observed SNPs are likely the result of APOBEC3-induced editing. The statistical features allow us to extract lineage information and estimate evolutionary events.
Collapse
Affiliation(s)
- Xiangting Li
- Department of Computational Medicine, UCLA, Los Angeles, CA, United States
| | - Sara Habibipour
- Departments of Medicine and Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Tom Chou
- Department of Computational Medicine, UCLA, Los Angeles, CA, United States
- Department of Mathematics, UCLA, Los Angeles, CA, United States
| | - Otto O Yang
- Departments of Medicine and Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, United States
| |
Collapse
|
11
|
Mazzolini A, Grilli J. Universality of evolutionary trajectories under arbitrary forms of self-limitation and competition. Phys Rev E 2023; 108:034406. [PMID: 37849158 DOI: 10.1103/physreve.108.034406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/25/2023] [Indexed: 10/19/2023]
Abstract
The assumption of constant population size is central in population genetics. It led to a large body of results that is robust to modeling choices and that has proven successful to understand evolutionary dynamics. In reality, allele frequencies and population size are both determined by the interaction between a population and the environment. Relaxing the constant-population assumption has two big drawbacks. It increases the technical difficulty of the analysis, and it requires specifying a mechanism for the saturation of the population size, possibly making the results contingent on model details. Here we develop a framework that encompasses a great variety of systems with an arbitrary mechanism for population growth limitation. By using techniques based on scale separation for stochastic processes, we are able to calculate analytically properties of evolutionary trajectories, such as the fixation probability. Remarkably, these properties assume a universal form with respect to our framework, which depends on only three parameters related to the intergeneration timescale, the invasion fitness, and the carrying capacity of the strains. In other words, different systems, such as Lotka-Volterra or a chemostat model (contained in our framework), share the same evolutionary outcomes after a proper remapping of their parameters. An important and surprising consequence of our results is that the direction of selection can be inverted, with a population evolving to reach lower values of invasion fitness.
Collapse
Affiliation(s)
- Andrea Mazzolini
- Laboratoire de physique de l'École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Jacopo Grilli
- Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste 34151, Italy
| |
Collapse
|
12
|
Li X, Habibipour S, Chou T, Yang OO. The role of APOBEC3-induced mutations in the differential evolution of monkeypox virus. ARXIV 2023:arXiv:2308.03714v1. [PMID: 37608930 PMCID: PMC10441442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Recent studies show that newly sampled monkeypox virus (MPXV) genomes exhibit mutations consistent with Apolipoprotein B mRNA Editing Catalytic Polypeptide-like3 (APOBEC3)-mediated editing, compared to MPXV genomes collected earlier. It is unclear whether these single nucleotide polymorphisms (SNPs) result from APOBEC3-induced editing or are a consequence of genetic drift within one or more MPXV animal reservoirs. We develop a simple method based on a generalization of the General-Time-Reversible (GTR) model to show that the observed SNPs are likely the result of APOBEC3-induced editing. The statistical features allow us to extract lineage information and estimate evolutionary events.
Collapse
Affiliation(s)
- Xiangting Li
- Department of Computational Medicine, UCLA, Los Angeles, CA, United States
| | - Sara Habibipour
- Depts. of Medicine and Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Tom Chou
- Department of Computational Medicine, UCLA, Los Angeles, CA, United States
- Department of Mathematics, UCLA, Los Angeles, CA, United States
| | - Otto O Yang
- Depts. of Medicine and Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, United States
| |
Collapse
|
13
|
Melissa MJ, Desai MM. A dynamical limit to evolutionary adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551320. [PMID: 37577473 PMCID: PMC10418092 DOI: 10.1101/2023.07.31.551320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Natural selection makes evolutionary adaptation possible even if the overwhelming majority of new mutations are deleterious. However, in rapidly evolving populations where numerous linked mutations occur and segregate simultaneously, clonal interference and genetic hitchhiking can limit the efficiency of selection, allowing deleterious mutations to accumulate over time. This can in principle overwhelm the fitness increases provided by beneficial mutations, leading to an overall fitness decline. Here, we analyze the conditions under which evolution will tend to drive populations to higher versus lower fitness. Our analysis focuses on quantifying the boundary between these two regimes, as a function of parameters such as population size, mutation rates, and selection pressures. This boundary represents a state in which adaptation is precisely balanced by Muller's ratchet, and we show that it can be characterized by rapid molecular evolution without any net fitness change. Finally, we consider the implications of global fitness-mediated epistasis, and find that under some circumstances this can drive populations towards the boundary state, which can thus represent a long-term evolutionary attractor.
Collapse
Affiliation(s)
- Matthew J. Melissa
- Department of Organismic and Evolutionary Biology, Department of Physics, Quantitative Biology Initiative, and NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University
| | - Michael M. Desai
- Department of Organismic and Evolutionary Biology, Department of Physics, Quantitative Biology Initiative, and NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University
| |
Collapse
|
14
|
Devi A, Speyer G, Lynch M. The divergence of mean phenotypes under persistent directional selection. Genetics 2023; 224:iyad091. [PMID: 37200616 PMCID: PMC10552002 DOI: 10.1093/genetics/iyad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 02/26/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Numerous organismal traits, particularly at the cellular level, are likely to be under persistent directional selection across phylogenetic lineages. Unless all mutations affecting such traits have large enough effects to be efficiently selected in all species, gradients in mean phenotypes are expected to arise as a consequence of differences in the power of random genetic drift, which varies by approximately five orders of magnitude across the Tree of Life. Prior theoretical work examining the conditions under which such gradients can arise focused on the simple situation in which all genomic sites affecting the trait have identical and constant mutational effects. Here, we extend this theory to incorporate the more biologically realistic situation in which mutational effects on a trait differ among nucleotide sites. Pursuit of such modifications leads to the development of semi-analytic expressions for the ways in which selective interference arises via linkage effects in single-effects models, which then extend to more complex scenarios. The theory developed clarifies the conditions under which mutations of different selective effects mutually interfere with each others' fixation and shows how variance in effects among sites can substantially modify and extend the expected scaling relationships between mean phenotypes and effective population sizes.
Collapse
Affiliation(s)
- Archana Devi
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Gil Speyer
- Knowledge Enterprise, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
15
|
Jiang P, Kreitman M, Reinitz J. The effect of mutational robustness on the evolvability of multicellular organisms and eukaryotic cells. J Evol Biol 2023; 36:906-924. [PMID: 37256290 PMCID: PMC10315174 DOI: 10.1111/jeb.14180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Canalization involves mutational robustness, the lack of phenotypic change as a result of genetic mutations. Given the large divergence in phenotype across species, understanding the relationship between high robustness and evolvability has been of interest to both theorists and experimentalists. Although canalization was originally proposed in the context of multicellular organisms, the effect of multicellularity and other classes of hierarchical organization on evolvability has not been considered by theoreticians. We address this issue using a Boolean population model with explicit representation of an environment in which individuals with explicit genotype and a hierarchical phenotype representing multicellularity evolve. Robustness is described by a single real number between zero and one which emerges from the genotype-phenotype map. We find that high robustness is favoured in constant environments, and lower robustness is favoured after environmental change. Multicellularity and hierarchical organization severely constrain robustness: peak evolvability occurs at an absolute level of robustness of about 0.99 compared with values of about 0.5 in a classical neutral network model. These constraints result in a sharp peak of evolvability in which the maximum is set by the fact that the fixation of adaptive mutations becomes more improbable as robustness decreases. When robustness is put under genetic control, robustness levels leading to maximum evolvability are selected for, but maximal relative fitness appears to require recombination.
Collapse
Affiliation(s)
- Pengyao Jiang
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Martin Kreitman
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
- Institute for Genomics & Systems Biology, Chicago, Illinois, USA
| | - John Reinitz
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
- Institute for Genomics & Systems Biology, Chicago, Illinois, USA
- Department of Statistics, University of Chicago, Chicago, Illinois, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Dichio V, Zeng HL, Aurell E. Statistical genetics in and out of quasi-linkage equilibrium. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:052601. [PMID: 36944245 DOI: 10.1088/1361-6633/acc5fa] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
This review is about statistical genetics, an interdisciplinary topic between statistical physics and population biology. The focus is on the phase ofquasi-linkage equilibrium(QLE). Our goals here are to clarify under which conditions the QLE phase can be expected to hold in population biology and how the stability of the QLE phase is lost. The QLE state, which has many similarities to a thermal equilibrium state in statistical mechanics, was discovered by M Kimura for a two-locus two-allele model, and was extended and generalized to the global genome scale byNeher&Shraiman (2011). What we will refer to as the Kimura-Neher-Shraiman theory describes a population evolving due to the mutations, recombination, natural selection and possibly genetic drift. A QLE phase exists at sufficiently high recombination rate (r) and/or mutation ratesµwith respect to selection strength. We show how in QLE it is possible to infer the epistatic parameters of the fitness function from the knowledge of the (dynamical) distribution of genotypes in a population. We further consider the breakdown of the QLE regime for high enough selection strength. We review recent results for the selection-mutation and selection-recombination dynamics. Finally, we identify and characterize a new phase which we call the non-random coexistence where variability persists in the population without either fixating or disappearing.
Collapse
Affiliation(s)
- Vito Dichio
- Sorbonne Université, Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Hong-Li Zeng
- School of Science, Nanjing University of Posts and Telecommunications, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing 210023, People's Republic of China
| | - Erik Aurell
- Department of Computational Science and Technology, KTH-Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Balick DJ. A field theoretic approach to non-equilibrium population genetics in the strong selection regime. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524324. [PMID: 36711507 PMCID: PMC9882232 DOI: 10.1101/2023.01.16.524324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Natural populations are virtually never observed in equilibrium, yet equilibrium approximations comprise the majority of our understanding of population genetics. Using standard tools from statistical physics, a formalism is presented that re-expresses the stochastic equations describing allelic evolution as a partition functional over all possible allelic trajectories ('paths') governed by selection, mutation, and drift. A perturbative field theory is developed for strong additive selection, relevant to disease variation, that facilitates the straightforward computation of closed-form approximations for time-dependent moments of the allele frequency distribution across a wide range of non-equilibrium scenarios; examples are presented for constant population size, exponential growth, bottlenecks, and oscillatory size, all of which align well to simulations and break down just above the drift barrier. Equilibration times are computed and, even for static population size, generically extend beyond the order 1/s timescale associated with exponential frequency decay. Though the mutation load is largely robust to variable population size, perturbative drift-based corrections to the deterministic trajectory are readily computed. Under strong selection, the variance of a new mutation's frequency (related to homozygosity) is dominated by drift-driven dynamics and a transient increase in variance often occurs prior to equilibrating. The excess kurtosis over skew squared is roughly constant (i.e., independent of selection, provided 2Ns ≳ 5) for static population size, and thus potentially sensitive to deviation from equilibrium. These insights highlight the value of such closed-form approximations, naturally generated from Feynman diagrams in a perturbative field theory, which can simply and accurately capture the parameter dependences describing a variety of non-equilibrium population genetic phenomena of interest.
Collapse
Affiliation(s)
- Daniel J Balick
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Yang CH, Scarpino SV. The ensemble of gene regulatory networks at mutation-selection balance. J R Soc Interface 2023; 20:20220075. [PMID: 36596452 PMCID: PMC9810427 DOI: 10.1098/rsif.2022.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
The evolution of diverse phenotypes both involves and is constrained by molecular interaction networks. When these networks influence patterns of expression, we refer to them as gene regulatory networks (GRNs). Here, we develop a model of GRN evolution analogous to work from quasi-species theory, which is itself essentially the mutation-selection balance model from classical population genetics extended to multiple loci. With this GRN model, we prove that-across a broad spectrum of selection pressures-the dynamics converge to a stationary distribution over GRNs. Next, we show from first principles how the frequency of GRNs at equilibrium is related to the topology of the genotype network, in particular, via a specific network centrality measure termed the eigenvector centrality. Finally, we determine the structural characteristics of GRNs that are favoured in response to a range of selective environments and mutational constraints. Our work connects GRN evolution to quasi-species theory-and thus to classical populations genetics-providing a mechanistic explanation for the observed distribution of GRNs evolving in response to various evolutionary forces, and shows how complex fitness landscapes can emerge from simple evolutionary rules.
Collapse
Affiliation(s)
- Chia-Hung Yang
- Network Science Institute, Northeastern University, Boston, MA, USA
| | - Samuel V. Scarpino
- Network Science Institute, Northeastern University, Boston, MA, USA
- Institute for Experiential AI, Northeastern University, Boston, MA, USA
- Department of Health Sciences, Northeastern University, Boston, MA, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
- Roux Institute, Northeastern University, Boston, MA, USA
- Santa Fe Institute, Santa Fe, NM, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, USA
| |
Collapse
|
19
|
Evolutionary rescue of resistant mutants is governed by a balance between radial expansion and selection in compact populations. Nat Commun 2022; 13:7916. [PMID: 36564390 PMCID: PMC9789051 DOI: 10.1038/s41467-022-35484-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Mutation-mediated treatment resistance is one of the primary challenges for modern antibiotic and anti-cancer therapy. Yet, many resistance mutations have a substantial fitness cost and are subject to purifying selection. How emerging resistant lineages may escape purifying selection via subsequent compensatory mutations is still unclear due to the difficulty of tracking such evolutionary rescue dynamics in space and time. Here, we introduce a system of fluorescence-coupled synthetic mutations to show that the probability of evolutionary rescue, and the resulting long-term persistence of drug resistant mutant lineages, is dramatically increased in dense microbial populations. By tracking the entire evolutionary trajectory of thousands of resistant lineages in expanding yeast colonies we uncover an underlying quasi-stable equilibrium between the opposing forces of radial expansion and natural selection, a phenomenon we term inflation-selection balance. Tailored computational models and agent-based simulations corroborate the fundamental nature of the observed effects and demonstrate the potential impact on drug resistance evolution in cancer. The described phenomena should be considered when predicting multi-step evolutionary dynamics in any mechanically compact cellular population, including pathogenic microbial biofilms and solid tumors. The insights gained will be especially valuable for the quantitative understanding of response to treatment, including emerging evolution-based therapy strategies.
Collapse
|
20
|
Branch HA, Klingler AN, Byers KJRP, Panofsky A, Peers D. Discussions of the "Not So Fit": How Ableism Limits Diverse Thought and Investigative Potential in Evolutionary Biology. Am Nat 2022; 200:101-113. [PMID: 35737982 DOI: 10.1086/720003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
AbstractEvolutionary biology and many of its foundational concepts are grounded in a history of ableism and eugenics. The field has not made a concerted effort to divest our concepts and investigative tools from this fraught history, and as a result, an ableist investigative lens has persisted in present-day evolutionary research, limiting the scope of research and harming the ability to communicate and synthesize knowledge about evolutionary processes. This failure to divest from our eugenicist and ableist history has harmed progress in evolutionary biology and allowed principles from evolutionary biology to continue to be weaponized against marginalized communities in the modern day. To rectify this problem, scholars in evolutionary research must come to terms with how the history of the field has influenced their investigations and work to establish a new framework for defining and investigating concepts such as selection and fitness.
Collapse
|
21
|
Melissa MJ, Good BH, Fisher DS, Desai MM. Population genetics of polymorphism and divergence in rapidly evolving populations. Genetics 2022; 221:6564664. [PMID: 35389471 PMCID: PMC9339298 DOI: 10.1093/genetics/iyac053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/19/2022] [Indexed: 11/14/2022] Open
Abstract
In rapidly evolving populations, numerous beneficial and deleterious mutations can arise and segregate within a population at the same time. In this regime, evolutionary dynamics cannot be analyzed using traditional population genetic approaches that assume that sites evolve independently. Instead, the dynamics of many loci must be analyzed simultaneously. Recent work has made progress by first analyzing the fitness variation within a population, and then studying how individual lineages interact with this traveling fitness wave. However, these "traveling wave" models have previously been restricted to extreme cases where selection on individual mutations is either much faster or much slower than the typical coalescent timescale Tc. In this work, we show how the traveling wave framework can be extended to intermediate regimes in which the scaled fitness effects of mutations (Tcs) are neither large nor small compared to one. This enables us to describe the dynamics of populations subject to a wide range of fitness effects, and in particular, in cases where it is not immediately clear which mutations are most important in shaping the dynamics and statistics of genetic diversity. We use this approach to derive new expressions for the fixation probabilities and site frequency spectra of mutations as a function of their scaled fitness effects, along with related results for the coalescent timescale Tc and the rate of adaptation or Muller's ratchet. We find that competition between linked mutations can have a dramatic impact on the proportions of neutral and selected polymorphisms, which is not simply summarized by the scaled selection coefficient Tcs. We conclude by discussing the implications of these results for population genetic inferences.
Collapse
Affiliation(s)
- Matthew J Melissa
- Department of Organismic and Evolutionary Biology, Department of Physics, Quantitative Biology Initiative, and NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge MA 02138, USA
| | - Benjamin H Good
- Department of Applied Physics and Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Daniel S Fisher
- Department of Applied Physics and Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Department of Physics, Quantitative Biology Initiative, and NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge MA 02138, USA
| |
Collapse
|
22
|
Sakamoto T, Innan H. Muller's ratchet of the Y chromosome with gene conversion. Genetics 2022; 220:iyab204. [PMID: 34791206 PMCID: PMC8733426 DOI: 10.1093/genetics/iyab204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Muller's ratchet is a process in which deleterious mutations are fixed irreversibly in the absence of recombination. The degeneration of the Y chromosome, and the gradual loss of its genes, can be explained by Muller's ratchet. However, most theories consider single-copy genes, and may not be applicable to Y chromosomes, which have a number of duplicated genes in many species, which are probably undergoing concerted evolution by gene conversion. We developed a model of Muller's ratchet to explore the evolution of the Y chromosome. The model assumes a nonrecombining chromosome with both single-copy and duplicated genes. We used analytical and simulation approaches to obtain the rate of gene loss in this model, with special attention to the role of gene conversion. Homogenization by gene conversion makes both duplicated copies either mutated or intact. The former promotes the ratchet, and the latter retards, and we ask which of these counteracting forces dominates under which conditions. We found that the effect of gene conversion is complex, and depends upon the fitness effect of gene duplication. When duplication has no effect on fitness, gene conversion accelerates the ratchet of both single-copy and duplicated genes. If duplication has an additive fitness effect, the ratchet of single-copy genes is accelerated by gene duplication, regardless of the gene conversion rate, whereas gene conversion slows the degeneration of duplicated genes. Our results suggest that the evolution of the Y chromosome involves several parameters, including the fitness effect of gene duplication by increasing dosage and gene conversion rate.
Collapse
Affiliation(s)
- Takahiro Sakamoto
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | - Hideki Innan
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
23
|
Amicone M, Gordo I. Molecular signatures of resource competition: Clonal interference favors ecological diversification and can lead to incipient speciation. Evolution 2021; 75:2641-2657. [PMID: 34341983 PMCID: PMC9292366 DOI: 10.1111/evo.14315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/08/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Microbial ecosystems harbor an astonishing diversity that can persist for long times. To understand how such diversity is structured and maintained, ecological and evolutionary processes need to be integrated at similar timescales. Here, we study a model of resource competition that allows for evolution via de novo mutation, and focus on rapidly adapting asexual populations with large mutational inputs, as typical of many bacteria species. We characterize the adaptation and diversification of an initially maladapted population and show how the eco-evolutionary dynamics are shaped by the interaction between simultaneously emerging lineages - clonal interference. We find that in large populations, more intense clonal interference can foster diversification under sympatry, increasing the probability that phenotypically and genetically distinct clusters coexist. In smaller populations, the accumulation of deleterious and compensatory mutations can push further the diversification process and kick-start speciation. Our findings have implications beyond microbial populations, providing novel insights about the interplay between ecology and evolution in clonal populations.
Collapse
Affiliation(s)
- Massimo Amicone
- Evolutionary Biology, Instituto Gulbenkian de Ciência (IGC)OeirasPortugal
| | - Isabel Gordo
- Evolutionary Biology, Instituto Gulbenkian de Ciência (IGC)OeirasPortugal
| |
Collapse
|
24
|
Pedruzzi G, Rouzine IM. An evolution-based high-fidelity method of epistasis measurement: Theory and application to influenza. PLoS Pathog 2021; 17:e1009669. [PMID: 34153082 PMCID: PMC8248644 DOI: 10.1371/journal.ppat.1009669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/01/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Linkage effects in a multi-locus population strongly influence its evolution. The models based on the traveling wave approach enable us to predict the average speed of evolution and the statistics of phylogeny. However, predicting statistically the evolution of specific sites and pairs of sites in the multi-locus context remains a mathematical challenge. In particular, the effects of epistasis, the interaction of gene regions contributing to phenotype, is difficult to predict theoretically and detect experimentally in sequence data. A large number of false-positive interactions arises from stochastic linkage effects and indirect interactions, which mask true epistatic interactions. Here we develop a proof-of-principle method to filter out false-positive interactions. We start by demonstrating that the averaging of haplotype frequencies over multiple independent populations is necessary but not sufficient for epistatic detection, because it still leaves high numbers of false-positive interactions. To compensate for the residual stochastic noise, we develop a three-way haplotype method isolating true interactions. The fidelity of the method is confirmed analytically and on simulated genetic sequences evolved with a known epistatic network. The method is then applied to a large sequence database of neurominidase protein of influenza A H1N1 obtained from various geographic locations to infer the epistatic network responsible for the difference between the pre-pandemic virus and the pandemic strain of 2009. These results present a simple and reliable technique to measure epistatic interactions of any sign from sequence data. Interactions between genomic sites create a fitness landscape. The knowledge of topology and strength of interactions is vital for predicting the escape of viruses from drugs and immune response and their passing through fitness valleys. Many efforts have been invested into measuring these interactions from DNA sequence sets. Unfortunately, reproducibility of the results remains low due partly to a very small fraction of interaction pairs and partly to stochastic linkage noise masking true interactions. Here we propose a method to separate stochastic linkage and indirect interactions from epistatic interactions and apply it to influenza virus sequence data.
Collapse
Affiliation(s)
- Gabriele Pedruzzi
- Sorbonne Université, Institute de Biologie Paris-Seine, Laboratoire de Biologie Computationelle et Quantitative LCQB, Paris, France
| | - Igor M. Rouzine
- Sorbonne Université, Institute de Biologie Paris-Seine, Laboratoire de Biologie Computationelle et Quantitative LCQB, Paris, France
- * E-mail:
| |
Collapse
|
25
|
Persi E, Wolf YI, Horn D, Ruppin E, Demichelis F, Gatenby RA, Gillies RJ, Koonin EV. Mutation-selection balance and compensatory mechanisms in tumour evolution. Nat Rev Genet 2020; 22:251-262. [PMID: 33257848 DOI: 10.1038/s41576-020-00299-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Intratumour heterogeneity and phenotypic plasticity, sustained by a range of somatic aberrations, as well as epigenetic and metabolic adaptations, are the principal mechanisms that enable cancers to resist treatment and survive under environmental stress. A comprehensive picture of the interplay between different somatic aberrations, from point mutations to whole-genome duplications, in tumour initiation and progression is lacking. We posit that different genomic aberrations generally exhibit a temporal order, shaped by a balance between the levels of mutations and selective pressures. Repeat instability emerges first, followed by larger aberrations, with compensatory effects leading to robust tumour fitness maintained throughout the tumour progression. A better understanding of the interplay between genetic aberrations, the microenvironment, and epigenetic and metabolic cellular states is essential for early detection and prevention of cancer as well as development of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David Horn
- School of Physics and Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Demichelis
- Department for Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Robert A Gatenby
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Jensen JD, Stikeleather RA, Kowalik TF, Lynch M. Imposed mutational meltdown as an antiviral strategy. Evolution 2020; 74:2549-2559. [PMID: 33047822 PMCID: PMC7993354 DOI: 10.1111/evo.14107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Following widespread infections of the most recent coronavirus known to infect humans, SARS‐CoV‐2, attention has turned to potential therapeutic options. With no drug or vaccine yet approved, one focal point of research is to evaluate the potential value of repurposing existing antiviral treatments, with the logical strategy being to identify at least a short‐term intervention to prevent within‐patient progression, while long‐term vaccine strategies unfold. Here, we offer an evolutionary/population‐genetic perspective on one approach that may overwhelm the capacity for pathogen defense (i.e., adaptation) – induced mutational meltdown – providing an overview of key concepts, review of previous theoretical and experimental work of relevance, and guidance for future research. Applied with appropriate care, including target specificity, induced mutational meltdown may provide a general, rapidly implemented approach for the within‐patient eradication of a wide range of pathogens or other undesirable microorganisms.
Collapse
Affiliation(s)
- Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85281.,Center for Evolution & Medicine, Arizona State University, Tempe, Arizona, 85281
| | - Ryan A Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, 85281
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, 01655
| | - Michael Lynch
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85281.,Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, 85281
| |
Collapse
|
27
|
Venkataram S, Monasky R, Sikaroodi SH, Kryazhimskiy S, Kacar B. Evolutionary stalling and a limit on the power of natural selection to improve a cellular module. Proc Natl Acad Sci U S A 2020; 117:18582-18590. [PMID: 32680961 PMCID: PMC7414050 DOI: 10.1073/pnas.1921881117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells consist of molecular modules which perform vital biological functions. Cellular modules are key units of adaptive evolution because organismal fitness depends on their performance. Theory shows that in rapidly evolving populations, such as those of many microbes, adaptation is driven primarily by common beneficial mutations with large effects, while other mutations behave as if they are effectively neutral. As a consequence, if a module can be improved only by rare and/or weak beneficial mutations, its adaptive evolution would stall. However, such evolutionary stalling has not been empirically demonstrated, and it is unclear to what extent stalling may limit the power of natural selection to improve modules. Here we empirically characterize how natural selection improves the translation machinery (TM), an essential cellular module. We experimentally evolved populations of Escherichia coli with genetically perturbed TMs for 1,000 generations. Populations with severe TM defects initially adapted via mutations in the TM, but TM adaptation stalled within about 300 generations. We estimate that the genetic load in our populations incurred by residual TM defects ranges from 0.5 to 19%. Finally, we found evidence that both epistasis and the depletion of the pool of beneficial mutations contributed to evolutionary stalling. Our results suggest that cellular modules may not be fully optimized by natural selection despite the availability of adaptive mutations.
Collapse
Affiliation(s)
- Sandeep Venkataram
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ross Monasky
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Shohreh H Sikaroodi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Sergey Kryazhimskiy
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| | - Betul Kacar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721;
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
28
|
Haigh (1978) and Muller’s ratchet. Theor Popul Biol 2020; 133:19-20. [DOI: 10.1016/j.tpb.2019.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 11/22/2022]
|
29
|
Moderate Amounts of Epistasis are Not Evolutionarily Stable in Small Populations. J Mol Evol 2020; 88:435-444. [PMID: 32350572 DOI: 10.1007/s00239-020-09942-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
High mutation rates select for the evolution of mutational robustness where populations inhabit flat fitness peaks with little epistasis, protecting them from lethal mutagenesis. Recent evidence suggests that a different effect protects small populations from extinction via the accumulation of deleterious mutations. In drift robustness, populations tend to occupy peaks with steep flanks and positive epistasis between mutations. However, it is not known what happens when mutation rates are high and population sizes are small at the same time. Using a simple fitness model with variable epistasis, we show that the equilibrium fitness has a minimum as a function of the parameter that tunes epistasis, implying that this critical point is an unstable fixed point for evolutionary trajectories. In agent-based simulations of evolution at finite mutation rate, we demonstrate that when mutations can change epistasis, trajectories with a subcritical value of epistasis evolve to decrease epistasis, while those with supercritical initial points evolve towards higher epistasis. These two fixed points can be identified with mutational and drift robustness, respectively.
Collapse
|
30
|
Hodač L, Klatt S, Hojsgaard D, Sharbel TF, Hörandl E. A little bit of sex prevents mutation accumulation even in apomictic polyploid plants. BMC Evol Biol 2019; 19:170. [PMID: 31412772 PMCID: PMC6694583 DOI: 10.1186/s12862-019-1495-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/08/2019] [Indexed: 01/30/2023] Open
Abstract
Background In the absence of sex and recombination, genomes are expected to accumulate deleterious mutations via an irreversible process known as Muller’s ratchet, especially in the case of polyploidy. In contrast, no genome-wide mutation accumulation was detected in a transcriptome of facultative apomictic, hexaploid plants of the Ranunculus auricomus complex. We hypothesize that mutations cannot accumulate in flowering plants with facultative sexuality because sexual and asexual development concurrently occurs within the same generation. We assume a strong effect of purging selection on reduced gametophytes in the sexual developmental pathway because previously masked recessive deleterious mutations would be exposed to selection. Results We test this hypothesis by modeling mutation elimination using apomictic hexaploid plants of the R. auricomus complex. To estimate mean recombination rates, the mean number of recombinants per generation was calculated by genotyping three F1 progeny arrays with six microsatellite markers and character incompatibility analyses. We estimated the strength of purging selection in gametophytes by calculating abortion rates of sexual versus apomictic development at the female gametophyte, seed and offspring stage. Accordingly, we applied three selection coefficients by considering effects of purging selection against mutations on (1) male and female gametophytes in the sexual pathway (additive, s = 1.000), (2) female gametophytes only (s = 0.520), and (3) on adult plants only (sporophytes, s = 0.212). We implemented recombination rates into a mathematical model considering the three different selection coefficients, and a genomic mutation rate calculated from genome size of our plants and plant-specific mutation rates. We revealed a mean of 6.05% recombinants per generation. This recombination rate eliminates mutations after 138, 204 or 246 generations, depending on the respective selection coefficients (s = 1.000, 0.520, and 0.212). Conclusions Our results confirm that the empirically observed frequencies of facultative recombination suffice to prevent accumulation of deleterious mutations via Muller’s ratchet even in a polyploid genome. The efficiency of selection is in flowering plants strongly increased by acting on the haplontic (reduced) gametophyte stage. Electronic supplementary material The online version of this article (10.1186/s12862-019-1495-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Timothy F Sharbel
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
31
|
Held T, Klemmer D, Lässig M. Survival of the simplest in microbial evolution. Nat Commun 2019; 10:2472. [PMID: 31171781 PMCID: PMC6554311 DOI: 10.1038/s41467-019-10413-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/10/2019] [Indexed: 01/09/2023] Open
Abstract
The evolution of microbial and viral organisms often generates clonal interference, a mode of competition between genetic clades within a population. Here we show how interference impacts systems biology by constraining genetic and phenotypic complexity. Our analysis uses biophysically grounded evolutionary models for molecular phenotypes, such as fold stability and enzymatic activity of genes. We find a generic mode of phenotypic interference that couples the function of individual genes and the population’s global evolutionary dynamics. Biological implications of phenotypic interference include rapid collateral system degradation in adaptation experiments and long-term selection against genome complexity: each additional gene carries a cost proportional to the total number of genes. Recombination above a threshold rate can eliminate this cost, which establishes a universal, biophysically grounded scenario for the evolution of sex. In a broader context, our analysis suggests that the systems biology of microbes is strongly intertwined with their mode of evolution. In asexual populations selection at different genomic loci can interfere with each other. Here, using a biophysical model of molecular evolution the authors show that interference results in long-term degradation of molecular function, an effect that strongly depends on genome size.
Collapse
Affiliation(s)
- Torsten Held
- Institut für Biologische Physik, Universität zu Köln, Zülpicherstr. 77, 50937, Köln, Germany
| | - Daniel Klemmer
- Institut für Biologische Physik, Universität zu Köln, Zülpicherstr. 77, 50937, Köln, Germany
| | - Michael Lässig
- Institut für Biologische Physik, Universität zu Köln, Zülpicherstr. 77, 50937, Köln, Germany.
| |
Collapse
|
32
|
Li X, Jin Y, Yin Y. Allele frequency of pathogenic variants related to adult-onset Mendelian diseases. Clin Genet 2019; 96:226-235. [PMID: 31119731 DOI: 10.1111/cge.13579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022]
Abstract
An increasing number of variants related to Mendelian diseases have been discovered through analyses of next-generation sequencing data, but the results related to adult-onset Mendelian diseases are insufficient. One possible explanation is that the methods commonly used to evaluate pathogenic variants in patients with congenital Mendelian diseases may not be appropriate for adult-onset diseases due to differences in selection pressure, particularly when assessing the frequency of variants in the general population. We established a well-processed and filtered database of pathogenic variants with both phenotype and frequency information based on the ClinVar and GnomAD public database to better explore the genetic features of adult-onset diseases under real-world conditions. Compared with the control group, pathogenic variants related to adult-onset dominant diseases had a higher allele frequency pattern. Further, the allele frequency patterns of both dominant and recessive variants were higher in patients with neurodegenerative diseases than those in patients with intellectual disabilities. Based on the mutation-selection balance model, the above observation of allele frequency described the lower selection pressure on pathogenic variants related to adult-onset Mendelian diseases and suggests a lower effectiveness of population and loss-of-function evidence in investigations of adult-onset Mendelian diseases.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
33
|
McCandlish DM. Long-term evolution on complex fitness landscapes when mutation is weak. Heredity (Edinb) 2018; 121:449-465. [PMID: 30232363 PMCID: PMC6180110 DOI: 10.1038/s41437-018-0142-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
Understanding evolution on complex fitness landscapes is difficult both because of the large dimensionality of sequence space and the stochasticity inherent to population-genetic processes. Here, I present an integrated suite of mathematical tools for understanding evolution on time-invariant fitness landscapes when mutations occur sufficiently rarely that the population is typically monomorphic and evolution can be modeled as a sequence of well-separated fixation events. The basic intuition behind this suite of tools is that surrounding any particular genotype lies a region of the fitness landscape that is easy to evolve to, while other pieces of the fitness landscape are difficult to evolve to (due to distance, being across a fitness valley, etc.). I propose a rigorous definition for this "dynamical neighborhood" of a genotype which captures several aspects of the distribution of waiting times to evolve from one genotype to another. The neighborhood structure of the landscape as a whole can be summarized as a matrix, and I show how this matrix can be used to approximate the expected waiting time for certain evolutionary events to occur and to provide an intuitive interpretation to existing formal results on the index of dispersion of the molecular clock.
Collapse
Affiliation(s)
- David M McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
34
|
Cvijović I, Nguyen Ba AN, Desai MM. Experimental Studies of Evolutionary Dynamics in Microbes. Trends Genet 2018; 34:693-703. [PMID: 30025666 PMCID: PMC6467257 DOI: 10.1016/j.tig.2018.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
Evolutionary dynamics in laboratory microbial evolution experiments can be surprisingly complex. In the past two decades, observations of these dynamics have challenged simple models of adaptation and have shown that clonal interference, hitchhiking, ecological diversification, and contingency are widespread. In recent years, advances in high-throughput strain maintenance and phenotypic assays, the dramatically reduced cost of genome sequencing, and emerging methods for lineage barcoding have made it possible to observe evolutionary dynamics at unprecedented resolution. These new methods can now begin to provide detailed measurements of key aspects of fitness landscapes and of evolutionary outcomes across a range of systems. These measurements can highlight challenges to existing theoretical models and guide new theoretical work towards the complications that are most widely important.
Collapse
Affiliation(s)
- Ivana Cvijović
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
35
|
Dolan PT, Whitfield ZJ, Andino R. Mechanisms and Concepts in RNA Virus Population Dynamics and Evolution. Annu Rev Virol 2018; 5:69-92. [PMID: 30048219 DOI: 10.1146/annurev-virology-101416-041718] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA viruses are unique in their evolutionary capacity, exhibiting high mutation rates and frequent recombination. They rapidly adapt to environmental changes, such as shifts in immune pressure or pharmacological challenge. The evolution of RNA viruses has been brought into new focus with the recent developments of genetic and experimental tools to explore and manipulate the evolutionary dynamics of viral populations. These studies have uncovered new mechanisms that enable viruses to overcome evolutionary challenges in the environment and have emphasized the intimate relationship of viral populations with evolution. Here, we review some of the emerging viral and host mechanisms that underlie the evolution of RNA viruses. We also discuss new studies that demonstrate that the relationship between evolutionary dynamics and virus biology spans many spatial and temporal scales, affecting transmission dynamics within and between hosts as well as pathogenesis.
Collapse
Affiliation(s)
- Patrick T Dolan
- Department of Biology, Stanford University, Stanford, California 94305, USA.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA;
| | - Zachary J Whitfield
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA;
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
36
|
LaBar T, Adami C. Evolution of drift robustness in small populations. Nat Commun 2017; 8:1012. [PMID: 29044114 PMCID: PMC5647343 DOI: 10.1038/s41467-017-01003-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
Most mutations are deleterious and cause a reduction in population fitness known as the mutational load. In small populations, weakened selection against slightly-deleterious mutations results in an additional fitness reduction. Many studies have established that populations can evolve a reduced mutational load by evolving mutational robustness, but it is uncertain whether small populations can evolve a reduced susceptibility to drift-related fitness declines. Here, using mathematical modeling and digital experimental evolution, we show that small populations do evolve a reduced vulnerability to drift, or ‘drift robustness’. We find that, compared to genotypes from large populations, genotypes from small populations have a decreased likelihood of small-effect deleterious mutations, thus causing small-population genotypes to be drift-robust. We further show that drift robustness is not adaptive, but instead arises because small populations can only maintain fitness on drift-robust fitness peaks. These results have implications for genome evolution in organisms with small effective population sizes. Genetic drift can reduce fitness in small populations by counteracting selection against deleterious mutations. Here, LaBar and Adami demonstrate through a mathematical model and simulations that small populations tend to evolve to drift-robust fitness peaks, which have a low likelihood of slightly-deleterious mutations.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Adami
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA. .,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA. .,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
37
|
Amitai A, Mesin L, Victora GD, Kardar M, Chakraborty AK. A Population Dynamics Model for Clonal Diversity in a Germinal Center. Front Microbiol 2017; 8:1693. [PMID: 28955307 PMCID: PMC5600966 DOI: 10.3389/fmicb.2017.01693] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Germinal centers (GCs) are micro-domains where B cells mature to develop high affinity antibodies. Inside a GC, B cells compete for antigen and T cell help, and the successful ones continue to evolve. New experimental results suggest that, under identical conditions, a wide spectrum of clonal diversity is observed in different GCs, and high affinity B cells are not always the ones selected. We use a birth, death and mutation model to study clonal competition in a GC over time. We find that, like all evolutionary processes, diversity loss is inherently stochastic. We study two selection mechanisms, birth-limited and death limited selection. While death limited selection maintains diversity and allows for slow clonal homogenization as affinity increases, birth limited selection results in more rapid takeover of successful clones. Finally, we qualitatively compare our model to experimental observations of clonal selection in mice.
Collapse
Affiliation(s)
- Assaf Amitai
- Chemical Engineering, Massachusetts Institute of TechnologyCambridge, MA, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridge, MA, United States.,Ragon Institute of MGH, MIT and HarvardCambridge, MA, United States
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, Rockefeller UniversityNew York, NY, United States
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, Rockefeller UniversityNew York, NY, United States
| | - Mehran Kardar
- Physics, Massachusetts Institute of TechnologyCambridge, MA, United States
| | - Arup K Chakraborty
- Chemical Engineering, Massachusetts Institute of TechnologyCambridge, MA, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridge, MA, United States.,Ragon Institute of MGH, MIT and HarvardCambridge, MA, United States.,Biological Engineering and Chemistry, Massachusetts Institute of TechnologyCambridge, MA, United States
| |
Collapse
|
38
|
Christie JR, Beekman M. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes. Mol Biol Evol 2017; 34:677-691. [PMID: 28025277 PMCID: PMC5896580 DOI: 10.1093/molbev/msw266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution.
Collapse
Affiliation(s)
- Joshua R Christie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Madeleine Beekman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Ho EKH, Agrawal AF. Aging asexual lineages and the evolutionary maintenance of sex. Evolution 2017; 71:1865-1875. [PMID: 28444897 DOI: 10.1111/evo.13260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/24/2022]
Abstract
Finite populations of asexual and highly selfing species suffer from a reduced efficacy of selection. Such populations are thought to decline in fitness over time due to accumulating slightly deleterious mutations or failing to adapt to changing conditions. These within-population processes that lead nonrecombining species to extinction may help maintain sex and outcrossing through species level selection. Although inefficient selection is proposed to elevate extinction rates over time, previous models of species selection for sex assumed constant diversification rates. For sex to persist, classic models require that asexual species diversify at rates lower than sexual species; the validity of this requirement is questionable, both conceptually and empirically. We extend past models by allowing asexual lineages to decline in diversification rates as they age, that is nonrecombining lineages "senesce" in diversification rates. At equilibrium, senescing diversification rates maintain sex even when asexual lineages, at young ages, diversify faster than their sexual progenitors. In such cases, the age distribution of asexual lineages contains a peak at intermediate values rather than showing the exponential decline predicted by the classic model. Coexistence requires only that the average rate of diversification in asexuals be lower than that of sexuals.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
40
|
Dynamics and Fate of Beneficial Mutations Under Lineage Contamination by Linked Deleterious Mutations. Genetics 2017; 205:1305-1318. [PMID: 28100591 DOI: 10.1534/genetics.116.194597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Beneficial mutations drive adaptive evolution, yet their selective advantage does not ensure their fixation. Haldane's application of single-type branching process theory showed that genetic drift alone could cause the extinction of newly arising beneficial mutations with high probability. With linkage, deleterious mutations will affect the dynamics of beneficial mutations and might further increase their extinction probability. Here, we model the lineage dynamics of a newly arising beneficial mutation as a multitype branching process. Our approach accounts for the combined effects of drift and the stochastic accumulation of linked deleterious mutations, which we call lineage contamination We first study the lineage-contamination phenomenon in isolation, deriving dynamics and survival probabilities (the complement of extinction probabilities) of beneficial lineages. We find that survival probability is zero when [Formula: see text] where U is deleterious mutation rate and [Formula: see text] is the selective advantage of the beneficial mutation in question, and is otherwise depressed below classical predictions by a factor bounded from below by [Formula: see text] We then put the lineage contamination phenomenon into the context of an evolving population by incorporating the effects of background selection. We find that, under the combined effects of lineage contamination and background selection, ensemble survival probability is never zero but is depressed below classical predictions by a factor bounded from below by [Formula: see text] where [Formula: see text] is mean selective advantage of beneficial mutations, and [Formula: see text] This factor, and other bounds derived from it, are independent of the fitness effects of deleterious mutations. At high enough mutation rates, lineage contamination can depress fixation probabilities to values that approach zero. This fact suggests that high mutation rates can, perhaps paradoxically, (1) alleviate competition among beneficial mutations, or (2) potentially even shut down the adaptive process. We derive critical mutation rates above which these two events become likely.
Collapse
|
41
|
Limiting fitness distributions in evolutionary dynamics. J Theor Biol 2017; 416:68-80. [PMID: 28069447 DOI: 10.1016/j.jtbi.2017.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 11/24/2022]
Abstract
Natural selection works on variation in fitness, but how should we measure "variation" to predict the rate of future evolution? Fisher's fundamental theorem of natural selection provides the short-run answer: the instantaneous rate of growth of a population's mean fitness is its variance in fitness. This identity captures an important feature of the evolutionary process, but, because it does not specify how the variance itself evolves in time, it cannot be used to predict evolutionary dynamics in the long run. In this paper we reconsider the problem of computing evolutionary trajectories from limited statistical information. We identify the feature of fitness distributions which controls their late-time evolution: their (suitably defined) tail indices. We show that the location, scale and shape of the fitness distribution can be predicted far into the future from the measurement of this tail index at some initial time. Unlike the "fitness waves" studied in the literature, this pattern encompasses both positive and negative selection and is not restricted to rapidly adapting populations. Our results are well supported by numerical simulations, both from the Wright-Fisher model and from a less structured genetic algorithm.
Collapse
|
42
|
Xiao Y, Rouzine IM, Bianco S, Acevedo A, Goldstein EF, Farkov M, Brodsky L, Andino R. RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence. Cell Host Microbe 2016; 19:493-503. [PMID: 27078068 DOI: 10.1016/j.chom.2016.03.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/13/2016] [Accepted: 03/25/2016] [Indexed: 10/21/2022]
Abstract
Mutation and recombination are central processes driving microbial evolution. A high mutation rate fuels adaptation but also generates deleterious mutations. Recombination between two different genomes may resolve this paradox, alleviating effects of clonal interference and purging deleterious mutations. Here we demonstrate that recombination significantly accelerates adaptation and evolution during acute virus infection. We identified a poliovirus recombination determinant within the virus polymerase, mutation of which reduces recombination rates without altering replication fidelity. By generating a panel of variants with distinct mutation rates and recombination ability, we demonstrate that recombination is essential to enrich the population in beneficial mutations and purge it from deleterious mutations. The concerted activities of mutation and recombination are key to virus spread and virulence in infected animals. These findings inform a mathematical model to demonstrate that poliovirus adapts most rapidly at an optimal mutation rate determined by the trade-off between selection and accumulation of detrimental mutations.
Collapse
Affiliation(s)
- Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Igor M Rouzine
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Simone Bianco
- Department of Industrial and Applied Genomics, Accelerated Discovery Lab, IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099, USA
| | - Ashley Acevedo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Faul Goldstein
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mikhail Farkov
- Tauber Bioinformatics Research Center and Department of Evolutionary and Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center and Department of Evolutionary and Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
43
|
Bertram J, Gomez K, Masel J. Predicting patterns of long-term adaptation and extinction with population genetics. Evolution 2016; 71:204-214. [PMID: 27868195 DOI: 10.1111/evo.13116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/17/2016] [Indexed: 02/04/2023]
Abstract
Population genetics struggles to model extinction; standard models track the relative rather than absolute fitness of genotypes, while the exceptions describe only the short-term transition from imminent doom to evolutionary rescue. But extinction can result from failure to adapt not only to catastrophes, but also to a backlog of environmental challenges. We model long-term adaptation to long series of small challenges, where fitter populations reach higher population sizes. The population's long-term fitness dynamic is well approximated by a simple stochastic Markov chain model. Long-term persistence occurs when the rate of adaptation exceeds the rate of environmental deterioration for some genotypes. Long-term persistence times are consistent with typical fossil species persistence times of several million years. Immediately preceding extinction, fitness declines rapidly, appearing as though a catastrophe disrupted a stably established population, even though gradual evolutionary processes are responsible. New populations go through an establishment phase where, despite being demographically viable, their extinction risk is elevated. Should the population survive long enough, extinction risk later becomes constant over time.
Collapse
Affiliation(s)
- J Bertram
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | - K Gomez
- Program in Applied Mathematics, University of Arizona, Tucson, Arizona, 85721
| | - J Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| |
Collapse
|
44
|
Jain K, John S. Deterministic evolution of an asexual population under the action of beneficial and deleterious mutations on additive fitness landscapes. Theor Popul Biol 2016; 112:117-125. [PMID: 27619485 DOI: 10.1016/j.tpb.2016.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/23/2016] [Accepted: 08/31/2016] [Indexed: 11/27/2022]
Abstract
We study a continuous time model for the frequency distribution of an infinitely large asexual population in which both beneficial and deleterious mutations occur and fitness is additive. When beneficial mutations are ignored, the exact solution for the frequency distribution is known to be a Poisson distribution. Here we include beneficial mutations and obtain exact expressions for the frequency distribution at all times using an eigenfunction expansion method. We find that the stationary distribution is non-Poissonian and related to the Bessel function of the first kind. We also provide suitable approximations for the stationary distribution and the time to relax to the steady state. Our exact results, especially at mutation-selection equilibrium, can be useful in developing semi-deterministic approaches to understand stochastic evolution.
Collapse
Affiliation(s)
- Kavita Jain
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.
| | - Sona John
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
45
|
Hallatschek O, Geyrhofer L. Collective Fluctuations in the Dynamics of Adaptation and Other Traveling Waves. Genetics 2016; 202:1201-27. [PMID: 26819246 PMCID: PMC4788118 DOI: 10.1534/genetics.115.181271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022] Open
Abstract
The dynamics of adaptation are difficult to predict because it is highly stochastic even in large populations. The uncertainty emerges from random genetic drift arising in a vanguard of particularly fit individuals of the population. Several approaches have been developed to analyze the crucial role of genetic drift on the expected dynamics of adaptation, including the mean fitness of the entire population, or the fate of newly arising beneficial deleterious mutations. However, little is known about how genetic drift causes fluctuations to emerge on the population level, where it becomes palpable as variations in the adaptation speed and the fitness distribution. Yet these phenomena control the decay of genetic diversity and variability in evolution experiments and are key to a truly predictive understanding of evolutionary processes. Here, we show that correlations induced by these emergent fluctuations can be computed at any arbitrary order by a suitable choice of a dynamical constraint. The resulting linear equations exhibit fluctuation-induced terms that amplify short-distance correlations and suppress long-distance ones. These terms, which are in general not small, control the decay of genetic diversity and, for wave-tip dominated ("pulled") waves, lead to anticorrelations between the tip of the wave and the lagging bulk of the population. While it is natural to consider the process of adaptation as a branching random walk in fitness space subject to a constraint (due to finite resources), we show that other traveling wave phenomena in ecology and evolution likewise fall into this class of constrained branching random walks. Our methods, therefore, provide a systematic approach toward analyzing fluctuations in a wide range of population biological processes, such as adaptation, genetic meltdown, species invasions, or epidemics.
Collapse
Affiliation(s)
- Oskar Hallatschek
- Biophysics and Evolutionary Dynamics Group, Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720-3220
| | - Lukas Geyrhofer
- Biophysics and Evolutionary Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, 33077 Göttingen, Germany
| |
Collapse
|
46
|
Koelle K, Rasmussen DA. The effects of a deleterious mutation load on patterns of influenza A/H3N2's antigenic evolution in humans. eLife 2015; 4:e07361. [PMID: 26371556 PMCID: PMC4611170 DOI: 10.7554/elife.07361] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/14/2015] [Indexed: 11/19/2022] Open
Abstract
Recent phylogenetic analyses indicate that RNA virus populations carry a significant deleterious mutation load. This mutation load has the potential to shape patterns of adaptive evolution via genetic linkage to beneficial mutations. Here, we examine the effect of deleterious mutations on patterns of influenza A subtype H3N2's antigenic evolution in humans. By first analyzing simple models of influenza that incorporate a mutation load, we show that deleterious mutations, as expected, act to slow the virus's rate of antigenic evolution, while making it more punctuated in nature. These models further predict three distinct molecular pathways by which antigenic cluster transitions occur, and we find phylogenetic patterns consistent with each of these pathways in influenza virus sequences. Simulations of a more complex phylodynamic model further indicate that antigenic mutations act in concert with deleterious mutations to reproduce influenza's spindly hemagglutinin phylogeny, co-circulation of antigenic variants, and high annual attack rates. DOI:http://dx.doi.org/10.7554/eLife.07361.001 Each year, up to 15% of the world's population experience symptoms of an influenza infection, also commonly known as flu. The most common culprit is a strain of the virus called influenza type A subtype H3N2. One reason that so many people become infected each year is that this virus evolves rapidly. Within a few years, proteins on the surface of the virus known as antigens become less recognizable to the immune system of a person who has been previously infected. This means that the person can become ill with the virus again because their immune system cannot mount an effective response to the evolved virus strain. Influenza virus strains evolve rapidly because their genetic material accumulates mutations quickly. Although some of these mutations are beneficial to the virus, other mutations are harmful and reduce the ability of the virus to spread. Sometimes beneficial mutations may occur alongside harmful ones, but it is not known how the harmful mutations affect the evolution of the virus. Here, Koelle and Rasmussen used computer models of H3N2 influenza to examine the effect of harmful mutations on the evolution of this virus population. The models show that harmful mutations limit how quickly the antigens can evolve. Also, the presence of these harmful mutations effectively acts as a sieve: they allow only large changes in the antigens to establish in the virus population. The models suggest that there are three routes by which large changes in the antigens on H3N2 viruses may occur. The first is by a single mutation that has a big effect on the antigens in viruses that only carry a few harmful mutations, but these large mutations would not happen very often. Another route may be through more common mutations that have only a small or moderate benefit, which would allow the virus to become more common in the population before it acquires a beneficial mutation with a much greater effect. The third possibility is that a large beneficial mutation may arise in viruses that have many harmful mutations. These harmful mutations may initially limit the ability of the virus to spread, but over time, some of these harmful mutations may then be lost. Koelle and Rasmussen found that the computer models could recreate the patterns of virus evolution that have been observed in real strains of H3N2. Researchers use predictions of influenza evolution to help them decide which virus strains should be included in flu vaccines each year. Koelle and Rasmussen findings indicate that harmful mutations should be considered when making these predictions. DOI:http://dx.doi.org/10.7554/eLife.07361.002
Collapse
Affiliation(s)
- Katia Koelle
- Department of Biology, Duke University, Durham, United States.,Fogarty International Center, National Institutes of Health, Bethesda, United States
| | - David A Rasmussen
- Department of Biology, Duke University, Durham, United States.,Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| |
Collapse
|
47
|
Rockah-Shmuel L, Tóth-Petróczy Á, Tawfik DS. Systematic Mapping of Protein Mutational Space by Prolonged Drift Reveals the Deleterious Effects of Seemingly Neutral Mutations. PLoS Comput Biol 2015; 11:e1004421. [PMID: 26274323 PMCID: PMC4537296 DOI: 10.1371/journal.pcbi.1004421] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022] Open
Abstract
Systematic mappings of the effects of protein mutations are becoming increasingly popular. Unexpectedly, these experiments often find that proteins are tolerant to most amino acid substitutions, including substitutions in positions that are highly conserved in nature. To obtain a more realistic distribution of the effects of protein mutations, we applied a laboratory drift comprising 17 rounds of random mutagenesis and selection of M.HaeIII, a DNA methyltransferase. During this drift, multiple mutations gradually accumulated. Deep sequencing of the drifted gene ensembles allowed determination of the relative effects of all possible single nucleotide mutations. Despite being averaged across many different genetic backgrounds, about 67% of all nonsynonymous, missense mutations were evidently deleterious, and an additional 16% were likely to be deleterious. In the early generations, the frequency of most deleterious mutations remained high. However, by the 17th generation, their frequency was consistently reduced, and those remaining were accepted alongside compensatory mutations. The tolerance to mutations measured in this laboratory drift correlated with sequence exchanges seen in M.HaeIII’s natural orthologs. The biophysical constraints dictating purging in nature and in this laboratory drift also seemed to overlap. Our experiment therefore provides an improved method for measuring the effects of protein mutations that more closely replicates the natural evolutionary forces, and thereby a more realistic view of the mutational space of proteins. Understanding and predicting the effects of single nucleotide polymorphisms (SNPs) is of fundamental importance in many fields. Systematic experimental mappings of the effects of such mutations within a given gene/protein comprise an essential experimental tool for determining protein function and for refining models of protein evolution, as well as an important resource for improving prediction algorithms. Here, we present the results of a laboratory system that mimics the manner by which protein sequences diverge in nature: a prolonged process of gradually accumulating random mutations that retain the protein’s structure and function. The change in frequencies of mutations over generations, as obtained by deep sequencing, enabled us to assess the relative effects of all possible SNPs at the background of an accumulating number of mutations. Compared to previous reports, we found that > 80% of all possible amino acid exchanges have potential deleterious effects, with 67% being clearly deleterious. Tolerance vs. purging of mutations in our prolonged drift also showed better correlation with natural diversity. Overall, our experimental setup provides a better understanding of how protein sequences diverge in nature, plus a new basis for improving the prediction accuracy of the effects of protein mutations, and specifically of SNPs.
Collapse
Affiliation(s)
- Liat Rockah-Shmuel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ágnes Tóth-Petróczy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S. Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
48
|
Otten ABC, Smeets HJM. Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing. Hum Reprod Update 2015; 21:671-89. [PMID: 25976758 DOI: 10.1093/humupd/dmv024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The endosymbiosis of an alpha-proteobacterium and a eubacterium a billion years ago paved the way for multicellularity and enabled eukaryotes to flourish. The selective advantage for the host was the acquired ability to generate large amounts of intracellular hydrogen-dependent adenosine triphosphate. The price was increased reactive oxygen species (ROS) inside the eukaryotic cell, causing high mutation rates of the mitochondrial DNA (mtDNA). According to the Muller's ratchet theory, this accumulation of mutations in asexually transmitted mtDNA would ultimately lead to reduced reproductive fitness and eventually extinction. However, mitochondria have persisted over the course of evolution, initially due to a rapid, extreme evolutionary reduction of the mtDNA content. After the phylogenetic divergence of eukaryotes into animals, fungi and plants, differences in evolution of the mtDNA occurred with different adaptations for coping with the mutation burden within these clades. As a result, mitochondrial evolutionary mechanisms have had a profound effect on human adaptation, fertility, healthy reproduction, mtDNA disease manifestation and transmission and ageing. An understanding of these mechanisms might elucidate novel approaches for treatment and prevention of mtDNA disease. METHODS The scientific literature was investigated to determine how mtDNA evolved in animals, plants and fungi. Furthermore, the different mechanisms of mtDNA inheritance and of balancing Muller's ratchet in these species were summarized together with the consequences of these mechanisms for human health and reproduction. RESULTS Animal, plant and fungal mtDNA have evolved differently. Animals have compact genomes, little recombination, a stable number of genes and a high mtDNA copy number, whereas plants have larger genomes with variable gene counts, a low mtDNA copy number and many recombination events. Fungal mtDNA is somewhere in between. In plants, the mtDNA mutation rate is kept low by effective ROS defence and efficient recombination-mediated mtDNA repair. In animal mtDNA, these mechanisms are not or less well-developed and the detrimental mutagenesis events are controlled by a high mtDNA copy number in combination with a genetic bottleneck and purifying selection during transmission. The mtDNA mutation rates in animals are higher than in plants, which allow mobile animals to adapt more rapidly to various environmental conditions in terms of energy production, whereas static plants do not have this need. Although at the level of the species, these mechanisms have been extremely successful, they can have adverse effects for the individual, resulting, in humans, in severe or unpredictably segregating mtDNA diseases, as well as fertility problems and unhealthy ageing. CONCLUSIONS Understanding the forces and processes that underlie mtDNA evolution among different species increases our knowledge on the detrimental consequences that individuals can have from these evolutionary end-points. Alternative outcomes in animals, fungi and plants will lead to a better understanding of the inheritance of mtDNA disorders and mtDNA-related fertility problems. These will allow the development of options to ameliorate, cure and/or prevent mtDNA diseases and mtDNA-related fertility problems.
Collapse
Affiliation(s)
- Auke B C Otten
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
49
|
Abstract
Biological systems are modular, and this modularity affects the evolution of biological systems over time and in different environments. We here develop a theory for the dynamics of evolution in a rugged, modular fitness landscape. We show analytically how horizontal gene transfer couples to the modularity in the system and leads to more rapid rates of evolution at short times. The model, in general, analytically demonstrates a selective pressure for the prevalence of modularity in biology. We use this model to show how the evolution of the influenza virus is affected by the modularity of the proteins that are recognized by the human immune system. Approximately 25% of the observed rate of fitness increase of the virus could be ascribed to a modular viral landscape.
Collapse
Affiliation(s)
- Jeong-Man Park
- Department of Physics & Astronomy Rice University, Houston, TX 77005-1892, USA. Department of Physics, The Catholic University of Korea, Bucheon 420-743, Korea
| | | | | | | |
Collapse
|
50
|
The evolutionarily stable distribution of fitness effects. Genetics 2015; 200:321-9. [PMID: 25762525 DOI: 10.1534/genetics.114.173815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/07/2015] [Indexed: 11/18/2022] Open
Abstract
The distribution of fitness effects (DFE) of new mutations is a key parameter in determining the course of evolution. This fact has motivated extensive efforts to measure the DFE or to predict it from first principles. However, just as the DFE determines the course of evolution, the evolutionary process itself constrains the DFE. Here, we analyze a simple model of genome evolution in a constant environment in which natural selection drives the population toward a dynamic steady state where beneficial and deleterious substitutions balance. The distribution of fitness effects at this steady state is stable under further evolution and provides a natural null expectation for the DFE in a population that has evolved in a constant environment for a long time. We calculate how the shape of the evolutionarily stable DFE depends on the underlying population genetic parameters. We show that, in the absence of epistasis, the ratio of beneficial to deleterious mutations of a given fitness effect obeys a simple relationship independent of population genetic details. Finally, we analyze how the stable DFE changes in the presence of a simple form of diminishing-returns epistasis.
Collapse
|