1
|
Nadal Bigas J, Fiers M, van der Wal F, Willems LAJ, Willemsen V, Nijveen H, Angenent GC, Immink RGH. The PEBP genes FLOWERING LOCUS T and TERMINAL FLOWER 1 modulate seed dormancy and size. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1049-1067. [PMID: 39827301 PMCID: PMC11850975 DOI: 10.1093/jxb/erae466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The phosphatidylethanolamine-binding protein (PEBP) family members FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) are major regulators of plant reproduction. In Arabidopsis, the FT/TFL1 balance defines the timing of floral transition and the determination of inflorescence meristem identity. However, emerging studies have elucidated a plethora of previously unknown functions for these genes in various physiological processes. Here, we characterized potential roles in seed size and dormancy of FT and TFL1 in Arabidopsis thaliana using CRISPR mutants and reporter analysis. Our findings unveiled a role for TFL1 in seed dormancy while confirming the role of FT in regulating this trait. We showed that the interplay between these two genes in seed dormancy is antagonistic, mirroring their roles in flowering time and inflorescence architecture. Analysis of reporter lines demonstrated that FT and TFL1 are partly co-expressed in seeds. Finally, we showed that total seed yield is affected in these mutants. Together, our results highlight the versatility of these two genes beyond their canonical functions. The impact of FT and TFL1 on seed characteristics emphasizes the significance of approaching gene studies from various perspectives, enabling the identification of multifaceted molecular factors that could play a major role in shaping the future of agriculture.
Collapse
Affiliation(s)
- Judit Nadal Bigas
- Laboratory of Molecular Biology, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Martijn Fiers
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Froukje van der Wal
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Leo A J Willems
- Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
2
|
Whisnant ED, Keith C, Smieska L, Chia JC, Bekele-Alemu A, Vatamaniuk OK, VanBuren R, Ligaba-Osena A. Biggest of tinies: natural variation in seed size and mineral distribution in the ancient crop tef [ Eragrostis tef (Zucc.) Trotter]. FRONTIERS IN PLANT SCIENCE 2024; 15:1485819. [PMID: 39726428 PMCID: PMC11669528 DOI: 10.3389/fpls.2024.1485819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Tef [Eragrostis tef (Zucc.) Trotter] is the major staple crop for millions of people in Ethiopia and Eritrea and is believed to have been domesticated several thousand years ago. Tef has the smallest grains of all the cereals, which directly impacts its productivity and presents numerous challenges to its cultivation. In this study, we assessed the natural variation in seed size of 189 tef and 11 accessions of its wild progenitor Indian lovegrass (Eragrostis pilosa (L.) P. Beauv.) and explored the mineral distribution of representative accessions. Our findings revealed significant natural variation in seed size and mineral concentration among both the tef and E. pilosa accessions. We observed significant variation in seed length, seed width, and seed area among the accessions of both Eragrostis spp. we analyzed. Using representative accessions of both species, we also found significant variation in 1000-grain weight. The observed variation in seed size attributes prompted us to use comparative genomics to identify seed size regulating genes based on the well-studied and closely related monocot cereal rice [Oryza sativa (L.)]. Using this approach, we identified putative orthologous genes in the tef genome that belong to a number of key pathways known to regulate seed size in rice. Phylogenetic analysis of putative tef orthologs of ubiquitin-proteasome, G-protein, MAPK, and brassinosteroid (BR)-family genes indicate significant similarity to seed size regulating genes in rice and other cereals. Because tef is known to be more nutrient-dense than other more common cereals such as rice, wheat, and maize, we also studied the mineral concentration of selected accessions using ICP-OES and explored their distribution within the seeds using synchrotron-based X-ray fluorescence (SXRF) microscopy. The findings showed significant variation in seed mineral concentration and mineral distribution among the selected accessions of both Eragrostis spp. This study highlights the natural variation in seed size attributes, mineral concentration, and distribution, while establishing the basis for understanding the genetic mechanisms regulating these traits. We hope our findings will lead to a better understanding of the evolution of tef at the genetic level and for the development of elite tef cultivars to improve seed size, yield, and quality of the grains.
Collapse
Affiliation(s)
- Eric D. Whisnant
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Christian Keith
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Louisa Smieska
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, United States
| | - Ju-Chen Chia
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Olena K. Vatamaniuk
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
3
|
Brightly WH, Bedoya AM, Carlson MM, Rottersman MG, Strömberg CAE. Correlated evolution of dispersal traits and habitat preference in the melicgrasses. AMERICAN JOURNAL OF BOTANY 2024; 111:e16406. [PMID: 39294109 DOI: 10.1002/ajb2.16406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 09/20/2024]
Abstract
PREMISE Seed dispersal is a critical process impacting individual plants and their communities. Plants have evolved numerous strategies and structures to disperse their seeds, but the evolutionary drivers of this diversity remain poorly understood in most lineages. We tested the hypothesis that the evolution of wind dispersal traits within the melicgrasses (Poaceae: Meliceae Link ex Endl.) was correlated with occupation of open and disturbed habitats. METHODS To evaluate wind dispersal potential, we collected seed dispersal structures (diaspores) from 24 melicgrass species and measured falling velocity and estimated dispersal distances. Species' affinity for open and disturbed habitats were recorded using georeferenced occurrence records and land cover maps. To test whether habitat preference and dispersal traits were correlated, we used phylogenetically informed multilevel models. RESULTS Melicgrasses display several distinct morphologies associated with wind dispersal, suggesting likely convergence. Open habitat taxa had slower-falling diaspores, consistent with increased wind dispersal potential. However, their shorter stature meant that dispersal distances, at a given wind speed, were not higher than those of their forest-occupying relatives. Species with affinities for disturbed sites had slower-falling diaspores and greater wind dispersal distances, largely explained by lighter diaspores. CONCLUSIONS Our results are consistent with the hypothesized evolutionary relationship between habitat preference and dispersal strategy. However, phylogenetic inertia and other plant functions (e.g., water conservation) likely shaped dispersal trait evolution in melicgrasses. It remains unclear if dispersal trait changes were precipitated by or predated changing habitat preferences. Nevertheless, our study provides promising results and a framework for disentangling dispersal strategy evolution.
Collapse
Affiliation(s)
- William H Brightly
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Burke Museum of Natural History and Culture, Seattle, Washington, 98195, USA
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ana M Bedoya
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, 10458, New York, USA
| | - McKenzie M Carlson
- Burke Museum of Natural History and Culture, Seattle, Washington, 98195, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Maria G Rottersman
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Burke Museum of Natural History and Culture, Seattle, Washington, 98195, USA
| | - Caroline A E Strömberg
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Burke Museum of Natural History and Culture, Seattle, Washington, 98195, USA
| |
Collapse
|
4
|
Sinjushin A, Ploshinskaya M, Sytin A. Reproductive Morphology and Success in Annual versus Perennial Legumes: Evidence from Astragalus and the Fabeae (Papilionoideae). PLANTS (BASEL, SWITZERLAND) 2024; 13:2380. [PMID: 39273864 PMCID: PMC11397103 DOI: 10.3390/plants13172380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
The third largest angiosperm family, Leguminosae, displays a broad range of reproductive strategies and has an exceptional practical value. Whereas annual legume species are mostly planted as crops, there is a significant interest in breeding and cultivating perennials. It is therefore of importance to compare reproductive traits, their interactions and the resulting productivity between related annual and perennial species. Two highly variable taxa were chosen for this purpose, the Fabeae tribe, including numerous temperate crops, and the largest angiosperm 'megagenus' Astragalus. A dataset of quantitative reproductive traits was composed of both originally obtained and previously published data. As a result of statistical analysis, we found that perennials in both groups tend to produce more flowers per axillary racemose inflorescence as well as more ovules per carpel. Perennial Astragalus also have larger flowers. Only a part of the developing flowers and ovules gives rise to mature pods and seeds. This difference is especially pronounced in small populations of rare and threatened perennials. Numerous reasons underlie the gap between potential and real productivity, which may be potentially bridged in optimal growing conditions.
Collapse
Affiliation(s)
- Andrey Sinjushin
- Legumes Department, Institute of Field and Vegetable Crops, 21101 Novi Sad, Serbia
| | - Maria Ploshinskaya
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Andrey Sytin
- Herbarium of Higher Plants, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| |
Collapse
|
5
|
Bastias CC, Estarague A, Vile D, Gaignon E, Lee CR, Exposito-Alonso M, Violle C, Vasseur F. Ecological trade-offs drive phenotypic and genetic differentiation of Arabidopsis thaliana in Europe. Nat Commun 2024; 15:5185. [PMID: 38890286 PMCID: PMC11189578 DOI: 10.1038/s41467-024-49267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Plant diversity is shaped by trade-offs between traits related to competitive ability, propagule dispersal, and stress resistance. However, we still lack a clear understanding of how these trade-offs influence species distribution and population dynamics. In Arabidopsis thaliana, recent genetic analyses revealed a group of cosmopolitan genotypes that successfully recolonized Europe from its center after the last glaciation, excluding older (relict) lineages from the distribution except for their north and south margins. Here, we tested the hypothesis that cosmopolitans expanded due to higher colonization ability, while relicts persisted at the margins due to higher tolerance to competition and/or stress. We compared the phenotypic and genetic differentiation between 71 European genotypes originating from the center, and the south and north margins. We showed that a trade-off between plant fecundity and seed mass shapes the differentiation of A. thaliana in Europe, suggesting that the success of the cosmopolitan groups could be explained by their high dispersal ability. However, at both north and south margins, we found evidence of selection for alleles conferring low dispersal but highly competitive and stress-resistance abilities. This study sheds light on the role of ecological trade-offs as evolutionary drivers of the distribution and dynamics of plant populations.
Collapse
Affiliation(s)
- Cristina C Bastias
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
- Área de Ecología, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Córdoba, Spain.
| | - Aurélien Estarague
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Elza Gaignon
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology & Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | | | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
6
|
Baraniecka P, Seibt W, Groten K, Kessler D, McGale E, Gase K, Baldwin IT, Pannell JR. Prezygotic mate selection is only partially correlated with the expression of NaS-like RNases and affects offspring phenotypes. THE NEW PHYTOLOGIST 2024; 242:2832-2844. [PMID: 38581189 DOI: 10.1111/nph.19741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Nicotiana attenuata styles preferentially select pollen from among accessions with corresponding expression patterns of NaS-like-RNases (SLRs), and the postpollination ethylene burst (PPEB) is an accurate predictor of seed siring success. However, the ecological consequences of mate selection, its effect on the progeny, and the role of SLRs in the control of ethylene signaling remain unknown. We explored the link between the magnitude of the ethylene burst and expression of the SLRs in a set of recombinant inbred lines (RILs), dissected the genetic underpinnings of mate selection through genome-wide association study (GWAS), and examined its outcome for phenotypes in the next generation. We found that high levels of PPEB are associated with the absence of SLR2 in most of the tested RILs. We identified candidate genes potentially involved in the control of mate selection and showed that pollination of maternal genotypes with their favored pollen donors produces offspring with longer roots. When the maternal genotypes are only able to select against nonfavored pollen donors, the selection for such positive traits is abolished. We conclude that plants' ability of mate choice contributes to measurable changes in progeny phenotypes and is thus likely a target of selection.
Collapse
Affiliation(s)
| | - Wibke Seibt
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Karin Groten
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Danny Kessler
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Erica McGale
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Klaus Gase
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Ian T Baldwin
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
7
|
Laitinen RAE, Nikoloski Z. Strategies to identify and dissect trade-offs in plants. Mol Ecol 2024; 33:e16780. [PMID: 36380694 DOI: 10.1111/mec.16780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
Trade-offs between traits arise and reflect constraints imposed by the environment and physicochemical laws. Trade-off situations are expected to be highly relevant for sessile plants, which have to respond to changes in the environment to ensure survival. Despite increasing interest in determining the genetic and molecular basis of plant trade-offs, there are still gaps and differences with respect to how trade-offs are defined, how they are measured, and how their genetic architecture is dissected. The first step to fill these gaps is to establish what is meant by trade-offs. In this review we provide a classification of the existing definitions of trade-offs according to: (1) the measures used for their quantification, (2) the dependence of trade-offs on environment, and (3) experimental designed used (i.e. a single individual across different environments or a population of individuals in single or multiple environments). We then compare the approaches for quantification of trade-offs based on phenotypic, between-individual, and genetic correlations, and stress the need for developing further quantification indices particularly for trade-offs between multiple traits. Lastly, we highlight the genetic mechanisms underpinning trade-offs and experimental designs that facilitate their discovery in plants, with focus on usage of natural variability. This review also offers a perspective for future research aimed at identification of plant trade-offs, dissection of their genetic architecture, and development of strategies to overcome trade-offs, with applications in crop breeding.
Collapse
Affiliation(s)
- Roosa A E Laitinen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
8
|
Akhtar S, Ahmed R, Begum K, Das A, Saikia S, Laskar RA, Banu S. Evaluation of morphological traits, biochemical parameters and seeding availability pattern among Citrus limon 'Assam lemon' accessions across Assam. Sci Rep 2024; 14:3886. [PMID: 38365919 PMCID: PMC10873318 DOI: 10.1038/s41598-024-54392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
The Assam lemon is a highly valued Citrus cultivar known for its unique aroma, flavor, and appearance. This study aimed to investigate the morphological, seeding pattern and biochemical variations within 132 populations of Assam lemon from across 22 districts of Assam along with the control samples, with the objective to offer comprehensive understanding that could facilitate the improvement of breeding programs and further improvement of this important cultivar. Clustering based on UPGMA algorithm for morphological and seeding pattern data were analysed at population level, revealed two major clusters, where all the populations of Upper Assam districts were in the same cluster with the original stock (control population). The populations from Tinsukia and Dhemaji districts displayed more close similarities with the control population in comparison to populations of Upper Assam districts. Another interesting observation was regarding flowering patterns, while populations from Upper Assam districts excluding Golaghat district displayed both bisexual and unisexual flowers with less concentration of unisexual flowers, other remaining districts had bisexual and unisexual flowers of almost equal concentration. Unisexual flowers contained only the male reproductive organs with 40 anthers, while bisexual flowers had 36 anthers. Seeding patterns were examined across the districts, and it was found that populations from Tinsukia, Dhemaji, Lakhimpur, Dibrugarh, Jorhat, and the control population exhibited seedless characteristic while populations from other selected districts displayed a combination of seedless and seeded traits. Interestingly, Golaghat district appears as the linking district and showed availability of both seeded and seedless Assam lemon fruit, connecting the regions of Barak valley, Central, Lower, North and Upper Assam. Biochemical analysis showed significant variations across districts, however, the populations from Dhemaji, Tinsukia, Lakhimpur, Dibrugarh, and Jorhat districts displayed similarity with the control population. The study also investigated variability in soil nutrient content revealing substantial variation among the populations studied. This comprehensive investigation provides valuable insights into the morphological, seeding pattern, and biochemical diversity within the Assam lemon cultivar. These findings can be instrumental in breeding programs to enhance the cultivar, particularly in producing high-quality seedless fruits to meet consumer demands.
Collapse
Affiliation(s)
- Suraiya Akhtar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, 781014, India
| | - Raja Ahmed
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, 781014, India
| | - Khaleda Begum
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, 781014, India
| | - Ankur Das
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, 781014, India
| | - Sarat Saikia
- Horticulture Research Station, Assam Agricultural University, Kahikuchi, Guwahati, Assam, 781017, India
| | - Rafiul Amin Laskar
- Department of Botany, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj, Assam, 788723, India
| | - Sofia Banu
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
9
|
Krzyszton M, Sacharowski SP, Manjunath VH, Muter K, Bokota G, Wang C, Plewczyński D, Dobisova T, Swiezewski S. Dormancy heterogeneity among Arabidopsis thaliana seeds is linked to individual seed size. PLANT COMMUNICATIONS 2024; 5:100732. [PMID: 37828740 PMCID: PMC10873894 DOI: 10.1016/j.xplc.2023.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Production of morphologically and physiologically variable seeds is an important strategy that helps plants to survive in unpredictable natural conditions. However, the model plant Arabidopsis thaliana and most agronomically essential crops produce visually homogenous seeds. Using automated phenotype analysis, we observed that small seeds in Arabidopsis tend to have higher primary and secondary dormancy levels than large seeds. Transcriptomic analysis revealed distinct gene expression profiles between large and small seeds. Large seeds have higher expression of translation-related genes implicated in germination competence. By contrast, small seeds have elevated expression of many positive regulators of dormancy, including a key regulator of this process, the DOG1 gene. Differences in DOG1 expression are associated with differential production of its alternative cleavage and polyadenylation isoforms; in small seeds, the proximal poly(A) site is selected, resulting in a short mRNA isoform. Furthermore, single-seed RNA sequencing analysis demonstrated that large seeds resemble DOG1 knockout mutant seeds. Finally, on the single-seed level, expression of genes affected by seed size is correlated with expression of genes that position seeds on the path toward germination. Our results demonstrate an unexpected link between seed size and dormancy phenotypes in a species that produces highly homogenous seed pools, suggesting that the correlation between seed morphology and physiology is more widespread than initially assumed.
Collapse
Affiliation(s)
- Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland.
| | - Sebastian P Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Veena Halale Manjunath
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Katarzyna Muter
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Grzegorz Bokota
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ce Wang
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Dariusz Plewczyński
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland; Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland.
| |
Collapse
|
10
|
Steinecke C, Lee J, Friedman J. A standardized and efficient technique to estimate seed traits in plants with numerous small propagules. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11552. [PMID: 37915429 PMCID: PMC10617364 DOI: 10.1002/aps3.11552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023]
Abstract
Premise Variation in seed traits is common within and among populations of plant species and often has ecological and evolutionary implications. However, due to the time-consuming nature of manual seed measurements and the level of variability in imaging techniques, quantifying and interpreting the extent of seed variation can be challenging. Methods We developed a standardized high-throughput technique to measure seed number, as well as individual seed area and color, using a derived empirical scale to constrain area in Arabidopsis thaliana, Brassica rapa, and Mimulus guttatus. We develop a specific rational model using seed area measured at various spatial scales relative to the pixel count, observing the asymptotic value of the seed area as the modeled number of pixels approaches infinity. Results We found that our model has high reliability in estimating seed traits and efficiently processes large numbers of images, facilitating the quantification of seed traits in studies with large sample sizes. Discussion This technique facilitates consistency between imaging sessions and standardizes the measurement of seed traits. These novel advances allow researchers to directly and reliably measure seed traits, which will enable tests of the ecological and evolutionary causes of their variation.
Collapse
Affiliation(s)
- Christina Steinecke
- Biology DepartmentQueen's UniversityKingstonOntarioK7L 3N6Canada
- Present address:
Department of Organismic and Evolutionary BiologyHarvard University, Cambridge, Massachusetts 02138, USA; Arnold Arboretum of Harvard UniversityBostonMassachusetts02131USA
| | - Jeremiah Lee
- Biology DepartmentQueen's UniversityKingstonOntarioK7L 3N6Canada
- Department of Geography and PlanningQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Jannice Friedman
- Biology DepartmentQueen's UniversityKingstonOntarioK7L 3N6Canada
| |
Collapse
|
11
|
Zhao N, Xue D, Miao Y, Wang Y, Zhou E, Zhou Y, Yao M, Gu C, Wang K, Li B, Wei L, Wang X. Construction of a high-density genetic map for faba bean ( Vicia faba L.) and quantitative trait loci mapping of seed-related traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1201103. [PMID: 37351218 PMCID: PMC10282779 DOI: 10.3389/fpls.2023.1201103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
Faba bean (Vicia faba L.) is a valuable legume crop and data on its seed-related traits is required for yield and quality improvements. However, basic research on faba bean is lagging compared to that of other major crops. In this study, an F2 faba bean population, including 121 plants derived from the cross WY7×TCX7, was genotyped using the Faba_bean_130 K targeted next-generation sequencing genotyping platform. The data were used to construct the first ultra-dense faba bean genetic map consisting of 12,023 single nucleotide polymorphisms markers covering 1,182.65 cM with an average distance of 0.098 cM. The map consisted of 6 linkage groups, which is consistent with the 6 faba bean chromosome pairs. A total of 65 quantitative trait loci (QTL) for seed-related traits were identified (3 for 100-seed weight, 28 for seed shape, 12 for seed coat color, and 22 for nutritional quality). Furthermore, 333 candidate genes that are likely to participate in the regulation of seed-related traits were also identified. Our research findings can provide a basis for future faba bean marker-assisted breeding and be helpful to further modify and improve the reference genome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Libin Wei
- *Correspondence: Libin Wei, ; Xuejun Wang,
| | | |
Collapse
|
12
|
Putra AR, Yen JDL, Fournier-Level A. Forecasting trait responses in novel environments to aid seed provenancing under climate change. Mol Ecol Resour 2023; 23:565-580. [PMID: 36308465 DOI: 10.1111/1755-0998.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022]
Abstract
Revegetation projects face the major challenge of sourcing optimal plant material. This is often done with limited information about plant performance and increasingly requires factoring resilience to climate change. Functional traits can be used as quantitative indices of plant performance and guide seed provenancing, but trait values expected under novel conditions are often unknown. To support climate-resilient provenancing efforts, we develop a trait prediction model that integrates the effect of genetic variation with fine-scale temperature variation. We train our model on multiple field plantings of Arabidopsis thaliana and predict two relevant fitness traits-days-to-bolting and fecundity-across the species' European range. Prediction accuracy was high for days-to-bolting and moderate for fecundity, with the majority of trait variation explained by temperature differences between plantings. Projection under future climate predicted a decline in fecundity, although this response was heterogeneous across the range. In response, we identified novel genotypes that could be introduced to genetically offset the fitness decay. Our study highlights the value of predictive models to aid seed provenancing and improve the success of revegetation projects.
Collapse
Affiliation(s)
- Andhika R Putra
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jian D L Yen
- Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | | |
Collapse
|
13
|
Ta KN, Shimizu-Sato S, Agata A, Yoshida Y, Taoka KI, Tsuji H, Akagi T, Tanizawa Y, Sano R, Nosaka-Takahashi M, Suzuki T, Demura T, Toyoda A, Nakamura Y, Sato Y. A leaf-emanated signal orchestrates grain size and number in response to maternal resources. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36994645 DOI: 10.1111/tpj.16219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
In plants, variations in seed size and number are outcomes of different reproductive strategies. Both traits are often environmentally influenced, suggesting that a mechanism exists to coordinate these phenotypes in response to available maternal resources. Yet, how maternal resources are sensed and influence seed size and number is largely unknown. Here, we report a mechanism that senses maternal resources and coordinates grain size and number in the wild rice Oryza rufipogon, a wild progenitor of Asian cultivated rice. We showed that FT-like 9 (FTL9) regulates both grain size and number and that maternal photosynthetic assimilates induce FTL9 expression in leaves to act as a long-range signal that increases grain number and reduces size. Our findings highlight a strategy that benefits wild plants to survive in a fluctuating environment. In this strategy, when maternal resources are sufficient, wild plants increase their offspring number while preventing an increase in offspring size by the action of FTL9, which helps expand their habitats. In addition, we found that a loss-of-function allele (ftl9) is prevalent among wild and cultivated populations, offering a new scenario in the history of rice domestication.
Collapse
Affiliation(s)
- Kim Nhung Ta
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Vietnam Japan University, Vietnam National University, Hanoi, Vietnam
| | - Sae Shimizu-Sato
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ayumi Agata
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yuri Yoshida
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ken-Ichiro Taoka
- Kihara Institute for Biological Research, Yokohama City University, 244-0813, Yokohama, 641-12 Maioka, Totsuka, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, 244-0813, Yokohama, 641-12 Maioka, Totsuka, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yasuhiro Tanizawa
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Misuzu Nosaka-Takahashi
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Toshiya Suzuki
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yutaka Sato
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| |
Collapse
|
14
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
15
|
Ćalić I, Groen SC, Choi JY, Joly‐Lopez Z, Hamann E, Natividad MA, Dorph K, Cabral CLU, Torres RO, Vergara GV, Henry A, Purugganan MD, Franks SJ. The influence of genetic architecture on responses to selection under drought in rice. Evol Appl 2022; 15:1670-1690. [PMID: 36330294 PMCID: PMC9624088 DOI: 10.1111/eva.13419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Accurately predicting responses to selection is a major goal in biology and important for successful crop breeding in changing environments. However, evolutionary responses to selection can be constrained by such factors as genetic and cross-environment correlations, linkage, and pleiotropy, and our understanding of the extent and impact of such constraints is still developing. Here, we conducted a field experiment to investigate potential constraints to selection for drought resistance in rice (Oryza sativa) using phenotypic selection analysis and quantitative genetics. We found that traits related to drought response were heritable, and some were under selection, including selection for earlier flowering, which could allow drought escape. However, patterns of selection generally were not opposite under wet and dry conditions, and we did not find individual or closely linked genes that influenced multiple traits, indicating a lack of evidence that antagonistic pleiotropy, linkage, or cross-environment correlations would constrain selection for drought resistance. In most cases, genetic correlations had little influence on responses to selection, with direct and indirect selection largely congruent. The exception to this was seed mass under drought, which was predicted to evolve in the opposite direction of direct selection due to correlations. Because of this indirect effect on selection on seed mass, selection for drought resistance was not accompanied by a decrease in seed mass, and yield increased with fecundity. Furthermore, breeding lines with high fitness and yield under drought also had high fitness and yield under wet conditions, indicating that there was no evidence for a yield penalty on drought resistance. We found multiple genes in which expression influenced both water use efficiency (WUE) and days to first flowering, supporting a genetic basis for the trade-off between drought escape and avoidance strategies. Together, these results can provide helpful guidance for understanding and managing evolutionary constraints and breeding stress-resistant crops.
Collapse
Affiliation(s)
- Irina Ćalić
- Department of Biological SciencesFordham UniversityBronxNew YorkUSA
- Institute of BotanyUniversity of CologneCologneGermany
| | - Simon C. Groen
- Department of NematologyUniversity of California at RiversideRiversideCaliforniaUSA
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jae Young Choi
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Zoé Joly‐Lopez
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Département de ChimieUniversité du Québec à MontréalQuébecCanada
| | - Elena Hamann
- Department of Biological SciencesFordham UniversityBronxNew YorkUSA
- Department of Genetics and Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Katherine Dorph
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | | | | | - Georgina V. Vergara
- International Rice Research InstituteLos BañosLagunaPhilippines
- Institute of Crop ScienceUniversity of the Philippines Los BañosLos BañosLagunaPhilippines
| | - Amelia Henry
- International Rice Research InstituteLos BañosLagunaPhilippines
| | - Michael D. Purugganan
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Center for Genomics and Systems BiologyNYU Abu Dhabi Research Institute, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Steven J. Franks
- Department of Biological SciencesFordham UniversityBronxNew YorkUSA
| |
Collapse
|
16
|
Wang P, Meng F, Donaldson P, Horan S, Panchy NL, Vischulis E, Winship E, Conner JK, Krysan PJ, Shiu S, Lehti‐Shiu MD. High-throughput measurement of plant fitness traits with an object detection method using Faster R-CNN. THE NEW PHYTOLOGIST 2022; 234:1521-1533. [PMID: 35218008 PMCID: PMC9310946 DOI: 10.1111/nph.18056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Revealing the contributions of genes to plant phenotype is frequently challenging because loss-of-function effects may be subtle or masked by varying degrees of genetic redundancy. Such effects can potentially be detected by measuring plant fitness, which reflects the cumulative effects of genetic changes over the lifetime of a plant. However, fitness is challenging to measure accurately, particularly in species with high fecundity and relatively small propagule sizes such as Arabidopsis thaliana. An image segmentation-based method using the software ImageJ and an object detection-based method using the Faster Region-based Convolutional Neural Network (R-CNN) algorithm were used for measuring two Arabidopsis fitness traits: seed and fruit counts. The segmentation-based method was error-prone (correlation between true and predicted seed counts, r2 = 0.849) because seeds touching each other were undercounted. By contrast, the object detection-based algorithm yielded near perfect seed counts (r2 = 0.9996) and highly accurate fruit counts (r2 = 0.980). Comparing seed counts for wild-type and 12 mutant lines revealed fitness effects for three genes; fruit counts revealed the same effects for two genes. Our study provides analysis pipelines and models to facilitate the investigation of Arabidopsis fitness traits and demonstrates the importance of examining fitness traits when studying gene functions.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- DOE Great Lake Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
| | - Fanrui Meng
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- DOE Great Lake Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
| | - Paityn Donaldson
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| | - Sarah Horan
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| | - Nicholas L. Panchy
- National Institute for Mathematical and Biological SynthesisUniversity of Tennessee1122 Volunteer Blvd, Suite 106KnoxvilleTN37996‐3410USA
| | - Elyse Vischulis
- Genetics and Genome Sciences Graduate ProgramMichigan State UniversityEast LansingMI48824USA
| | - Eamon Winship
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Jeffrey K. Conner
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- W.K. Kellogg Biological StationMichigan State University3700 E. Gull Lake DriveHickory CornersMI49060USA
- Ecology, Evolution, and Behavior Graduate ProgramMichigan State UniversityEast LansingMI48824USA
| | - Patrick J. Krysan
- Department of HorticultureUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Shin‐Han Shiu
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- DOE Great Lake Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
- Genetics and Genome Sciences Graduate ProgramMichigan State UniversityEast LansingMI48824USA
- Ecology, Evolution, and Behavior Graduate ProgramMichigan State UniversityEast LansingMI48824USA
- Department of Computational Mathematics, Science, and EngineeringMichigan State UniversityEast LansingMI48824USA
| | | |
Collapse
|
17
|
Morón-García O, Garzón-Martínez GA, Martínez-Martín MJP, Brook J, Corke FMK, Doonan JH, Camargo Rodríguez AV. Genetic architecture of variation in Arabidopsis thaliana rosettes. PLoS One 2022; 17:e0263985. [PMID: 35171969 PMCID: PMC8849614 DOI: 10.1371/journal.pone.0263985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Rosette morphology across Arabidopsis accessions exhibits considerable variation. Here we report a high-throughput phenotyping approach based on automatic image analysis to quantify rosette shape and dissect the underlying genetic architecture. Shape measurements of the rosettes in a core set of Recombinant Inbred Lines from an advanced mapping population (Multiparent Advanced Generation Inter-Cross or MAGIC) derived from inter-crossing 19 natural accessions. Image acquisition and analysis was scaled to extract geometric descriptors from time stamped images of growing rosettes. Shape analyses revealed heritable morphological variation at early juvenile stages and QTL mapping resulted in over 116 chromosomal regions associated with trait variation within the population. Many QTL linked to variation in shape were located near genes related to hormonal signalling and signal transduction pathways while others are involved in shade avoidance and transition to flowering. Our results suggest rosette shape arises from modular integration of sub-organ morphologies and can be considered a functional trait subjected to selective pressures of subsequent morphological traits. On an applied aspect, QTLs found will be candidates for further research on plant architecture.
Collapse
Affiliation(s)
- Odín Morón-García
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Gina A. Garzón-Martínez
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - M. J. Pilar Martínez-Martín
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Jason Brook
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Fiona M. K. Corke
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - John H. Doonan
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail: (AVCR); (JHD)
| | - Anyela V. Camargo Rodríguez
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail: (AVCR); (JHD)
| |
Collapse
|
18
|
Arenas-M A, Castillo FM, Godoy D, Canales J, Calderini DF. Transcriptomic and Physiological Response of Durum Wheat Grain to Short-Term Heat Stress during Early Grain Filling. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010059. [PMID: 35009063 PMCID: PMC8747107 DOI: 10.3390/plants11010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 05/14/2023]
Abstract
In a changing climate, extreme weather events such as heatwaves will be more frequent and could affect grain weight and the quality of crops such as wheat, one of the most significant crops in terms of global food security. In this work, we characterized the response of Triticum turgidum L. spp. durum wheat to short-term heat stress (HS) treatment at transcriptomic and physiological levels during early grain filling in glasshouse experiments. We found a significant reduction in grain weight (23.9%) and grain dimensions from HS treatment. Grain quality was also affected, showing a decrease in starch content (20.8%), in addition to increments in grain protein levels (14.6%), with respect to the control condition. Moreover, RNA-seq analysis of durum wheat grains allowed us to identify 1590 differentially expressed genes related to photosynthesis, response to heat, and carbohydrate metabolic process. A gene regulatory network analysis of HS-responsive genes uncovered novel transcription factors (TFs) controlling the expression of genes involved in abiotic stress response and grain quality, such as a member of the DOF family predicted to regulate glycogen and starch biosynthetic processes in response to HS in grains. In summary, our results provide new insights into the extensive transcriptome reprogramming that occurs during short-term HS in durum wheat grains.
Collapse
Affiliation(s)
- Anita Arenas-M
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.A.-M.); (F.M.C.)
- ANID—Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Francisca M. Castillo
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.A.-M.); (F.M.C.)
- ANID—Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Diego Godoy
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Javier Canales
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.A.-M.); (F.M.C.)
- ANID—Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Correspondence: (J.C.); (D.F.C.)
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Correspondence: (J.C.); (D.F.C.)
| |
Collapse
|
19
|
Liao L, Zhang W, Zhang B, Fang T, Wang XF, Cai Y, Ogutu C, Gao L, Chen G, Nie X, Xu J, Zhang Q, Ren Y, Yu J, Wang C, Deng CH, Ma B, Zheng B, You CX, Hu DG, Espley R, Lin-Wang K, Yao JL, Allan AC, Khan A, Korban SS, Fei Z, Ming R, Hao YJ, Li L, Han Y. Unraveling a genetic roadmap for improved taste in the domesticated apple. MOLECULAR PLANT 2021; 14:1454-1471. [PMID: 34022440 DOI: 10.1016/j.molp.2021.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 05/26/2023]
Abstract
Although taste is an important aspect of fruit quality, an understanding of its genetic control remains elusive in apple and other fruit crops. In this study, we conducted genomic sequence analysis of 497 Malus accessions and revealed erosion of genetic diversity caused by apple breeding and possible independent domestication events of dessert and cider apples. Signatures of selection for fruit acidity and size, but not for fruit sugar content, were detected during the processes of both domestication and improvement. Furthermore, we found that single mutations in major genes affecting fruit taste, including Ma1, MdTDT, and MdSOT2, dramatically decrease malate, citrate, and sorbitol accumulation, respectively, and correspond to important domestication events. Interestingly, Ma1 was identified to have pleiotropic effects on both organic acid content and sugar:acid ratio, suggesting that it plays a vital role in determining fruit taste. Fruit taste is unlikely to have been negatively affected by linkage drag associated with selection for larger fruit that resulted from the pyramiding of multiple genes with minor effects on fruit size. Collectively, our study provides new insights into the genetic basis of fruit quality and its evolutionary roadmap during apple domestication, pinpointing several candidate genes for genetic manipulation of fruit taste in apple.
Collapse
Affiliation(s)
- Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Weihan Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Ting Fang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqing Nie
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsheng Xu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanyan Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yiran Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jianqiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Chukun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Baiquan Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Da-Gang Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Richard Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yu-Jin Hao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Li Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
20
|
Ellis TJ, Postma FM, Oakley CG, Ågren J. Life-history trade-offs and the genetic basis of fitness in Arabidopsis thaliana. Mol Ecol 2021; 30:2846-2858. [PMID: 33938082 DOI: 10.1111/mec.15941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Resources allocated to survival cannot be used to increase fecundity, but the extent to which this trade-off constrains adaptation depends on overall resource status. Adaptation to local environmental conditions may therefore entail the evolution of traits that increase the amount of resources available to individuals (their resource status or 'condition'). We examined the relative contribution of trade-offs and increased condition to adaptive evolution in a recombinant inbred line population of Arabidopsis thaliana planted at the native sites of the parental ecotypes in Italy and Sweden in 2 years. We estimated genetic correlations among fitness components based on genotypic means and explored their causes with QTL mapping. The local ecotype produced more seeds per fruit than did the non-local ecotype, reflected in stronger adaptive differentiation than was previously shown based on survival and fruit number only. Genetic correlations between survival and overall fecundity, and between number of fruits and number of seeds per fruit, were positive, and there was little evidence of a trade-off between seed size and number. Quantitative trait loci for these traits tended to map to the same regions of the genome and showed positive pleiotropic effects. The results indicate that adaptive differentiation between the two focal populations largely reflects the evolution of increased ability to acquire resources in the local environment, rather than shifts in the relative allocation to different life-history traits. Differentiation both in phenology and in tolerance to cold is likely to contribute to the advantage of the local genotype at the two sites.
Collapse
Affiliation(s)
- Thomas James Ellis
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden.,Gregor Mendel Institute of Molecular Plant Sciences, Vienna, Austria
| | - Froukje M Postma
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Christopher G Oakley
- Department of Botany and Plant Pathology & the Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Vergès V, Dutilleul C, Godin B, Collet B, Lecureuil A, Rajjou L, Guimaraes C, Pinault M, Chevalier S, Giglioli-Guivarc’h N, Ducos E. Protein Farnesylation Takes Part in Arabidopsis Seed Development. FRONTIERS IN PLANT SCIENCE 2021; 12:620325. [PMID: 33584774 PMCID: PMC7876099 DOI: 10.3389/fpls.2021.620325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 05/25/2023]
Abstract
Protein farnesylation is a post-translational modification regulated by the ERA1 (Enhanced Response to ABA 1) gene encoding the β-subunit of the protein farnesyltransferase in Arabidopsis. The era1 mutants have been described for over two decades and exhibit severe pleiotropic phenotypes, affecting vegetative and flower development. We further investigated the development and quality of era1 seeds. While the era1 ovary contains numerous ovules, the plant produces fewer seeds but larger and heavier, with higher protein contents and a modified fatty acid distribution. Furthermore, era1 pollen grains show lower germination rates and, at flower opening, the pistils are immature and the ovules require one additional day to complete the embryo sac. Hand pollinated flowers confirmed that pollination is a major obstacle to era1 seed phenotypes, and a near wild-type seed morphology was thus restored. Still, era1 seeds conserved peculiar storage protein contents and altered fatty acid distributions. The multiplicity of era1 phenotypes reflects the diversity of proteins targeted by the farnesyltransferase. Our work highlights the involvement of protein farnesylation in seed development and in the control of traits of agronomic interest.
Collapse
Affiliation(s)
- Valentin Vergès
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| | - Christelle Dutilleul
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| | - Béatrice Godin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Boris Collet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alain Lecureuil
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Cyrille Guimaraes
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | - Michelle Pinault
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | - Stéphane Chevalier
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | | | - Eric Ducos
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| |
Collapse
|
22
|
Diouf I, Pascual L. Multiparental Population in Crops: Methods of Development and Dissection of Genetic Traits. Methods Mol Biol 2021; 2264:13-32. [PMID: 33263900 DOI: 10.1007/978-1-0716-1201-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiparental populations are located midway between association mapping that relies on germplasm collections and classic linkage analysis, based upon biparental populations. They provide several key advantages such as the possibility to include a higher number of alleles and increased level of recombination with respect to biparental populations, and more equilibrated allelic frequencies than association mapping panels. Moreover, in these populations new allele's combinations arise from recombination that may reveal transgressive phenotypes and make them a useful pre-breeding material. Here we describe the strategies for working with multiparental populations, focusing on nested association mapping populations (NAM) and multiparent advanced generation intercross populations (MAGIC). We provide details from the selection of founders, population development, and characterization to the statistical methods for genetic mapping and quantitative trait detection.
Collapse
Affiliation(s)
- Isidore Diouf
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
23
|
Li X, Zhang Y, Yang S, Wu C, Shao Q, Feng X. The genetic control of leaf and petal allometric variations in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:547. [PMID: 33287712 PMCID: PMC7720488 DOI: 10.1186/s12870-020-02758-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Organ shape and size covariation (allometry) factors are essential concepts for the study of evolution and development. Although ample research has been conducted on organ shape and size, little research has considered the correlated variation of these two traits and quantitatively measured the variation in a common framework. The genetic basis of allometry variation in a single organ or among different organs is also relatively unknown. RESULTS A principal component analysis (PCA) of organ landmarks and outlines was conducted and used to quantitatively capture shape and size variation in leaves and petals of multiparent advanced generation intercross (MAGIC) populations of Arabidopsis thaliana. The PCA indicated that size variation was a major component of allometry variation and revealed negatively correlated changes in leaf and petal size. After quantitative trait loci (QTL) mapping, five QTLs for the fourth leaf, 11 QTLs for the seventh leaf, and 12 QTLs for petal size and shape were identified. These QTLs were not identical to those previously identified, with the exception of the ER locus. The allometry model was also used to measure the leaf and petal allometry covariation to investigate the evolution and genetic coordination between homologous organs. In total, 12 QTLs were identified in association with the fourth leaf and petal allometry covariation, and eight QTLs were identified to be associated with the seventh leaf and petal allometry covariation. In these QTL confidence regions, there were important genes associated with cell proliferation and expansion with alleles unique to the maximal effects accession. In addition, the QTLs associated with life-history traits, such as days to bolting, stem length, and rosette leaf number, which were highly coordinated with climate change and local adaption, were QTL mapped and showed an overlap with leaf and petal allometry, which explained the genetic basis for their correlation. CONCLUSIONS This study explored the genetic basis for leaf and petal allometry and their interaction, which may provide important information for investigating the correlated variation and evolution of organ shape and size in Arabidopsis.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yaohua Zhang
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Suxin Yang
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xianzhong Feng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
24
|
Buijs G, Willems LAJ, Kodde J, Groot SPC, Bentsink L. Evaluating the EPPO method for seed longevity analyses in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110644. [PMID: 33218622 DOI: 10.1016/j.plantsci.2020.110644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 05/26/2023]
Abstract
Seed longevity (storability) is an important seed quality trait. High seed quality is important in agriculture, for the industry, and for safeguarding biodiversity as many species are stored as seeds in genebanks. To ensure ex-situ seed survival, seeds are mostly stored at low relative humidity and low temperature. Oxidation is the main cause of seed deterioration in these dry storage conditions. The molecular mechanisms underlying dry seed survival remain poorly understood. Research on seed longevity is hampered by the lack of an experimental ageing method that mimics dry ageing well. Here, we propose the Elevated Partial Pressure of Oxygen (EPPO) method as the best available method to mimic and accelerate dry seed ageing. We have tested seed germination in Arabidopsis thaliana after EPPO storage at two different relative humidity (RH) conditions and confirm the large effect of oxygen and the seed moisture content on ageing during dry storage. Comparative Quantitative trait locus (QTL) analysis shows that EPPO at 55 % RH mimics dry ageing better than the commonly used Artificial Ageing and Controlled Deterioration tests at higher moisture levels.
Collapse
Affiliation(s)
- Gonda Buijs
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, the Netherlands
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, the Netherlands
| | - Jan Kodde
- Wageningen Plant Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Steven P C Groot
- Wageningen Plant Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Leónie Bentsink
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
25
|
Scott MF, Ladejobi O, Amer S, Bentley AR, Biernaskie J, Boden SA, Clark M, Dell'Acqua M, Dixon LE, Filippi CV, Fradgley N, Gardner KA, Mackay IJ, O'Sullivan D, Percival-Alwyn L, Roorkiwal M, Singh RK, Thudi M, Varshney RK, Venturini L, Whan A, Cockram J, Mott R. Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity (Edinb) 2020; 125:396-416. [PMID: 32616877 PMCID: PMC7784848 DOI: 10.1038/s41437-020-0336-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/21/2022] Open
Abstract
Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding.
Collapse
Affiliation(s)
| | | | - Samer Amer
- University of Reading, Reading, RG6 6AH, UK
- Faculty of Agriculture, Alexandria University, Alexandria, 23714, Egypt
| | - Alison R Bentley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Jay Biernaskie
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Scott A Boden
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | | | | | - Laura E Dixon
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Carla V Filippi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Nicolas Repetto y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina
| | - Nick Fradgley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Keith A Gardner
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Ian J Mackay
- SRUC, West Mains Road, Kings Buildings, Edinburgh, EH9 3JG, UK
| | | | | | - Manish Roorkiwal
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rakesh Kumar Singh
- International Center for Biosaline Agriculture, Academic City, Dubai, United Arab Emirates
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev Kumar Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Alex Whan
- CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - James Cockram
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Richard Mott
- UCL Genetics Institute, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
26
|
Sharma Koirala P, Neff MM. Improving seed size, seed weight and seedling emergence in Camelina sativa by overexpressing the Atsob3-6 gene variant. Transgenic Res 2020; 29:409-418. [PMID: 32748170 DOI: 10.1007/s11248-020-00208-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/19/2020] [Indexed: 11/28/2022]
Abstract
Seedling stand establishment is a critical factor affecting crop yield in low-precipitation agricultural regions. This is especially true for small seeded crops, such as Camelina (Camelina sativa) and canola (Brassica napus), that need to be planted shallow. Deeper planting would be desirable so that seeds can access soil moisture and bigger seeds could improve emergence and stand establishment by providing the energy necessary for seedling elongation. AHL (AT-Hook Containing, Nuclear Localized) genes play an important role in seedling growth and development. AHL proteins contain two structural units, the DNA-binding AT-hook motif and the Plant and Prokaryote Conserved (PPC) domain, required for protein-protein interactions. Our previous studies demonstrate that AtAHL29/SOB3 (Suppressor of phytochrome B-4 #3) regulates seedling development in Arabidopsis (Arabidopsis thaliana). Activation-tagged overexpression of AtSOB3 (Atsob3-D) represses the long-hypocotyl phenotype of an Arabidopsis phytochrome B mutant. In contrast, overexpression of the Atsob3-6 variant (Atsob3-6-OX), with a non-functional AT-hook, confers a long-hypocotyl phenotype. In this study, we demonstrate the role of Atsob3-D and Atsob3-6-OX in modulating seed size and hypocotyl length in the brassicas Arabidopsis and Camelina. In Arabidopsis, Atsob3-D reduces seed weight whereas Atsob3-6-OX increases seed weight and size when compared to the wild type. Similarly, Atsob3-6-OX transgenic Camelina seedlings are taller than the wild type, and produce larger and heavier seeds. These larger Atsob3-6-OX Camelina seeds also confer better emergence in deep-soil planting when compared to the wild type. Taken together, Atsob3-6-OX increases seed size, seed weight, seedling hypocotyl length and stand establishment in the oilseed crop Camelina.
Collapse
Affiliation(s)
- Pushpa Sharma Koirala
- Department Crop and Soil Sciences, Washington State University, 387 Johnson Hall, PO Box 646420, Pullman, WA, 99164-6420, USA
| | - Michael M Neff
- Department Crop and Soil Sciences, Washington State University, 387 Johnson Hall, PO Box 646420, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
27
|
Lorts CM, Lasky JR. Competition × drought interactions change phenotypic plasticity and the direction of selection on Arabidopsis traits. THE NEW PHYTOLOGIST 2020; 227:1060-1072. [PMID: 32267968 DOI: 10.1111/nph.16593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Populations often exhibit genetic diversity in traits involved in responses to abiotic stressors, but what maintains this diversity is unclear. Arabidopsis thaliana exhibits high within-population variation in drought response. One hypothesis is that competition, varying at small scales, promotes diversity in resource use strategies. However, little is known about natural variation in competition effects on Arabidopsis physiology. We imposed drought and competition treatments on diverse genotypes. We measured resource economics traits, physiology, and fitness to characterize plasticity and selection in response to treatments. Plastic responses to competition differed depending on moisture availability. We observed genotype-drought-competition interactions for relative fitness: competition had little effect on relative fitness under well-watered conditions, whereas competition caused rank changes in fitness under drought. Early flowering was always selected. Higher δ13 C was selected only in the harshest treatment (drought and competition). Competitive context significantly changed the direction of selection on aboveground biomass and inflorescence height in well-watered environments. Our results highlight how local biotic conditions modify abiotic selection, in some cases promoting diversity in abiotic stress response. The ability of populations to adapt to environmental change may thus depend on small-scale biotic heterogeneity.
Collapse
Affiliation(s)
- Claire M Lorts
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
28
|
Chavarro C, Chu Y, Holbrook C, Isleib T, Bertioli D, Hovav R, Butts C, Lamb M, Sorensen R, A Jackson S, Ozias-Akins P. Pod and Seed Trait QTL Identification To Assist Breeding for Peanut Market Preferences. G3 (BETHESDA, MD.) 2020; 10:2297-2315. [PMID: 32398236 PMCID: PMC7341151 DOI: 10.1534/g3.120.401147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
Although seed and pod traits are important for peanut breeding, little is known about the inheritance of these traits. A recombinant inbred line (RIL) population of 156 lines from a cross of Tifrunner x NC 3033 was genotyped with the Axiom_Arachis1 SNP array and SSRs to generate a genetic map composed of 1524 markers in 29 linkage groups (LG). The genetic positions of markers were compared with their physical positions on the peanut genome to confirm the validity of the linkage map and explore the distribution of recombination and potential chromosomal rearrangements. This linkage map was then used to identify Quantitative Trait Loci (QTL) for seed and pod traits that were phenotyped over three consecutive years for the purpose of developing trait-associated markers for breeding. Forty-nine QTL were identified in 14 LG for seed size index, kernel percentage, seed weight, pod weight, single-kernel, double-kernel, pod area and pod density. Twenty QTL demonstrated phenotypic variance explained (PVE) greater than 10% and eight more than 20%. Of note, seven of the eight major QTL for pod area, pod weight and seed weight (PVE >20% variance) were attributed to NC 3033 and located in a single linkage group, LG B06_1. In contrast, the most consistent QTL for kernel percentage were located on A07/B07 and derived from Tifrunner.
Collapse
Affiliation(s)
- Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602
| | - Ye Chu
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793
| | - Corley Holbrook
- USDA- Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA 31793
| | - Thomas Isleib
- Department of Crop Science, North Carolina State University, P.O. Box 7629, Raleigh, NC 27695
| | - David Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602
| | - Ran Hovav
- Department of Field and Vegetable Crops, Plant Sciences Institute, ARO (Volcani Center), Bet Dagan, Israel, and
| | - Christopher Butts
- USDA- Agricultural Research Service, National Peanut Research Laboratory, Dawson, GA 39842
| | - Marshall Lamb
- USDA- Agricultural Research Service, National Peanut Research Laboratory, Dawson, GA 39842
| | - Ronald Sorensen
- USDA- Agricultural Research Service, National Peanut Research Laboratory, Dawson, GA 39842
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793,
| |
Collapse
|
29
|
Morales A, Teapal J, Ammerlaan JMH, Yin X, Evers JB, Anten NPR, Sasidharan R, van Zanten M. A high throughput method for quantifying number and size distribution of Arabidopsis seeds using large particle flow cytometry. PLANT METHODS 2020; 16:27. [PMID: 32158493 PMCID: PMC7053093 DOI: 10.1186/s13007-020-00572-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Seed size and number are important plant traits from an ecological and horticultural/agronomic perspective. However, in small-seeded species such as Arabidopsis thaliana, research on seed size and number is limited by the absence of suitable high throughput phenotyping methods. RESULTS We report on the development of a high throughput method for counting seeds and measuring individual seed sizes. The method uses a large-particle flow cytometer to count individual seeds and sort them according to size, allowing an average of 12,000 seeds/hour to be processed. To achieve this high throughput, post harvested seeds are first separated from remaining plant material (dust and chaff) using a rapid sedimentation-based method. Then, classification algorithms are used to refine the separation process in silico. Accurate identification of all seeds in the samples was achieved, with relative errors below 2%. CONCLUSION The tests performed reveal that there is no single classification algorithm that performs best for all samples, so the recommended strategy is to train and use multiple algorithms and use the median predictions of seed size and number across all algorithms. To facilitate the use of this method, an R package (SeedSorter) that implements the methodology has been developed and made freely available. The method was validated with seed samples from several natural accessions of Arabidopsis thaliana, but our analysis pipeline is applicable to any species with seed sizes smaller than 1.5 mm.
Collapse
Affiliation(s)
- Alejandro Morales
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - J. Teapal
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - J. M. H. Ammerlaan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - X. Yin
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - J. B. Evers
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - N. P. R. Anten
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - R. Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - M. van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
Williams-Simon PA, Ganesan M, King EG. Learning to collaborate: bringing together behavior and quantitative genomics. J Neurogenet 2020; 34:28-35. [PMID: 31920134 DOI: 10.1080/01677063.2019.1710145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The genetic basis of complex trait like learning and memory have been well studied over the decades. Through those groundbreaking findings, we now have a better understanding about some of the genes and pathways that are involved in learning and/or memory. However, few of these findings identified the naturally segregating variants that are influencing learning and/or memory within populations. In this special issue honoring the legacy of Troy Zars, we review some of the traditional approaches that have been used to elucidate the genetic basis of learning and/or memory, specifically in fruit flies. We highlight some of his contributions to the field, and specifically describe his vision to bring together behavior and quantitative genomics with the aim of expanding our knowledge of the genetic basis of both learning and memory. Finally, we present some of our recent work in this area using a multiparental population (MPP) as a case study and describe the potential of this approach to advance our understanding of neurogenetics.
Collapse
Affiliation(s)
| | - Mathangi Ganesan
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Elizabeth G King
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
31
|
King K, Li H, Kang J, Lu C. Mapping quantitative trait loci for seed traits in Camelina sativa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2567-2577. [PMID: 31177293 DOI: 10.1007/s00122-019-03371-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/03/2019] [Indexed: 05/24/2023]
Abstract
Genetic dissection of oil content and seed size in Camelina sativa was conducted by QTL mapping using a SNP-based linkage map and a recombinant inbred population. Camelina (Camelina sativa L. Crantz) is an oilseed crop that has great potential to provide sustainable feedstock for biofuel production and to improve dryland agriculture. A major breeding objective for camelina is to increase seed size and oil content. Understanding the genetics behind variations of seed size and associated traits such as oil content would help breeders develop varieties of increased oil yield that are more robust, easier to plant and harvest, and better for oil processing. In this study, we developed a recombinant inbred population derived from the two camelina accessions, Suneson and Pryzeth, with contrasting traits, especially seed size and oil content. Using 189 lines, a genetic map was constructed containing 2376 single nucleotide polymorphism markers spanning 2034.6 cM of 20 linkage groups with an average density of 1.5 cM per locus. Field trials were conducted for 2 years (2017 and 2018) in two environments (dryland and irrigated) in Bozeman, Montana. The results revealed important correlations of seed size with other associated traits such as oil content, pod size and seed number per pod. Significant QTLs were also discovered for these traits. The results of this study are the first step to isolate genes controlling seed development and oil accumulation and to develop advanced varieties of camelina better adapted to modern agriculture by marker-assisted breeding.
Collapse
Affiliation(s)
- Kevin King
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717-3150, USA
| | - Huang Li
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717-3150, USA
| | - Jinling Kang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717-3150, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717-3150, USA.
| |
Collapse
|
32
|
Souza ML, Lovato MB, Fagundes M, Valladares F, Lemos-Filho JP. Soil fertility and rainfall during specific phenological phases affect seed trait variation in a widely distributed Neotropical tree, Copaifera langsdorffii. AMERICAN JOURNAL OF BOTANY 2019; 106:1096-1105. [PMID: 31334843 DOI: 10.1002/ajb2.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Knowledge of intra-specific variation in seed traits and its environmental determinants is important for predicting plant responses to environmental changes. Here, we tested the hypothesis that differences in soil fertility and rainfall during specific phenological phases drive variation in seed traits in a widely distributed tree, Copaifera langsdorffii. We also tested the hypothesis that climatic heterogeneity increases within-plant variation in seed traits. METHODS Inter- and intra-population and within-plant variation in seed mass, number, and seed size/seed number were evaluated for 50 individuals from five populations distributed along a rainfall gradient and occurring on varying soil types. Using multivariate approaches, we tested the effects of soil fertility characteristics and rainfall in five reproductive phenological phases on seed traits. RESULTS The seed traits varied greatly both among populations and within plants. Inter-population variation in seed mass was driven by total rainfall during fruit development, and variation in seed number was influenced by total rainfall during the dry season before the reproductive phase. Phosphorus levels and potential acidity of the soil also explained the variations in seed mass and seed mass/seed number, respectively. A positive association between intra-annual variation in rainfall and within-plant variation in seed mass and seed number was found. CONCLUSION Both rainfall during specific reproductive phases and soil conditions shape the variation in the seed mass and number of C. langsdorffii. Environment-driven seed trait variation may contribute to this species' broad niche breadth, which in turn may determine the species' persistence under future climatic conditions.
Collapse
Affiliation(s)
- Matheus Lopes Souza
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, 31270, Brazil
| | - Maria Bernadete Lovato
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, 31270, Brazil
| | - Marcilio Fagundes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, CCBS-UNIMONTES, Montes Claros, 39401, Brazil
| | - Fernando Valladares
- LINCGlobal Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, 28006, Spain
- Departamento de Biología y Geología ESCET, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
| | - José Pires Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, 31270, Brazil
| |
Collapse
|
33
|
van Es SW, van der Auweraert EB, Silveira SR, Angenent GC, van Dijk AD, Immink RG. Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:316-328. [PMID: 30903633 PMCID: PMC6767503 DOI: 10.1111/tpj.14326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 05/17/2023]
Abstract
Members of the Arabidopsis thaliana TCP transcription factor (TF) family affect plant growth and development. We systematically quantified the effect of mutagenizing single or multiple TCP TFs and how altered vegetative growth or branching influences final seed yield. We monitored rosette growth over time and branching patterns and seed yield characteristics at the end of the lifecycle. Subsequently, an approach was developed to disentangle vegetative growth and to determine possible effects on seed yield. Analysis of growth parameters showed all investigated tcp mutants to be affected in certain growth aspects compared with wild-type plants, highlighting the importance of TCP TFs in plant development. Furthermore, we found evidence that all class II TCPs are involved in axillary branch outgrowth, either as inhibitors (BRANCHED-like genes) or enhancers (JAW- and TCP5-like genes). Comprehensive phenotyping of plants mutant for single or multiple TCP TFs reveals that the proposed opposite functions of class I and class II TCPs in plant growth needs revision and shows complex interactions between closely related TCP genes instead of full genetic redundancy. In various instances, the alterations in vegetative growth or in branching patterns result into negative trade-off effects on seed yield that were missed in previous studies, showing the importance of comprehensive and quantitative phenotyping.
Collapse
Affiliation(s)
- Sam W. van Es
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
- Present address:
Department of Plant PhysiologyUmeå Plant Science CentreUmeå University90187UmeåSweden
| | | | - Sylvia R. Silveira
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratório de Biotecnologia VegetalCentro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaSPCEP 13416‐000Brazil
| | - Gerco C. Angenent
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
| | - Aalt D.J. van Dijk
- BiometrisWageningen University and Research6708 PBWageningenThe Netherlands
- BioinformaticsWageningen University and Research6708 PBWageningenThe Netherlands
| | - Richard G.H. Immink
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
| |
Collapse
|
34
|
Genetic Dissection of Resistance to the Three Fungal Plant Pathogens Blumeria graminis, Zymoseptoria tritici, and Pyrenophora tritici-repentis Using a Multiparental Winter Wheat Population. G3-GENES GENOMES GENETICS 2019; 9:1745-1757. [PMID: 30902891 PMCID: PMC6505172 DOI: 10.1534/g3.119.400068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bread wheat (Triticum aestivum L.) is one of the world’s most important crop species. The development of new varieties resistant to multiple pathogens is an ongoing task in wheat breeding, especially in times of increasing demand for sustainable agricultural practices. Despite this, little is known about the relations between various fungal disease resistances at the genetic level, and the possible consequences for wheat breeding strategies. As a first step to fill this gap, we analyzed the genetic relations of resistance to the three fungal diseases – powdery mildew (PM), septoria tritici blotch (STB), and tan spot (TS) – using a winter wheat multiparent advanced generation intercross population. Six, seven, and nine QTL for resistance to PM, STB, and TS, respectively, were genetically mapped. Additionally, 15 QTL were identified for the three agro-morphological traits plant height, ear emergence time, and leaf angle distribution. Our results suggest that resistance to STB and TS on chromosome 2B is conferred by the same genetic region. Furthermore, we identified two genetic regions on chromosome 1AS and 7AL, which are associated with all three diseases, but not always in a synchronal manner. Based on our results, we conclude that parallel marker-assisted breeding for resistance to the fungal diseases PM, STB, and TS appears feasible. Knowledge of the genetic co-localization of alleles with contrasting effects for different diseases, such as on chromosome 7AL, allows the trade-offs of selection of these regions to be better understood, and ultimately determined at the genic level.
Collapse
|
35
|
Chen E, Huang X, Tian Z, Wing RA, Han B. The Genomics of Oryza Species Provides Insights into Rice Domestication and Heterosis. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:639-665. [PMID: 31035826 DOI: 10.1146/annurev-arplant-050718-100320] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we review recent progress in genetic and genomic studies of the diversity of Oryza species. In recent years, unlocking the genetic diversity of Oryza species has provided insights into the genomics of rice domestication, heterosis, and complex traits. Genome sequencing and analysis of numerous wild rice (Oryza rufipogon) and Asian cultivated rice (Oryza sativa) accessions have enabled the identification of genome-wide signatures of rice domestication and the unlocking of the origin of Asian cultivated rice. Moreover, similar studies on genome variations of African rice (Oryza glaberrima) cultivars and their closely related wild progenitor Oryza barthii accessions have provided strong evidence to support a theory of independent domestication in African rice. Integrated genomic approaches have efficiently investigated many heterotic loci in hybrid rice underlying yield heterosis advantages and revealed the genomic architecture of rice heterosis. We conclude that in-depth unlocking of genetic variations among Oryza species will further enhance rice breeding.
Collapse
Affiliation(s)
- Erwang Chen
- National Center of Plant Gene Research; Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China;
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA;
| | - Bin Han
- National Center of Plant Gene Research; Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China;
| |
Collapse
|
36
|
Affiliation(s)
- Matthew R Willmann
- Plant Transformation Facility, Cornell University , School of Integrative Plant Science, Ithaca, New York 14853
| |
Collapse
|
37
|
Vasseur F, Fouqueau L, de Vienne D, Nidelet T, Violle C, Weigel D. Nonlinear phenotypic variation uncovers the emergence of heterosis in Arabidopsis thaliana. PLoS Biol 2019; 17:e3000214. [PMID: 31017902 PMCID: PMC6481775 DOI: 10.1371/journal.pbio.3000214] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Heterosis describes the phenotypic superiority of hybrids over their parents in traits related to agronomic performance and fitness. Understanding and predicting nonadditive inheritance such as heterosis is crucial for evolutionary biology as well as for plant and animal breeding. However, the physiological bases of heterosis remain debated. Moreover, empirical data in various species have shown that diverse genetic and molecular mechanisms are likely to explain heterosis, making it difficult to predict its emergence and amplitude from parental genotypes alone. In this study, we examined a model of physiological dominance initially proposed by Sewall Wright to explain the nonadditive inheritance of traits like metabolic fluxes at the cellular level. We evaluated Wright's model for two fitness-related traits at the whole-plant level, growth rate and fruit number, using 450 hybrids derived from crosses among natural accessions of A. thaliana. We found that allometric relationships between traits constrain phenotypic variation in a nonlinear and similar manner in hybrids and accessions. These allometric relationships behave predictably, explaining up to 75% of heterosis amplitude, while genetic distance among parents at best explains 7%. Thus, our findings are consistent with Wright's model of physiological dominance and suggest that the emergence of heterosis on plant performance is an intrinsic property of nonlinear relationships between traits. Furthermore, our study highlights the potential of a geometric approach of phenotypic relationships for predicting heterosis of major components of crop productivity and yield.
Collapse
Affiliation(s)
- François Vasseur
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, UMR759, Montpellier, France
| | - Louise Fouqueau
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Dominique de Vienne
- GQE–Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Univ Paris-Saclay, Gif-sur-Yvette, France
| | - Thibault Nidelet
- SPO, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Cyrille Violle
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
38
|
Li N, Song D, Peng W, Zhan J, Shi J, Wang X, Liu G, Wang H. Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). PLANT BIOTECHNOLOGY JOURNAL 2019; 17:736-749. [PMID: 30191657 PMCID: PMC6419582 DOI: 10.1111/pbi.13011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 08/26/2018] [Accepted: 09/04/2018] [Indexed: 05/16/2023]
Abstract
Seed size/weight is one of the key traits related to plant domestication and crop improvement. In rapeseed (Brassica napus L.) germplasm, seed weight shows extensive variation, but its regulatory mechanism is poorly understood. To identify the key mechanism of seed weight regulation, a systematic comparative study was performed. Genetic, morphological and cytological evidence showed that seed weight was controlled by maternal genotype, through the regulation of seed size mainly via cell number. The physiological evidence indicated that differences in the pod length might result in differences in pod wall photosynthetic area, carbohydrates and the final seed weight. We also identified two pleiotropic major quantitative trait loci that acted indirectly on seed weight via their effects on pod length. RNA-seq results showed that genes related to pod development and hormones were significantly differentially expressed in the pod wall; genes related to development, cell division, nutrient reservoir and ribosomal proteins were all up-regulated in the seeds of the large-seed pool. Finally, we proposed a potential seed weight regulatory mechanism that is specific to rapeseed and novel in plants. The results demonstrate a causal link between the size of the pod (mother, source) and the seed (offspring, sink) in rapeseed, which provides novel insight into the maternal control of seed weight and will open a new research field in plants.
Collapse
Affiliation(s)
- Na Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubei ProvinceChina
- Zhengzhou Fruit Research Institute of the Chinese Academy of Agricultural SciencesThe Laboratory of Melon CropsZhengzhouHenan ProvinceChina
| | - Dongji Song
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubei ProvinceChina
| | - Wei Peng
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubei ProvinceChina
| | - Jiepeng Zhan
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubei ProvinceChina
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubei ProvinceChina
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubei ProvinceChina
| | - Guihua Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubei ProvinceChina
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubei ProvinceChina
| |
Collapse
|
39
|
R/qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations. Genetics 2018; 211:495-502. [PMID: 30591514 PMCID: PMC6366910 DOI: 10.1534/genetics.118.301595] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
R/qtl2 is an interactive software environment for mapping quantitative trait loci (QTL) in experimental populations. The R/qtl2 software expands the scope of the widely-used R/qtl software package to include multiparental populations, better handles modern high-dimensional data.... R/qtl2 is an interactive software environment for mapping quantitative trait loci (QTL) in experimental populations. The R/qtl2 software expands the scope of the widely used R/qtl software package to include multiparent populations derived from more than two founder strains, such as the Collaborative Cross and Diversity Outbred mice, heterogeneous stocks, and MAGIC plant populations. R/qtl2 is designed to handle modern high-density genotyping data and high-dimensional molecular phenotypes, including gene expression and proteomics. R/qtl2 includes the ability to perform genome scans using a linear mixed model to account for population structure, and also includes features to impute SNPs based on founder strain genomes and to carry out association mapping. The R/qtl2 software provides all of the basic features needed for QTL mapping, including graphical displays and summary reports, and it can be extended through the creation of add-on packages. R/qtl2, which is free and open source software written in the R and C++ programming languages, comes with a test framework.
Collapse
|
40
|
Na G, Aryal N, Fatihi A, Kang J, Lu C. Seed-specific suppression of ADP-glucose pyrophosphorylase in Camelina sativa increases seed size and weight. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:330. [PMID: 30568730 PMCID: PMC6297958 DOI: 10.1186/s13068-018-1334-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/07/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Camelina (Camelina sativa L.) is a promising oilseed crop that may provide sustainable feedstock for biofuel production. One of the major drawbacks of Camelina is its smaller seeds compared to other major oil crops such as canola, which limit oil yield and may also pose challenges in successful seedling establishment, especially in dryland cultivation. Previous studies indicate that seed development may be under metabolic control. In oilseeds, starch only accumulates temporarily during seed development but is almost absent in mature seeds. In this study, we explored the effect of altering seed carbohydrate metabolism on Camelina seed size through down-regulating ADP-glucose pyrophosphorylase (AGPase), a major enzyme in starch biosynthesis. RESULTS An RNAi construct comprising sequences of the Camelina small subunit of an AGPase (CsAPS) was expressed in Camelina cultivar Suneson under a seed-specific promoter. The RNAi suppression reduced AGPase activities which concurred with moderately decreased starch accumulation during seed development. Transcripts of genes examined that are involved in storage products were not affected, but contents of sugars and water were increased in developing seeds. The transgenic seeds were larger than wild-type plants due to increased cell sizes in seed coat and embryos, and mature seeds contained similar oil but more protein contents. The larger seeds showed advantages on seedling emergence from deep soils. CONCLUSIONS Changing starch and sugar metabolism during seed development may increase the size and mass of seeds without affecting their final oil content in Camelina. Increased seed size may improve seedling establishment in the field and increase seed yield.
Collapse
Affiliation(s)
- GunNam Na
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150 USA
| | - Niranjan Aryal
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150 USA
| | - Abdelhak Fatihi
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150 USA
- Present Address: IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Jinling Kang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150 USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150 USA
| |
Collapse
|
41
|
LaBonte NR, Woeste KE. Pooled whole-genome sequencing of interspecific chestnut ( Castanea) hybrids reveals loci associated with differences in caching behavior of fox squirrels ( Sciurus niger L.). Ecol Evol 2018; 8:10638-10654. [PMID: 30519394 PMCID: PMC6262733 DOI: 10.1002/ece3.4336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 12/30/2022] Open
Abstract
Dispersal of seeds by scatter-hoarding rodents is common among tropical and temperate tree species, including chestnuts in the genus Castanea. Backcrossed (BC) interspecific hybrid chestnuts exhibit wide variation in seed traits: as the parent species (Castanea dentata and C. mollissima) have distinct seed phenotypes and tend to be handled differently by seed dispersers, phenotypic variation in BC trees is likely due to inheritance of genes that have undergone divergent evolution in the parent species. To identify candidate genomic regions for interspecific differences in seed dispersal, we used tagged seeds to measure average dispersal distance for seeds of third-generation BC chestnuts and sequenced pooled whole genomes of mother trees with contrasting seed dispersal: high caching rate/long distance; low caching rate/short distance; no caching. Candidate regions affecting seed dispersal were identified as loci with more C. mollissima alleles in the high caching rate/ long-distance pool than expected by chance and observed in the other two pools. Functional annotations of candidate regions included predicted lipid metabolism, dormancy regulation, seed development, and carbohydrate metabolism genes. The results support the hypothesis that perception of seed dormancy is a predominant factor in squirrel caching decisions, and also indicate profitable directions for future work on the evolutionary genomics of trees and coevolved seed dispersers.
Collapse
Affiliation(s)
| | - Keith E. Woeste
- USDA Forest ServiceNorthern Research StationHardwood Tree Improvement and Regeneration CenterWest LafayetteIndiana
| |
Collapse
|
42
|
Zhou B, Zhou Z, Ding J, Zhang X, Mu C, Wu Y, Gao J, Song Y, Wang S, Ma J, Li X, Wang R, Xia Z, Chen J, Wu J. Combining Three Mapping Strategies to Reveal Quantitative Trait Loci and Candidate Genes for Maize Ear Length. THE PLANT GENOME 2018; 11:170107. [PMID: 30512044 DOI: 10.3835/plantgenome2017.11.0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ear length (EL) is an important trait in maize ( L.) because it is positively correlated with grain yield. To understand the genetic basis of natural EL variation, a F, a four-way cross and a genome-wide association study (GWAS) population were used to identify the quantitative trait loci (QTLs) and candidate EL genes. Linkage mapping identified 14 QTLs in two types of populations from multiple environments. Six of them were located in three common genomic regions considered "stable QTLs". Candidate genes for the three stable QTLs were identified by the GWAS results. These were related to auxin transport, cell proliferation, and developmental regulation. These results confirm that maize EL is under strong genetic control by many small-effect genes. They also improve our understanding of the genetic basis of maize EL.
Collapse
|
43
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
44
|
Lázaro A, Larrinaga AR. A multi-level test of the seed number/size trade-off in two Scandinavian communities. PLoS One 2018; 13:e0201175. [PMID: 30052656 PMCID: PMC6063417 DOI: 10.1371/journal.pone.0201175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/10/2018] [Indexed: 01/09/2023] Open
Abstract
Seed size is a fundamental life-history trait for plants. A seed number/size trade-off is assumed because the resources invested in reproduction are limited; however, such a trade-off is not always observed. This could be a consequence of the method used for testing it, where the null hypothesis is dictated by common statistical practice, rather than being based on any underlying theory. Alternatively, there might be some population- and species-dependent variables that affect resource availability and, in turn, influence the presence and intensity of this trade-off. Using data on 42 herbs from two communities (lowland and alpine) from Southern Norway, we tested the validity of the classical linear model vs. two previously proposed models, based on resource competition, when assessing the existence of this trade-off at different levels. We also evaluated whether some species- (fruit aggregation, ovules/flower) and population-dependent (pollen limitation) variables could affect this trade-off. Classical linear modelling outperformed the other proposed functional models. Significant seed number/size relationships were negative in single-fruited species, whereas they were positive in species with infructescences of one-seeded fruits. Concordantly, fruit organization was the most influencing variable for the intra-specific trade-off in the lowland community. In the alpine community, species suffering higher pollen limitation showed more strongly negative slopes between seed size and seed number at the fruit/infructescence level. Across species, seed size and number were negatively related, although the relationship was significant in only one of the communities. No evidence of trade-off was found at the plant level. Linear models provide a flexible framework that allows coping with the variability in the seed number/size relationship. The emergence of the intra-specific relationship between seed number and size depends on species- and population-dependent variables, related to resource allocation and the pollination environment.
Collapse
Affiliation(s)
- Amparo Lázaro
- Global Change Research Group, Mediterranean Institute for Advanced Studies (UIB-CSIC), C/ Miquel Marqués 21, Esporles, Balearic Islands, Spain
| | - Asier R. Larrinaga
- eNeBaDa, Rúa das Penas 57, Santiago de Compostela, A Coruña, and Misión Biológica de Galicia (CSIC), Carballeira 8, Salcedo, Pontevedra, Spain
| |
Collapse
|
45
|
Savadi S. Molecular regulation of seed development and strategies for engineering seed size in crop plants. PLANT GROWTH REGULATION 2018; 84:401-422. [PMID: 0 DOI: 10.1007/s10725-017-0355-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
46
|
Ogawa D, Yamamoto E, Ohtani T, Kanno N, Tsunematsu H, Nonoue Y, Yano M, Yamamoto T, Yonemaru JI. Haplotype-based allele mining in the Japan-MAGIC rice population. Sci Rep 2018. [PMID: 29531264 PMCID: PMC5847589 DOI: 10.1038/s41598-018-22657-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-parent advanced generation inter-cross (MAGIC) lines have broader genetic variation than bi-parental recombinant inbred lines. Genome-wide association study (GWAS) using high number of DNA polymorphisms such as single-nucleotide polymorphisms (SNPs) is a popular tool for allele mining in MAGIC populations, in which the associations of phenotypes with SNPs are investigated; however, the effects of haplotypes from multiple founders on phenotypes are not considered. Here, we describe an improved method of allele mining using the newly developed Japan-MAGIC (JAM) population, which is derived from eight high-yielding rice cultivars in Japan. To obtain information on the haplotypes in the JAM lines, we predicted the haplotype blocks in the whole chromosomes using 16,345 SNPs identified via genotyping-by-sequencing analysis. Using haplotype-based GWAS, we clearly detected the loci controlling the glutinous endosperm and culm length traits. Information on the alleles of the eight founders, which was based on the effects of mutations revealed by the analysis of next-generation sequencing data, was used to narrow down the candidate genes and reveal the associations between alleles and phenotypes. The haplotype-based allele mining (HAM) proposed in this study is a promising approach to the detection of allelic variation in genes controlling agronomic traits in MAGIC populations.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan.,Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Eiji Yamamoto
- Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Toshikazu Ohtani
- Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Noriko Kanno
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan.,Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Hiroshi Tsunematsu
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Yasunori Nonoue
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Masahiro Yano
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan.,Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Toshio Yamamoto
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan. .,Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan.
| | - Jun-Ichi Yonemaru
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan. .,Agrogenomics Research Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan.
| |
Collapse
|
47
|
Zheng XM, Gong T, Ou HL, Xue D, Qiao W, Wang J, Liu S, Yang Q, Olsen KM. Genome-wide association study of rice grain width variation. Genome 2017; 61:233-240. [PMID: 29193996 DOI: 10.1139/gen-2017-0106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Seed size is variable within many plant species, and understanding the underlying genetic factors can provide insights into mechanisms of local environmental adaptation. Here we make use of the abundant genomic and germplasm resources available for rice (Oryza sativa) to perform a large-scale genome-wide association study (GWAS) of grain width. Grain width varies widely within the crop and is also known to show climate-associated variation across populations of its wild progenitor. Using a filtered dataset of >1.9 million genome-wide SNPs in a sample of 570 cultivated and wild rice accessions, we performed GWAS with two complementary models, GLM and MLM. The models yielded 10 and 33 significant associations, respectively, and jointly yielded seven candidate locus regions, two of which have been previously identified. Analyses of nucleotide diversity and haplotype distributions at these loci revealed signatures of selection and patterns consistent with adaptive introgression of grain width alleles across rice variety groups. The results provide a 50% increase in the total number of rice grain width loci mapped to date and support a polygenic model whereby grain width is shaped by gene-by-environment interactions. These loci can potentially serve as candidates for studies of adaptive seed size variation in wild grass species.
Collapse
Affiliation(s)
- Xiao-Ming Zheng
- a Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China.,d Department of Biology, Campus Box 1137, Washington University, St. Louis, MO 63130, USA
| | - Tingting Gong
- a Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China.,b Department of Life and Environmental Science, Minzu University of China, Beijing, 100081, P.R. China
| | - Hong-Ling Ou
- c Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, 100875, P.R. China
| | - Dayuan Xue
- b Department of Life and Environmental Science, Minzu University of China, Beijing, 100081, P.R. China
| | - Weihua Qiao
- a Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Junrui Wang
- a Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Sha Liu
- a Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Qingwen Yang
- a Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Kenneth M Olsen
- d Department of Biology, Campus Box 1137, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
48
|
Yang Y, Wang Y, Zhan J, Shi J, Wang X, Liu G, Wang H. Genetic and Cytological Analyses of the Natural Variation of Seed Number per Pod in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1890. [PMID: 29163611 PMCID: PMC5676210 DOI: 10.3389/fpls.2017.01890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/18/2017] [Indexed: 05/18/2023]
Abstract
Seed number is one of the key traits related to plant evolution/domestication and crop improvement/breeding. In rapeseed germplasm, the seed number per pod (SNPP) shows a very wide variation from several to nearly 30; however, the underlying causations/mechanisms for this variation are poorly known. In the current study, the genetic and cytological bases for the natural variation of SNPP in rapeseed was firstly and systematically investigated using the representative four high-SNPP and five low-SNPP lines. The results of self- or cross-pollination experiment between the high- and low-SNPP lines showed that the natural variation of SNPP was mainly controlled by maternal effect (mean = 0.79), followed by paternal effect (mean = 0.21). Analysis of the data using diploid seed embryo-cytoplasmic-maternal model further showed that the maternal genotype, embryo, and cytoplasm effects, respectively, explained 47.6, 35.2, and 7.5% of the genetic variance. In addition, the analysis of combining ability showed that for the SNPP of hybrid F1 was mainly determined by the general combining ability of parents (63.0%), followed by special combining ability of parental combination (37.0%). More importantly, the cytological observation showed that the SNPP difference between the high- and low-SNPP lines was attributable to the accumulative differences in its components. Of which, the number of ovules, the proportion of fertile ovules, the proportion of fertile ovules to be fertilized, and the proportion of fertilized ovules to develop into seeds accounted for 30.7, 18.2, 7.1, and 43.9%, respectively. The accordant results of both genetic and cytological analyses provide solid evidences and systematic insights to further understand the mechanisms underlying the natural variation of SNPP, which will facilitate the development of high-yield cultivars in rapeseed.
Collapse
Affiliation(s)
| | | | | | - Jiaqin Shi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | | | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
49
|
Dani KGS, Kodandaramaiah U. Plant and Animal Reproductive Strategies: Lessons from Offspring Size and Number Tradeoffs. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
50
|
Cvetkovic J, Müller K, Baier M. The effect of cold priming on the fitness of Arabidopsis thaliana accessions under natural and controlled conditions. Sci Rep 2017; 7:44055. [PMID: 28276450 PMCID: PMC5343467 DOI: 10.1038/srep44055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/02/2017] [Indexed: 12/14/2022] Open
Abstract
Priming improves an organism's performance upon a future stress. To test whether cold priming supports protection in spring and how it is affected by cold acclimation, we compared seven Arabidopsis accessions with different cold acclimation potentials in the field and in the greenhouse for growth, photosynthetic performance and reproductive fitness in March and May after a 14 day long cold-pretreatment at 4 °C. In the plants transferred to the field in May, the effect of the cold pretreatment on the seed yield correlated with the cold acclimation potential of the accessions. In the March transferred plants, the reproductive fitness was most supported by the cold pretreatment in the accessions with the weakest cold acclimation potential. The fitness effect was linked to long-term effects of the cold pretreatment on photosystem II activity stabilization and leaf blade expansion. The study demonstrated that cold priming stronger impacts on plant fitness than cold acclimation in spring in accessions with intermediate and low cold acclimation potential.
Collapse
Affiliation(s)
- Jelena Cvetkovic
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Klaus Müller
- Meterology, Freie Universität Berlin, 12165 Berlin, Germany
| | - Margarete Baier
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|