1
|
Zafeer MF, Ramzan M, Duman D, Mutlu A, Seyhan S, Kalcioglu MT, Fitoz S, DeRosa BA, Guo S, Dykxhoorn DM, Tekin M. Human organoids for rapid validation of gene variants linked to cochlear malformations. Hum Genet 2025; 144:375-389. [PMID: 39786576 PMCID: PMC12003500 DOI: 10.1007/s00439-024-02723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025]
Abstract
Developmental anomalies of the hearing organ, the cochlea, are diagnosed in approximately one-fourth of individuals with congenital. The majority of patients with cochlear malformations remain etiologically undiagnosed due to insufficient knowledge about underlying genes or the inability to make conclusive interpretations of identified genetic variants. We used exome sequencing for the genetic evaluation of hearing loss associated with cochlear malformations in three probands from unrelated families deafness. We subsequently generated monoclonal induced pluripotent stem cell (iPSC) lines, bearing patient-specific knockins and knockouts using CRISPR/Cas9 to assess pathogenicity of candidate variants. We detected FGF3 (p.Arg165Gly) and GREB1L (p.Cys186Arg), variants of uncertain significance in two recognized genes for deafness, and PBXIP1(p.Trp574*) in a candidate gene. Upon differentiation of iPSCs towards inner ear organoids, we observed developmental aberrations in knockout lines compared to their isogenic controls. Patient-specific single nucleotide variants (SNVs) showed similar abnormalities as the knockout lines, functionally supporting their causality in the observed phenotype. Therefore, we present human inner ear organoids as a potential tool to validate the pathogenicity of DNA variants associated with cochlear malformations.
Collapse
Affiliation(s)
- Mohammad Faraz Zafeer
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Memoona Ramzan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Duygu Duman
- Department of Audiology, Ankara University Faculty of Health Sciences, Ankara, Türkiye
- Ankara University Rare Diseases Application and Research Center (NADiR), Ankara, Türkiye
| | - Ahmet Mutlu
- Faculty of Medicine, Department of Otorhinolaryngology, Istanbul Medeniyet University, Istanbul, Türkiye
- Otorhinolaryngology Clinic of Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Türkiye
| | - Serhat Seyhan
- Laboratory of Genetics, Memorial Şişli Hospital, Istanbul, Türkiye
| | - M Tayyar Kalcioglu
- Faculty of Medicine, Department of Otorhinolaryngology, Istanbul Medeniyet University, Istanbul, Türkiye
- Otorhinolaryngology Clinic of Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Türkiye
| | - Suat Fitoz
- Department of Diagnostic Radiology, Ankara University School of Medicine, Ankara, Türkiye
| | - Brooke A DeRosa
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, US
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, US.
- , 1501 NW 10th Avenue, BRB-610 (M860), Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Horaud M, Raventós N, Præbel K, Galià‐Camps C, Pegueroles C, Carreras C, Pascual M, Tuset VM, Bhat S, Lynghammar A. Allochrony in Atlantic Lumpfish: Genomic and Otolith Shape Divergence Between Spring and Autumn Spawners. Ecol Evol 2025; 15:e70946. [PMID: 39958818 PMCID: PMC11826085 DOI: 10.1002/ece3.70946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Allochrony is a form of reproductive isolation characterized by differences in the timing of spawning and may play a crucial role in the genetic and phenotypic divergence within species. The Atlantic lumpfish (Cyclopterus lumpus) is known to spawn in spring and autumn. However, the role of allochrony on the genomic structure of this species has not been addressed. Here, by combining whole genome sequencing data and otolith shape of 64 specimens, we explore the evolutionary drivers of divergence in Atlantic lumpfish, focusing on spring and autumn spawners sampled at two well-separated spawning grounds along the Norwegian coast. Overall, we identified pronounced genomic and morphologic differences between the two spawning groups. Genomic differences between the two groups were concentrated in three chromosomes, with a region of chromosome 1 encompassing the same single nucleotide polymorphisms (SNPs) driving differential season spawning for both localities, suggesting parallel responses. The functional analysis of the SNPs in this region revealed genes associated with responses to environmental stressors, possibly adaptations to seasonal variations at high latitudes. The morphological analysis of otoliths supported these findings, showing differences compatible with adaptations to seasonal light availability. The presence of genomic islands of divergence, alongside a general lack of differentiation across the mitochondrial genome, suggest recent and rapid selection processes potentially modulated by ongoing gene flow. This study underscores the importance of considering temporal genetic structures, particularly for species with bimodal spawning time, in conservation and management strategies to prevent overexploitation and optimize breeding programs.
Collapse
Affiliation(s)
- Mathilde Horaud
- Faculty of Biosciences, Fisheries and Economics, The Norwegian College of Fishery ScienceUiT The Arctic University of NorwayTromsøNorway
| | - Núria Raventós
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Otolith Research LabCentre d'Estudis Avançats de Blanes (OTOLAB‐CEAB‐CSIC)BlanesSpain
| | - Kim Præbel
- Faculty of Biosciences, Fisheries and Economics, The Norwegian College of Fishery ScienceUiT The Arctic University of NorwayTromsøNorway
- Inland Norway University of Applied ScienceElverumNorway
| | - Carles Galià‐Camps
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Department of Genetics, Microbiology and StatisticsUniversity of Barcelona (UB)BarcelonaSpain
- Institute for Research on Biodiversity (IRBio)University of Barcelona (UB)BarcelonaSpain
| | - Cinta Pegueroles
- Department of Genetics, Microbiology and StatisticsUniversity of Barcelona (UB)BarcelonaSpain
- Institute for Research on Biodiversity (IRBio)University of Barcelona (UB)BarcelonaSpain
- Department of Genetics and MicrobiologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Carlos Carreras
- Department of Genetics, Microbiology and StatisticsUniversity of Barcelona (UB)BarcelonaSpain
- Institute for Research on Biodiversity (IRBio)University of Barcelona (UB)BarcelonaSpain
| | - Marta Pascual
- Department of Genetics, Microbiology and StatisticsUniversity of Barcelona (UB)BarcelonaSpain
- Institute for Research on Biodiversity (IRBio)University of Barcelona (UB)BarcelonaSpain
| | - Victor M. Tuset
- Unidad Asociada ULPGC‐CSIC, Instituto de Oceanografía y Cambio Global, IOCAGUniversidad de las Palmas de Gran CanariaTeldeGran Canaria, Canary IslandsSpain
| | - Shripathi Bhat
- Faculty of Biosciences, Fisheries and Economics, The Norwegian College of Fishery ScienceUiT The Arctic University of NorwayTromsøNorway
| | - Arve Lynghammar
- Faculty of Biosciences, Fisheries and Economics, The Norwegian College of Fishery ScienceUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
3
|
Jones K, Keiser AM, Miller JL, Atkinson MA. Bilateral renal agenesis: fetal intervention and outcomes. Pediatr Nephrol 2025; 40:329-338. [PMID: 38997547 DOI: 10.1007/s00467-024-06449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Bilateral renal agenesis (BRA) is a fetal anomaly which leads to anhydramnios and resultant pulmonary hypoplasia. Historically, this anomaly was universally fatal early in the neonatal period due to the severity of the associated lung disease. Over the last 30 years, innovations in fetal therapies-specifically, serial amnioinfusions-have led to instances of infant pulmonary survival and initiation of postnatal dialysis, raising the possibility that early neonatal death may not be inevitable. Amnioinfusions are not without risk, and maternal complications can include prelabor rupture of membranes, preterm labor, infection, and bleeding. The data detailing neonatal outcomes are still limited and actively being collected. Two case series and one non-randomized clinical trial have supplied most of the known outcome data for infants with BRA after prenatal amnioinfusion. Although there are survivors reported in the literature, mortality remains high, with many deaths in infancy due to dialysis-associated sepsis. In addition, previously unknown morbidities have been documented in these infants, including neurologic injury. These challenges, in addition to the mechanical difficulties of providing dialysis to extremely small infants, can result in significant burdens for patients and their caregivers and moral distress for the health care team. The present review aims to explain the pathophysiology of BRA, detail the historical context and rationale for serial amnioinfusions to treat the pulmonary insufficiency associated with BRA, describe the available data regarding outcomes of infants born following prenatal amnioinfusions, discuss ethical issues surrounding this fetal intervention, and describe critical aspects of prenatal counseling for patients considering the intervention.
Collapse
Affiliation(s)
- Katherine Jones
- Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University, Tripler Army Medical Center, 1 Jarrett White Rd., Honolulu, HI, 96859, USA.
| | - Amaris M Keiser
- Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jena L Miller
- Center for Fetal Therapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith A Atkinson
- Division of Pediatric Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Kesdiren E, Martens H, Brand F, Werfel L, Wedekind L, Trowe MO, Schmitz J, Hennies I, Geffers R, Gucev Z, Seeman T, Schmidt S, Tasic V, Fasano L, Bräsen JH, Kispert A, Christians A, Haffner D, Weber RG. Heterozygous variants in the teashirt zinc finger homeobox 3 (TSHZ3) gene in human congenital anomalies of the kidney and urinary tract. Eur J Hum Genet 2025; 33:44-55. [PMID: 39420202 PMCID: PMC11711546 DOI: 10.1038/s41431-024-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Around 180 genes have been associated with congenital anomalies of the kidney and urinary tract (CAKUT) in mice, and represent promising novel candidate genes for human CAKUT. In whole-exome sequencing data of two siblings with genetically unresolved multicystic dysplastic kidneys (MCDK), prioritizing variants in murine CAKUT-associated genes yielded a rare variant in the teashirt zinc finger homeobox 3 (TSHZ3) gene. Therefore, the role of TSHZ3 in human CAKUT was assessed. Twelve CAKUT patients from 9/301 (3%) families carried five different rare heterozygous TSHZ3 missense variants predicted to be deleterious. CAKUT patients with versus without TSHZ3 variants were more likely to present with hydronephrosis, hydroureter, ureteropelvic junction obstruction, MCDK, and with genital anomalies, developmental delay, overlapping with the previously described phenotypes in Tshz3-mutant mice and patients with heterozygous 19q12-q13.11 deletions encompassing the TSHZ3 locus. Comparable with Tshz3-mutant mice, the smooth muscle layer was disorganized in the renal pelvis and thinner in the proximal ureter of the nephrectomy specimen of a TSHZ3 variant carrier compared to controls. TSHZ3 was expressed in the human fetal kidney, and strongly at embryonic day 11.5-14.5 in mesenchymal compartments of the murine ureter, kidney, and bladder. TSHZ3 variants in a 5' region were more frequent in CAKUT patients than in gnomAD samples (p < 0.001). Mutant TSHZ3 harboring N-terminal variants showed significantly altered SOX9 and/or myocardin binding, possibly adversely affecting smooth muscle differentiation. Our results provide evidence that heterozygous TSHZ3 variants are associated with human CAKUT, particularly MCDK, hydronephrosis, and hydroureter, and, inconsistently, with specific extrarenal features, including genital anomalies.
Collapse
Affiliation(s)
- Esra Kesdiren
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Lukas Wedekind
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Mark-Oliver Trowe
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Jessica Schmitz
- Nephropathology, Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zoran Gucev
- Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia
| | - Tomáš Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Pediatrics, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Sonja Schmidt
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Velibor Tasic
- Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia
| | - Laurent Fasano
- Aix-Marseille Univ, CNRS, IBDM UMR7288, Marseille, France
| | - Jan H Bräsen
- Nephropathology, Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Wang Y, Wang H, Yang W, Guo H, Zhang M, Gao Y, Kang B, Liao S. A novel de novo synonymous variant in GREB1L impacts the mRNA splicing associated with aplasia of the urogenital system. Am J Med Genet A 2024; 194:e63823. [PMID: 39091162 DOI: 10.1002/ajmg.a.63823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
GREB1-like retinoic acid receptor coactivator (GREB1L) gene is associated with autosomal dominant renal hypodysplasia/aplasia 3 (RHDA3) and deafness, autosomal dominant 80 (DFNA80). Among the GREB1L variants reported, most of them are missense or frameshift, while no pathogenic synonymous variants have been recorded. Classical theory paid little attention to synonymous variants and classified it as nonpathogenic; however, recent studies suggest that the variants might be equally important. Here, we report a 7-year-old girl with new symptoms of clitoromegaly, uterovaginal, and ovarian agenesis as well as right kidney missing. A novel de novo GREB1L synonymous variant (NM_001142966: c.4731C>T, p.G1577=) was identified via whole exome sequencing. The variant was predicted to be disease-causing through in silico analysis and was classified as likely pathogenic. Minigene splicing assays confirmed a 6 bp deletion in mutant cDNA comparing with the wild type, leading to two amino acids lost in GREB1L protein. Secondary and tertiary structure modeling showed alterations in protein structure. Our finding reveals a novel GREB1L variant with a new phenotype of urogenital system and is the first to report a pathogenic synonymous variant in GREB1L which affects mRNA splicing, suggesting synonymous variants cannot be ignored in prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Yaoping Wang
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hongdan Wang
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Wenke Yang
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Han Guo
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China
| | - Mengting Zhang
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yue Gao
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bing Kang
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Xie F, Zhou L, Luo P, Xi H, Yu W, Ma N, Wang D, Peng Y. Whole exome sequencing reveals two novel mutations in GREB1L in two Chinese families with renal agenesis. QJM 2024; 117:462-464. [PMID: 38410081 DOI: 10.1093/qjmed/hcae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Indexed: 02/28/2024] Open
Affiliation(s)
- F Xie
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - L Zhou
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - P Luo
- Yongzhou Maternal and Child Health Care Hospital, Yongzhou, China
| | - H Xi
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - W Yu
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - N Ma
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - D Wang
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Y Peng
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|
7
|
Zafeer MF, Ramzan M, Duman D, Mutlu A, Seyhan S, Kalcioglu T, Fitoz S, DeRosa BA, Guo S, Dykxhoorn DM, Tekin M. Human Organoids for Rapid Validation of Gene Variants Linked to Cochlear Malformations. RESEARCH SQUARE 2024:rs.3.rs-4474071. [PMID: 38947059 PMCID: PMC11213182 DOI: 10.21203/rs.3.rs-4474071/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Developmental anomalies of the hearing organ, the cochlea, are diagnosed in approximately one-fourth of individuals with congenital deafness. Most patients with cochlear malformations remain etiologically undiagnosed due to insufficient knowledge about underlying genes or the inability to make conclusive interpretations of identified genetic variants. We used exome sequencing for genetic evaluation of hearing loss associated with cochlear malformations in three probands from unrelated families. We subsequently generated monoclonal induced pluripotent stem cell (iPSC) lines, bearing patient-specific knockins and knockouts using CRISPR/Cas9 to assess pathogenicity of candidate variants. We detected FGF3 (p.Arg165Gly) and GREB1L (p.Cys186Arg), variants of uncertain significance in two recognized genes for deafness, and PBXIP1(p.Trp574*) in a candidate gene. Upon differentiation of iPSCs towards inner ear organoids, we observed significant developmental aberrations in knockout lines compared to their isogenic controls. Patient-specific single nucleotide variants (SNVs) showed similar abnormalities as the knockout lines, functionally supporting their causality in the observed phenotype. Therefore, we present human inner ear organoids as a tool to rapidly validate the pathogenicity of DNA variants associated with cochlear malformations.
Collapse
Affiliation(s)
| | | | - Duygu Duman
- Ankara University Faculty of Health Sciences
| | | | | | | | | | | | - Shengru Guo
- University of Miami Miller School of Medicine
| | | | | |
Collapse
|
8
|
Lillepea K, Juchnewitsch AG, Kasak L, Valkna A, Dutta A, Pomm K, Poolamets O, Nagirnaja L, Tamp E, Mahyari E, Vihljajev V, Tjagur S, Papadimitriou S, Riera-Escamilla A, Versbraegen N, Farnetani G, Castillo-Madeen H, Sütt M, Kübarsepp V, Tennisberg S, Korrovits P, Krausz C, Aston KI, Lenaerts T, Conrad DF, Punab M, Laan M. Toward clinical exomes in diagnostics and management of male infertility. Am J Hum Genet 2024; 111:877-895. [PMID: 38614076 PMCID: PMC11080280 DOI: 10.1016/j.ajhg.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024] Open
Abstract
Infertility, affecting ∼10% of men, is predominantly caused by primary spermatogenic failure (SPGF). We screened likely pathogenic and pathogenic (LP/P) variants in 638 candidate genes for male infertility in 521 individuals presenting idiopathic SPGF and 323 normozoospermic men in the ESTAND cohort. Molecular diagnosis was reached for 64 men with SPGF (12%), with findings in 39 genes (6%). The yield did not differ significantly between the subgroups with azoospermia (20/185, 11%), oligozoospermia (18/181, 10%), and primary cryptorchidism with SPGF (26/155, 17%). Notably, 19 of 64 LP/P variants (30%) identified in 28 subjects represented recurrent findings in this study and/or with other male infertility cohorts. NR5A1 was the most frequently affected gene, with seven LP/P variants in six SPGF-affected men and two normozoospermic men. The link to SPGF was validated for recently proposed candidate genes ACTRT1, ASZ1, GLUD2, GREB1L, LEO1, RBM5, ROS1, and TGIF2LY. Heterozygous truncating variants in BNC1, reported in female infertility, emerged as plausible causes of severe oligozoospermia. Data suggested that several infertile men may present congenital conditions with less pronounced or pleiotropic phenotypes affecting the development and function of the reproductive system. Genes regulating the hypothalamic-pituitary-gonadal axis were affected in >30% of subjects with LP/P variants. Six individuals had more than one LP/P variant, including five with two findings from the gene panel. A 4-fold increased prevalence of cancer was observed in men with genetic infertility compared to the general male population (8% vs. 2%; p = 4.4 × 10-3). Expanding genetic testing in andrology will contribute to the multidisciplinary management of SPGF.
Collapse
Affiliation(s)
- Kristiina Lillepea
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Anna-Grete Juchnewitsch
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Laura Kasak
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Anu Valkna
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Avirup Dutta
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kristjan Pomm
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Olev Poolamets
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Erik Tamp
- Center of Pathology, Diagnostic Clinic, East Tallinn Central Hospital, 10138 Tallinn, Estonia
| | - Eisa Mahyari
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | - Stanislav Tjagur
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium; Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
| | - Antoni Riera-Escamilla
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Andrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, 08025 Barcelona, Catalonia, Spain
| | - Nassim Versbraegen
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium; Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Ginevra Farnetani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Helen Castillo-Madeen
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Mailis Sütt
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Viljo Kübarsepp
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; Department of Pediatric Surgery, Clinic of Surgery, Tartu University Hospital, 51014 Tartu, Estonia
| | - Sven Tennisberg
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Paul Korrovits
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Csilla Krausz
- Andrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, 08025 Barcelona, Catalonia, Spain; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium; Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium; Artificial Intelligence Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Center for Embryonic Cell & Gene Therapy, Oregon Health & Science University, Beaverton, OR 97239, USA
| | - Margus Punab
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia; Department of Surgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia.
| | - Maris Laan
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
9
|
Herlin MK. Genetics of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: advancements and implications. Front Endocrinol (Lausanne) 2024; 15:1368990. [PMID: 38699388 PMCID: PMC11063329 DOI: 10.3389/fendo.2024.1368990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a congenital anomaly characterized by agenesis/aplasia of the uterus and upper part of the vagina in females with normal external genitalia and a normal female karyotype (46,XX). Patients typically present during adolescence with complaints of primary amenorrhea where the diagnosis is established with significant implications including absolute infertility. Most often cases appear isolated with no family history of MRKH syndrome or related anomalies. However, cumulative reports of familial recurrence suggest genetic factors to be involved. Early candidate gene studies had limited success in their search for genetic causes of MRKH syndrome. More recently, genomic investigations using chromosomal microarray and genome-wide sequencing have been successful in detecting promising genetic variants associated with MRKH syndrome, including 17q12 (LHX1, HNF1B) and 16p11.2 (TBX6) deletions and sequence variations in GREB1L and PAX8, pointing towards a heterogeneous etiology with various genes involved. With uterus transplantation as an emerging fertility treatment in MRKH syndrome and increasing evidence for genetic etiologies, the need for genetic counseling concerning the recurrence risk in offspring will likely increase. This review presents the advancements in MRKH syndrome genetics from early familial occurrences and candidate gene searches to current genomic studies. Moreover, the review provides suggestions for future genetic investigations and discusses potential implications for clinical practice.
Collapse
Affiliation(s)
- Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
10
|
McCoy MD, Sarasua SM, DeLuca JM, Davis S, Rogers RC, Phelan K, Boccuto L. Genetics of kidney disorders in Phelan-McDermid syndrome: evidence from 357 registry participants. Pediatr Nephrol 2024; 39:749-760. [PMID: 37733098 DOI: 10.1007/s00467-023-06146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare genetic disorder caused by SHANK3 pathogenic variants or chromosomal rearrangements affecting the chromosome 22q13 region. Previous research found that kidney disorders, primarily congenital anomalies of the kidney and urinary tract, are common in people with PMS, yet research into candidate genes has been hampered by small study sizes and lack of attention to these problems. METHODS We used a cohort of 357 people from the Phelan-McDermid Syndrome Foundation International Registry to investigate the prevalence of kidney disorders in PMS using a cross-sectional design and to identify 22q13 genes contributing to these disorders. RESULTS Kidney disorders reported included vesicoureteral reflux (n = 37), hydronephrosis (n = 36), dysplastic kidneys (n = 19), increased kidney size (n = 19), polycystic kidneys (15 cases), and kidney stones (n = 4). Out of 315 subjects with a 22q13 deletion, 101 (32%) had at least one kidney disorder, while only one out of 42 (2%) individuals with a SHANK3 pathogenic variant had a kidney disorder (increased kidney size). We identified two genomic regions that were significantly associated with having a kidney disorder with the peak associations observed near positions approximately 5 Mb and 400 Kb from the telomere. CONCLUSIONS The candidate genes for kidney disorders include FBLN1, WNT7B, UPK3A, CELSR1, and PLXNB2. This study demonstrates the utility of patient registries for uncovering genetic contributions to rare diseases. Future work should focus on functional studies for these genes to assess their potential pathogenic contribution to the different subsets of kidney disorders.
Collapse
Affiliation(s)
- Megan D McCoy
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| | - Sara M Sarasua
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA.
| | - Jane M DeLuca
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| | - Stephanie Davis
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| | | | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, 33916, USA
| | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
11
|
Zhao E, Bomback M, Khan A, Murthy SK, Solowiejczyk D, Vora NL, Gilmore KL, Giordano JL, Wapner RJ, Sanna-Cherchi S, Lyford A, Jelin AC, Gharavi AG, Hays T. The expanded spectrum of human disease associated with GREB1L likely includes complex congenital heart disease. Prenat Diagn 2024; 44:343-351. [PMID: 38285371 PMCID: PMC11040453 DOI: 10.1002/pd.6527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
OBJECTIVE GREB1L has been linked prenatally to Potter's sequence, as well as less severe anomalies of the kidney, uterus, inner ear, and heart. The full phenotypic spectrum is unknown. The purpose of this study was to characterize known and novel pre- and postnatal phenotypes associated with GREB1L. METHODS We solicited cases from the Fetal Sequencing Consortium, screened a population-based genomic database, and conducted a comprehensive literature search to identify disease cases associated with GREB1L. We present a detailed phenotypic spectrum and molecular changes. RESULTS One hundred twenty-seven individuals with 51 unique pathogenic or likely pathogenic GREB1L variants were identified. 24 (47%) variants were associated with isolated kidney anomalies, 19 (37%) with anomalies of multiple systems, including one case of hypoplastic left heart syndrome, five (10%) with isolated sensorineural hearing loss, two (4%) with isolated uterine agenesis; and one (2%) with isolated tetralogy of Fallot. CONCLUSION GREB1L may cause complex congenital heart disease (CHD) in humans. Clinicians should consider GREB1L testing in the setting of CHD, and cardiac screening in the setting of GREB1L variants.
Collapse
Affiliation(s)
- Emily Zhao
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Miles Bomback
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Atlas Khan
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Sarath Krishna Murthy
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - David Solowiejczyk
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Neeta L. Vora
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, USA
| | - Kelly L. Gilmore
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, USA
| | - Jessica L. Giordano
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ronald J. Wapner
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | - Simone Sanna-Cherchi
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Alex Lyford
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, USA
| | - Angie C. Jelin
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ali G. Gharavi
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Thomas Hays
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Fan L, Shen G, Liu M, Liang Y, Yao J, Ding Z, Li Z, Feng X, Zhang J, Shen X. Renal Hypodysplasia/Aplasia 3 Caused by a Rare Variant of GREB1L With Incomplete Penetrance in a Chinese Family. Urology 2024; 185:49-53. [PMID: 38309594 DOI: 10.1016/j.urology.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Renal agenesis represents the most severe form of congenital anomalies of the kidney and urinary tract. Bilateral renal agenesis is almost invariably fatal at birth and has high genetic heterogeneity. Here we report on a Chinese family with two pregnancies affected by a prenatal form of bilateral renal agenesis. Trio-WES was conducted to explore the underlying genetic cause and identified a novel nonsense variant (c .2621G>A: p. Trp874Ter) in the GREB1L gene. Based on previous research, pathogenic mutations in GREB1L can cause renal hypodysplasia/aplasia-3 (RHDA3) with autosomal dominant inheritance. Sanger sequencing performed on the family members revealed that the variant was vertically transmitted from the maternal grandfather through the unaffected mother to the two affected fetuses, fully demonstrating the incomplete dominance of the disease. Our study extends the mutational spectrum associated with RHDA3 and contributes to a more general understanding for the complex genetic inheritance of GREB1L.
Collapse
Affiliation(s)
- Lihong Fan
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Guosong Shen
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Mingsong Liu
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Yufei Liang
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Juan Yao
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Zhongying Ding
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Zhi Li
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Xiangping Feng
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Jinghui Zhang
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Xueping Shen
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China.
| |
Collapse
|
13
|
Werfel L, Martens H, Hennies I, Gjerstad AC, Fröde K, Altarescu G, Banerjee S, Valenzuela Palafoll I, Geffers R, Kirschstein M, Christians A, Bjerre A, Haffner D, Weber RG. Diagnostic Yield and Benefits of Whole Exome Sequencing in CAKUT Patients Diagnosed in the First Thousand Days of Life. Kidney Int Rep 2023; 8:2439-2457. [PMID: 38025229 PMCID: PMC10658255 DOI: 10.1016/j.ekir.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.
Collapse
Affiliation(s)
- Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kerstin Fröde
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Gheona Altarescu
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anna Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G. Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Crossen MJ, Wilbourne J, Fogarty A, Zhao F. Epithelial and mesenchymal fate decisions in Wolffian duct development. Trends Endocrinol Metab 2023; 34:462-473. [PMID: 37330364 PMCID: PMC10524679 DOI: 10.1016/j.tem.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Wolffian ducts (WDs) are the paired embryonic structures that give rise to internal male reproductive tract organs. WDs are initially formed in both sexes but have sex-specific fates during sexual differentiation. Understanding WD differentiation requires insights into the process of fate decisions of epithelial and mesenchymal cells, which are tightly coordinated by endocrine, paracrine, and autocrine signals. In this review, we discuss current advances in understanding the fate-decision process of WD epithelial and mesenchymal lineages from their initial formation at the embryonic stage to postnatal differentiation. Finally, we discuss aberrant cell differentiation in WD abnormalities and pathologies and identify opportunities for future investigations.
Collapse
Affiliation(s)
- McKenna J Crossen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jillian Wilbourne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allyssa Fogarty
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Jolly A, Du H, Borel C, Chen N, Zhao S, Grochowski CM, Duan R, Fatih JM, Dawood M, Salvi S, Jhangiani SN, Muzny DM, Koch A, Rouskas K, Glentis S, Deligeoroglou E, Bacopoulou F, Wise CA, Dietrich JE, Van den Veyver IB, Dimas AS, Brucker S, Sutton VR, Gibbs RA, Antonarakis SE, Wu N, Coban-Akdemir ZH, Zhu L, Posey JE, Lupski JR. Rare variant enrichment analysis supports GREB1L as a contributory driver gene in the etiology of Mayer-Rokitansky-Küster-Hauser syndrome. HGG ADVANCES 2023; 4:100188. [PMID: 37124138 PMCID: PMC10130500 DOI: 10.1016/j.xhgg.2023.100188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by aplasia of the female reproductive tract; the syndrome can include renal anomalies, absence or dysgenesis, and skeletal anomalies. While functional models have elucidated several candidate genes, only WNT4 (MIM: 603490) variants have been definitively associated with a subtype of MRKH with hyperandrogenism (MIM: 158330). DNA from 148 clinically diagnosed MRKH probands across 144 unrelated families and available family members from North America, Europe, and South America were exome sequenced (ES) and by family-based genomics analyzed for rare likely deleterious variants. A replication cohort consisting of 442 Han Chinese individuals with MRKH was used to further reproduce GREB1L findings in diverse genetic backgrounds. Proband and OMIM phenotypes annotated using the Human Phenotype Ontology were analyzed to quantitatively delineate the phenotypic spectrum associated with GREB1L variant alleles found in our MRKH cohort and those previously published. This study reports 18 novel GREB1L variant alleles, 16 within a multiethnic MRKH cohort and two within a congenital scoliosis cohort. Cohort-wide analyses for a burden of rare variants within a single gene identified likely damaging variants in GREB1L (MIM: 617782), a known disease gene for renal hypoplasia and uterine abnormalities (MIM: 617805), in 16 of 590 MRKH probands. GREB1L variant alleles, including a CNV null allele, were found in 8 MRKH type 1 probands and 8 MRKH type II probands. This study used quantitative phenotypic analyses in a worldwide multiethnic cohort to identify and strengthen the association of GREB1L to isolated uterine agenesis (MRKH type I) and syndromic MRKH type II.
Collapse
Affiliation(s)
- Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | | | - Na Chen
- Department of Obstetrics and Gynaecology, Beijing 100730, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases and Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Sejal Salvi
- Human Genome Sequencing Center, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine (BCM), Houston, TX, USA
| | - André Koch
- University of Tübingen, Department of Obstetrics and Gynecology, Tübingen, Germany
| | - Konstantinos Rouskas
- Institute for Bioinnovation, Biomedical Sciences Research Center Al. Fleming, Vari, Athens 16672, Greece
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Stavros Glentis
- Institute for Bioinnovation, Biomedical Sciences Research Center Al. Fleming, Vari, Athens 16672, Greece
| | - Efthymios Deligeoroglou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens 11527, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens 11527, Greece
| | - Carol A. Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Jennifer E. Dietrich
- Department of Obstetrics and Gynecology, Houston, TX, USA
- Department of Pediatrics, BCM, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Ignatia B. Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
- Department of Obstetrics and Gynecology, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Antigone S. Dimas
- Institute for Bioinnovation, Biomedical Sciences Research Center Al. Fleming, Vari, Athens 16672, Greece
| | - Sara Brucker
- University of Tübingen, Department of Obstetrics and Gynecology, Tübingen, Germany
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Stylianos E. Antonarakis
- University of Geneva Medical School, 1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, University of Geneva, 1205 Geneva, Switzerland
- Medigenome, the Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
| | - Nan Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases and Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zeynep H. Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Lan Zhu
- Department of Obstetrics and Gynaecology, Beijing 100730, China
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine (BCM), Houston, TX, USA
- Department of Pediatrics, BCM, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
16
|
Fuselier KTB, Kruger C, Salbaum JM, Kappen C. Correspondence of Yolk Sac and Embryonic Genotypes in F0 Mouse CRISPants. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i6.3989. [PMID: 37885852 PMCID: PMC10601497 DOI: 10.18103/mra.v11i6.3989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
CRISPR-mediated genome editing in vivo can be accompanied by prolonged stability of the Cas9 protein in mouse embryos. Then, genome edited variant alleles will be induced as long as Cas9 protein is active, and unmodified wildtype target loci are available. The corollary is that CRISPR-modified alleles that arise after the first zygotic cell division potentially could be distributed asymmetrically to the cell lineages that are specified early during morula and blastocyst development. This has practical implications for the investigation of F0 generation individuals, as cells in embryonic and extraembryonic tissues, such as the visceral yolk sac, might end up inheriting different genotypes. We here investigated the hypothetically possible scenarios by genotyping individual F0 CRISPants and their associated visceral yolk sacs in parallel. In all cases, we found that embryonic genotype was accurately reflected by yolk sac genotyping, with the two tissues indicating genetic congruence, even when the conceptus was a mosaic of cells with distinct allele configurations. Nevertheless, low abundance of a variant allele may represent a private mutation occurring only in the yolk sac, and in those rare cases, additional genotyping to determine the mutational status of the embryo proper is warranted.
Collapse
Affiliation(s)
- Kayla T B Fuselier
- Department of Developmental Biology, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Claudia Kruger
- Department of Developmental Biology, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - J Michael Salbaum
- Department of Regulation of Gene Expression, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
17
|
Kolvenbach CM, Dworschak GC, Rieke JM, Woolf AS, Reutter H, Odermatt B, Hilger AC. Modelling human lower urinary tract malformations in zebrafish. Mol Cell Pediatr 2023; 10:2. [PMID: 36977792 PMCID: PMC10050536 DOI: 10.1186/s40348-023-00156-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Advances in molecular biology are improving our understanding of the genetic causes underlying human congenital lower urinary tract (i.e., bladder and urethral) malformations. This has recently led to the identification of the first disease-causing variants in the gene BNC2 for isolated lower urinary tract anatomical obstruction (LUTO), and of WNT3 and SLC20A1 as genes implicated in the pathogenesis of the group of conditions called bladder-exstrophy-epispadias complex (BEEC). Implicating candidate genes from human genetic data requires evidence of their influence on lower urinary tract development and evidence of the found genetic variants' pathogenicity. The zebrafish (Danio rerio) has many advantages for use as a vertebrate model organism for the lower urinary tract. Rapid reproduction with numerous offspring, comparable anatomical kidney and lower urinary tract homology, and easy genetic manipulability by Morpholino®-based knockdown or CRISPR/Cas editing are among its advantages. In addition, established marker staining for well-known molecules involved in urinary tract development using whole-mount in situ hybridization (WISH) and the usage of transgenic lines expressing fluorescent protein under a tissue-specific promoter allow easy visualization of phenotypic abnormalities of genetically modified zebrafish. Assays to examine the functionality of the excretory organs can also be modeled in vivo with the zebrafish. The approach of using these multiple techniques in zebrafish not only enables rapid and efficient investigation of candidate genes for lower urinary tract malformations derived from human data, but also cautiously allows transferability of causality from a non-mammalian vertebrate to humans.
Collapse
Affiliation(s)
- Caroline M Kolvenbach
- Institute of Anatomy, Medical Faculty, University of Bonn, Bonn, Germany.
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gabriel C Dworschak
- Institute of Anatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Department of Neuropediatrics, University Hospital Bonn, Bonn, Germany
| | - Johanna M Rieke
- Department of Pediatrics, Children's Hospital Medical Center, University Hospital Bonn, Bonn, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Heiko Reutter
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Odermatt
- Institute of Anatomy, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alina C Hilger
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
18
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
19
|
Durant-Vesga J, Suzuki N, Ochi H, Le Bouffant R, Eschstruth A, Ogino H, Umbhauer M, Riou JF. Retinoic acid control of pax8 during renal specification of Xenopus pronephros involves hox and meis3. Dev Biol 2023; 493:17-28. [PMID: 36279927 DOI: 10.1016/j.ydbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Development of the Xenopus pronephros relies on renal precursors grouped at neurula stage into a specific region of dorso-lateral mesoderm called the kidney field. Formation of the kidney field at early neurula stage is dependent on retinoic (RA) signaling acting upstream of renal master transcriptional regulators such as pax8 or lhx1. Although lhx1 might be a direct target of RA-mediated transcriptional activation in the kidney field, how RA controls the emergence of the kidney field remains poorly understood. In order to better understand RA control of renal specification of the kidney field, we have performed a transcriptomic profiling of genes affected by RA disruption in lateral mesoderm explants isolated prior to the emergence of the kidney field and cultured at different time points until early neurula stage. Besides genes directly involved in pronephric development (pax8, lhx1, osr2, mecom), hox (hoxa1, a3, b3, b4, c5 and d1) and the hox co-factor meis3 appear as a prominent group of genes encoding transcription factors (TFs) downstream of RA. Supporting the idea of a role of meis3 in the kidney field, we have observed that meis3 depletion results in a severe inhibition of pax8 expression in the kidney field. Meis3 depletion only marginally affects expression of lhx1 and aldh1a2 suggesting that meis3 principally acts upstream of pax8. Further arguing for a role of meis3 and hox in the control of pax8, expression of a combination of meis3, hoxb4 and pbx1 in animal caps induces pax8 expression, but not that of lhx1. The same combination of TFs is also able to transactivate a previously identified pax8 enhancer, Pax8-CNS1. Mutagenesis of potential PBX-Hox binding motifs present in Pax8-CNS1 further allows to identify two of them that are necessary for transactivation. Finally, we have tested deletions of regulatory sequences in reporter assays with a previously characterized transgene encompassing 36.5 kb of the X. tropicalis pax8 gene that allows expression of a truncated pax8-GFP fusion protein recapitulating endogenous pax8 expression. This transgene includes three conserved pax8 enhancers, Pax8-CNS1, Pax8-CNS2 and Pax8-CNS3. Deletion of Pax8-CNS1 alone does not affect reporter expression, but deletion of a 3.5 kb region encompassing Pax8-CNS1 and Pax8-CNS2 results in a severe inhibition of reporter expression both in the otic placode and kidney field domains.
Collapse
Affiliation(s)
- Jennifer Durant-Vesga
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Nanoka Suzuki
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan; Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Ronan Le Bouffant
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Alexis Eschstruth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Hajime Ogino
- Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Muriel Umbhauer
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Jean-François Riou
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France.
| |
Collapse
|
20
|
Heterozygous variants in the DVL2 interaction region of DACT1 cause CAKUT and features of Townes-Brocks syndrome 2. Hum Genet 2023; 142:73-88. [PMID: 36066768 PMCID: PMC9839807 DOI: 10.1007/s00439-022-02481-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Most patients with congenital anomalies of the kidney and urinary tract (CAKUT) remain genetically unexplained. In search of novel genes associated with CAKUT in humans, we applied whole-exome sequencing in a patient with kidney, anorectal, spinal, and brain anomalies, and identified a rare heterozygous missense variant in the DACT1 (dishevelled binding antagonist of beta catenin 1) gene encoding a cytoplasmic WNT signaling mediator. Our patient's features overlapped Townes-Brocks syndrome 2 (TBS2) previously described in a family carrying a DACT1 nonsense variant as well as those of Dact1-deficient mice. Therefore, we assessed the role of DACT1 in CAKUT pathogenesis. Taken together, very rare (minor allele frequency ≤ 0.0005) non-silent DACT1 variants were detected in eight of 209 (3.8%) CAKUT families, significantly more frequently than in controls (1.7%). All seven different DACT1 missense variants, predominantly likely pathogenic and exclusively maternally inherited, were located in the interaction region with DVL2 (dishevelled segment polarity protein 2), and biochemical characterization revealed reduced binding of mutant DACT1 to DVL2. Patients carrying DACT1 variants presented with kidney agenesis, duplex or (multi)cystic (hypo)dysplastic kidneys with hydronephrosis and TBS2 features. During murine development, Dact1 was expressed in organs affected by anomalies in patients with DACT1 variants, including the kidney, anal canal, vertebrae, and brain. In a branching morphogenesis assay, tubule formation was impaired in CRISPR/Cas9-induced Dact1-/- murine inner medullary collecting duct cells. In summary, we provide evidence that heterozygous hypomorphic DACT1 variants cause CAKUT and other features of TBS2, including anomalies of the skeleton, brain, distal digestive and genital tract.
Collapse
|
21
|
Tigano A, Russello MA. The genomic basis of reproductive and migratory behaviour in a polymorphic salmonid. Mol Ecol 2022; 31:6588-6604. [PMID: 36208020 DOI: 10.1111/mec.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 01/13/2023]
Abstract
Recent ecotypic differentiation provides unique opportunities to investigate the genomic basis and architecture of local adaptation, while offering insights into how species form and persist. Sockeye salmon (Oncorhynchus nerka) exhibit migratory and resident ("kokanee") ecotypes, which are further distinguished into shore-spawning and stream-spawning reproductive ecotypes. Here, we analysed 36 sockeye (stream-spawning) and kokanee (stream- and shore-spawning) genomes from a system where they co-occur and have recent common ancestry (Okanagan Lake/River in British Columbia, Canada) to investigate the genomic basis of reproductive and migratory behaviour. Examination of the genomic landscape of differentiation, differences in allele frequencies and genotype-phenotype associations revealed three main blocks of sequence differentiation on chromosomes 7, 12 and 20, associated with migratory behaviour, spawning location and spawning timing. Structural variants identified in these same areas suggest they could contribute to ecotypic differentiation directly as causal variants or via maintenance of their genomic architecture through recombination suppression mechanisms. Genes in these regions were related to spatial memory and swimming endurance (SYNGAP, TPM3), as well as eye and brain development (including SIX6), potentially associated with differences in migratory behaviour and visual habitats across spawning locations, respectively. Additional genes (GREB1L, ROCK1) identified here have been associated with timing of migration in other salmonids and could explain variation in timing of O. nerka spawning. Together, these results based on the joint analysis of sequence and structural variation represent a significant advance in our understanding of the genomic landscape of ecotypic differentiation at different stages in the speciation continuum.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael A Russello
- Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
22
|
Chen N, Song S, Bao X, Zhu L. Update on Mayer-Rokitansky-Küster-Hauser syndrome. Front Med 2022; 16:859-872. [PMID: 36562950 DOI: 10.1007/s11684-022-0969-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022]
Abstract
This review presents an update of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome on its etiologic, clinical, diagnostic, psychological, therapeutic, and reproductive aspects. The etiology of MRKH syndrome remains unclear due to its intrinsic heterogeneity. Nongenetic and genetic causes that may interact during the embryonic development have been proposed with no definitive etiopathogenesis identified. The proportion of concomitant extragenital malformations varies in different studies, and the discrepancies may be explained by ethnic differences. In addition to physical examination and pelvic ultrasound, the performance of pelvic magnetic resonance imaging is crucial in detecting the presence of rudimentary uterine endometrium. MRKH syndrome has long-lasting psychological effects on patients, resulting in low esteem, poor coping strategies, depression, and anxiety symptoms. Providing psychological counseling and peer support to diagnosed patients is recommended. Proper and timely psychological intervention could significantly improve a patient's outcome. Various nonsurgical and surgical methods have been suggested for treatment of MRKH syndrome. Due to the high success rate and minimal risk of complications, vaginal dilation has been proven to be the first-line therapy. Vaginoplasty is the second-line option for patients experiencing dilation failure. Uterine transplantation and gestational surrogacy are options for women with MRKH syndrome to achieve biological motherhood.
Collapse
Affiliation(s)
- Na Chen
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shuang Song
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinmiao Bao
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Peking Union Medical College, M.D. Program, Beijing, 100730, China
| | - Lan Zhu
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
23
|
Bartik ZI, Sillén U, Djos A, Lindholm A, Fransson S. Whole exome sequencing identifies KIF26B, LIFR and LAMC1 mutations in familial vesicoureteral reflux. PLoS One 2022; 17:e0277524. [PMID: 36417404 PMCID: PMC9683562 DOI: 10.1371/journal.pone.0277524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Vesicoureteral reflux (VUR) is a common urological problem in children and its hereditary nature is well recognised. However, despite decades of research, the aetiological factors are poorly understood and the genetic background has been elucidated in only a minority of cases. To explore the molecular aetiology of primary hereditary VUR, we performed whole-exome sequencing in 13 large families with at least three affected cases. A large proportion of our study cohort had congenital renal hypodysplasia in addition to VUR. This high-throughput screening revealed 23 deleterious heterozygous variants in 19 candidate genes associated with VUR or nephrogenesis. Sanger sequencing and segregation analysis in the entire families confirmed the following findings in three genes in three families: frameshift LAMC1 variant and missense variants of KIF26B and LIFR genes. Rare variants were also found in SALL1, ROBO2 and UPK3A. These gene variants were present in individual cases but did not segregate with disease in families. In all, we demonstrate a likely causal gene variant in 23% of the families. Whole-exome sequencing technology in combination with a segregation study of the whole family is a useful tool when it comes to understanding pathogenesis and improving molecular diagnostics of this highly heterogeneous malformation.
Collapse
Affiliation(s)
- Zsuzsa I. Bartik
- Department of Paediatric Surgery, Paediatric Uronephrologic Centre, Queen Silvia Children’s Hospital, Göteborg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulla Sillén
- Department of Paediatric Surgery, Paediatric Uronephrologic Centre, Queen Silvia Children’s Hospital, Göteborg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lindholm
- Department of Paediatrics, County Hospital Ryhov, Jönköping, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
24
|
Wu S, Wang X, Dai S, Zhang G, Zhou J, Shen Y. A novel missense mutation in GREB1L identified in a three-generation family with renal hypodysplasia/aplasia-3. Orphanet J Rare Dis 2022; 17:413. [PMID: 36371238 PMCID: PMC9652819 DOI: 10.1186/s13023-022-02553-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Renal hypodysplasia/aplasia-3 (RHDA3), as the most severe end of the spectrum of congenital anomalies of the kidney and urinary tract, is mainly caused by mutations in GREB1L. However, the mutations in GREB1L identified to date only explain a limited proportion of RHDA3 cases, and the mechanism of GREB1L mutations causing RHDA3 is unclear. RESULTS According to whole-exome sequencing, a three-generation family suffering from RHDA3 was investigated with a novel missense mutation in GREB1L, c.4507C>T. All three-generation patients suffered from unilateral absent kidney. This missense mutation resulted in sharp downregulation of mRNA and protein expression, which might lead to RHDA3. Mechanistically, through RNA-sequencing, it was found that the mRNA levels of PAX2 and PTH1R, which are key molecules involved in the development of the kidney, were significantly downregulated by knocking out GREB1L in vitro. CONCLUSIONS This novel missense mutation in GREB1L can be helpful in the genetic diagnosis of RHDA3, and the discovery of the potential mechanism that GREB1L mutations involved in RHDA3 pathogenesis can promote the adoption of optimal treatment measures and the development of personalized medicine directly targeting these effects.
Collapse
Affiliation(s)
- Sixian Wu
- grid.13291.380000 0001 0807 1581Joint Laboratory of Reproductive Medicine, Gynaecology and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Xiang Wang
- grid.13291.380000 0001 0807 1581Joint Laboratory of Reproductive Medicine, Gynaecology and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Siyu Dai
- grid.13291.380000 0001 0807 1581Joint Laboratory of Reproductive Medicine, Gynaecology and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Guohui Zhang
- grid.13291.380000 0001 0807 1581Joint Laboratory of Reproductive Medicine, Gynaecology and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Jiaojiao Zhou
- grid.412901.f0000 0004 1770 1022Division of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Ying Shen
- grid.13291.380000 0001 0807 1581Joint Laboratory of Reproductive Medicine, Gynaecology and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
25
|
Adadey SM, Aboagye ET, Esoh K, Acharya A, Bharadwaj T, Lin NS, Amenga-Etego L, Awandare GA, Schrauwen I, Leal SM, Wonkam A. A novel autosomal dominant GREB1L variant associated with non-syndromic hearing impairment in Ghana. BMC Med Genomics 2022; 15:237. [PMID: 36357908 PMCID: PMC9648021 DOI: 10.1186/s12920-022-01391-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Childhood hearing impairment (HI) is genetically heterogeneous with many implicated genes, however, only a few of these genes are reported in African populations. METHODS This study used exome and Sanger sequencing to resolve the possible genetic cause of non-syndromic HI in a Ghanaian family. RESULTS We identified a novel variant c.3041G > A: p.(Gly1014Glu) in GREB1L (DFNA80) in the index case. The GREB1L: p.(Gly1014Glu) variant had a CADD score of 26.5 and was absent from human genomic databases such as TopMed and gnomAD. In silico homology protein modeling approaches displayed major structural differences between the wildtype and mutant proteins. Additionally, the variant was predicted to probably affect the secondary protein structure that may impact its function. Publicly available expression data shows a higher expression of Greb1L in the inner ear of mice during development and a reduced expression in adulthood, underscoring its importance in the development of the inner ear structures. CONCLUSION This report on an African individual supports the association of GREB1L variant with non-syndromic HI and extended the evidence of the implication of GREB1L variants in HI in diverse populations.
Collapse
Affiliation(s)
- Samuel Mawuli Adadey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, LG 54, Accra, Ghana
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Elvis Twumasi Aboagye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, LG 54, Accra, Ghana
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Kevin Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Anushree Acharya
- Department of Neurology, Center for Statistical Genetics, Sergievsky Center, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Thashi Bharadwaj
- Department of Neurology, Center for Statistical Genetics, Sergievsky Center, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Nicole S Lin
- Department of Neurology, Center for Statistical Genetics, Sergievsky Center, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, LG 54, Accra, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, LG 54, Accra, Ghana
| | - Isabelle Schrauwen
- Department of Neurology, Center for Statistical Genetics, Sergievsky Center, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Suzanne M Leal
- Department of Neurology, Center for Statistical Genetics, Sergievsky Center, Columbia University Medical Centre, New York, NY, 10032, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
Buchert R, Schenk E, Hentrich T, Weber N, Rall K, Sturm M, Kohlbacher O, Koch A, Riess O, Brucker SY, Schulze-Hentrich JM. Genome Sequencing and Transcriptome Profiling in Twins Discordant for Mayer-Rokitansky-Küster-Hauser Syndrome. J Clin Med 2022; 11:jcm11195598. [PMID: 36233463 PMCID: PMC9573672 DOI: 10.3390/jcm11195598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
To identify potential genetic causes for Mayer-Rokitansky-Küster-Hauser syndrome (MRKH), we analyzed blood and rudimentary uterine tissue of 5 MRKH discordant monozygotic twin pairs. Assuming that a variant solely identified in the affected twin or affected tissue could cause the phenotype, we identified a mosaic variant in ACTR3B with high allele frequency in the affected tissue, low allele frequency in the blood of the affected twin, and almost absent in blood of the unaffected twin. Focusing on MRKH candidate genes, we detected a pathogenic variant in GREB1L in one twin pair and their unaffected mother showing a reduced phenotypic penetrance. Furthermore, two variants of unknown clinical significance in PAX8 and WNT9B were identified. In addition, we conducted transcriptome analysis of affected tissue and observed perturbations largely similar to those in sporadic cases. These shared transcriptional changes were enriched for terms associated with estrogen and its receptors pointing at a role of estrogen in MRKH pathology. Our genome sequencing approach of blood and uterine tissue of discordant twins is the most extensive study performed on twins discordant for MRKH so far. As no clear pathogenic differences were detected, research to evaluate other regulatory layers are required to better understand the complex etiology of MRKH.
Collapse
Affiliation(s)
- Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Elisabeth Schenk
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Nico Weber
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Katharina Rall
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
- Rare Disease Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Germany
| | - André Koch
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Rare Disease Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Sara Y. Brucker
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
- Rare Disease Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Julia M. Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-29-72276
| |
Collapse
|
27
|
Missense Variants in GFRA1 and NPNT Are Associated with Congenital Anomalies of the Kidney and Urinary Tract. Genes (Basel) 2022; 13:genes13101687. [PMID: 36292572 PMCID: PMC9601797 DOI: 10.3390/genes13101687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
The use of next-generation sequencing (NGS) has helped in identifying many genes that cause congenital anomalies of the kidney and urinary tract (CAKUT). Bilateral renal agenesis (BRA) is the most severe presentation of CAKUT, and its association with autosomal recessively inherited genes is expanding. Highly consanguineous populations can impact the detection of recessively inherited genes. Here, we report two families harboring homozygous missense variants in recently described genes, NPNT and GFRA1. Two consanguineous families with neonatal death due to CAKUT were investigated. Fetal ultrasound of probands identified BRA in the first family and severe renal cystic dysplasia in the second family. Exome sequencing coupled with homozygosity mapping was performed, and Sanger sequencing was used to confirm segregation of alleles in both families. In the first family with BRA, we identified a homozygous missense variant in GFRA1: c.362A>G; p.(Tyr121Cys), which is predicted to damage the protein structure. In the second family with renal cystic dysplasia, we identified a homozygous missense variant in NPNT: c.56C>G; p.(Ala19Gly), which is predicted to disrupt the signal peptide site. We report two Saudi Arabian consanguineous families with CAKUT phenotypes that included renal agenesis caused by missense variants in GFRA1 and NPNT, confirming the role of these two genes in human kidney development.
Collapse
|
28
|
State of the Science for Kidney Disorders in Phelan-McDermid Syndrome: UPK3A, FBLN1, WNT7B, and CELSR1 as Candidate Genes. Genes (Basel) 2022; 13:genes13061042. [PMID: 35741804 PMCID: PMC9223119 DOI: 10.3390/genes13061042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder caused by chromosomal rearrangements affecting the 22q13.3 region or by SHANK3 pathogenic variants. The scientific literature suggests that up to 40% of individuals with PMS have kidney disorders, yet little research has been conducted on the renal system to assess candidate genes attributed to these disorders. Therefore, we first conducted a systematic review of the literature to identify kidney disorders in PMS and then pooled the data to create a cohort of individuals to identify candidate genes for renal disorders in PMS. We found 7 types of renal disorders reported: renal cysts, renal hypoplasia or agenesis, hydronephrosis, vesicoureteral reflux, kidney dysplasia, horseshoe kidneys, and pyelectasis. Association analysis from the pooled data from 152 individuals with PMS across 22 articles identified three genomic regions spanning chromosomal bands 22q13.31, 22q13.32, and 22q13.33, significantly associated with kidney disorders. We propose UPK3A, FBLN1, WNT7B, and CELSR1, located from 4.5 Mb to 5.5 Mb from the telomere, as candidate genes. Our findings support the hypothesis that genes included in this region may play a role in the pathogenesis of kidney disorders in PMS.
Collapse
|
29
|
Reuter AS, Stern D, Bernard A, Goossens C, Lavergne A, Flasse L, Von Berg V, Manfroid I, Peers B, Voz ML. Identification of an evolutionarily conserved domain in Neurod1 favouring enteroendocrine versus goblet cell fate. PLoS Genet 2022; 18:e1010109. [PMID: 35286299 PMCID: PMC8959185 DOI: 10.1371/journal.pgen.1010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/28/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
ARP/ASCL transcription factors are key determinants of cell fate specification in a wide variety of tissues, coordinating the acquisition of generic cell fates and of specific subtype identities. How these factors, recognizing highly similar DNA motifs, display specific activities, is not yet fully understood. To address this issue, we overexpressed different ARP/ASCL factors in zebrafish ascl1a-/- mutant embryos to determine which ones are able to rescue the intestinal secretory lineage. We found that Ascl1a/b, Atoh1a/b and Neurod1 factors are all able to trigger the first step of the secretory regulatory cascade but distinct secretory cells are induced by these factors. Indeed, Neurod1 rescues the enteroendocrine lineage while Ascl1a/b and Atoh1a/b rescue the goblet cells. Gain-of-function experiments with Ascl1a/Neurod1 chimeric proteins revealed that the functional divergence is encoded by a 19-aa ultra-conserved element (UCE), present in all Neurod members but absent in the other ARP/ASCL proteins. Importantly, inserting the UCE into the Ascl1a protein reverses the rescuing capacity of this Ascl1a chimeric protein that cannot rescue the goblet cells anymore but can efficiently rescue the enteroendocrine cells. This novel domain acts indeed as a goblet cell fate repressor that inhibits gfi1aa expression, known to be important for goblet cell differentiation. Deleting the UCE domain of the endogenous Neurod1 protein leads to an increase in the number of goblet cells concomitant with a reduction of the enteroendocrine cells, phenotype also observed in the neurod1 null mutant. This highlights the crucial function of the UCE domain for NeuroD1 activity in the intestine. As Gfi1 acts as a binary cell fate switch in several tissues where Neurod1 is also expressed, we can envision a similar role of the UCE in other tissues, allowing Neurod1 to repress Gfi1 to influence the balance between cell fates. It is not yet clear how highly related factors like the ARP/Ascl factors display specific activities even though they recognize the same consensus DNA motif. This specificity could be provided by their cellular environment or by intrinsic properties of the factors themselves. To distinguish between these two possibilities, we have expressed several ARP/Ascl factors in the ascl1a-/- mutant to determine which ones are able to rescue the intestinal secretory defects. We found that Ascl1a/b and Atoh1a/b are able to rescue the goblet cells while Neurod1 rescues the enteroendocrine lineage. Furthermore, we show that the specific Neurod1 activity is conferred by the presence of a 19-aa ultra-conserved element (UCE), present in all vertebrate Neurod members but absent in all the other ARP/ASCL proteins. This UCE domain, so far uncharacterized, acts as a goblet cell fate repressor and inhibits gfi1aa expression, known to be important for goblet cell differentiation. Inserting the UCE into Ascl1a protein reverses the rescuing capacity of this chimeric protein that cannot rescue the goblet cells anymore but can efficiently rescue the enteroendocrine cells. This study therefore highlights an unique intrinsic property of Neurod1 allowing it to repress Gfi1 to influence the balance between cell fates. As Gfi1 acts as a binary cell fate switch in several tissues where Neurod1 is also expressed, we can envision a similar role of the UCE in other tissues, allowing Neurod1 to repress Gfi1 to influence the balance between cell fates.
Collapse
Affiliation(s)
- Anne Sophie Reuter
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - David Stern
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Alice Bernard
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Chiara Goossens
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Arnaud Lavergne
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Lydie Flasse
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Virginie Von Berg
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Marianne L. Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
30
|
Oud MS, Smits RM, Smith HE, Mastrorosa FK, Holt GS, Houston BJ, de Vries PF, Alobaidi BKS, Batty LE, Ismail H, Greenwood J, Sheth H, Mikulasova A, Astuti GDN, Gilissen C, McEleny K, Turner H, Coxhead J, Cockell S, Braat DDM, Fleischer K, D’Hauwers KWM, Schaafsma E, Genetics of Male Infertility Initiative (GEMINI) consortium ConradDonald F.22NagirnajaLiina22AstonKenneth I.23CarrellDouglas T.23HotalingJames M.23JenkinsTimothy G.23McLachlanRob2425O’BryanMoira K.4SchlegelPeter N.26EisenbergMichael L.27SandlowJay I.28JungheimEmily S.29OmurtagKenan R.29LopesAlexandra M.3031SeixasSusana3031CarvalhoFilipa3032FernandesSusana3032BarrosAlberto3032GonçalvesJoão3334CaetanoIris33PintoGraça35CorreiaSónia35LaanMaris36PunabMargus37MeytsEwa Rajpert-De38JørgensenNiels38AlmstrupKristian38KrauszCsilla G.3940JarviKeith A.41, Nagirnaja L, Conrad DF, Friedrich C, Kliesch S, Aston KI, Riera-Escamilla A, Krausz C, Gonzaga-Jauregui C, Santibanez-Koref M, Elliott DJ, Vissers LELM, Tüttelmann F, O’Bryan MK, Ramos L, Xavier MJ, van der Heijden GW, Veltman JA. A de novo paradigm for male infertility. Nat Commun 2022; 13:154. [PMID: 35013161 PMCID: PMC8748898 DOI: 10.1038/s41467-021-27132-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10-5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10-4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.
Collapse
Affiliation(s)
- M. S. Oud
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - R. M. Smits
- grid.10417.330000 0004 0444 9382Department of Obstetrics and Gynaecology, Radboudumc, Nijmegen, The Netherlands
| | - H. E. Smith
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - F. K. Mastrorosa
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - G. S. Holt
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - B. J. Houston
- grid.1008.90000 0001 2179 088XSchool of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC Australia
| | - P. F. de Vries
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - B. K. S. Alobaidi
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - L. E. Batty
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - H. Ismail
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - J. Greenwood
- grid.420004.20000 0004 0444 2244Department of Genetic Medicine, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - H. Sheth
- Foundation for Research in Genetics and Endocrinology, Institute of Human Genetics, Ahmedabad, India
| | - A. Mikulasova
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - G. D. N. Astuti
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands ,grid.412032.60000 0001 0744 0787Division of Human Genetics, Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - C. Gilissen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - K. McEleny
- grid.420004.20000 0004 0444 2244Newcastle Fertility Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - H. Turner
- grid.420004.20000 0004 0444 2244Department of Cellular Pathology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - J. Coxhead
- grid.1006.70000 0001 0462 7212Genomics Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - S. Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences New, castle University, Newcastle upon Tyne, UK
| | - D. D. M. Braat
- grid.10417.330000 0004 0444 9382Department of Obstetrics and Gynaecology, Radboudumc, Nijmegen, The Netherlands
| | - K. Fleischer
- grid.10417.330000 0004 0444 9382Department of Obstetrics and Gynaecology, Radboudumc, Nijmegen, The Netherlands
| | - K. W. M. D’Hauwers
- grid.10417.330000 0004 0444 9382Department of Urology, Radboudumc, Nijmegen, The Netherlands
| | - E. Schaafsma
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| | | | - L. Nagirnaja
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - D. F. Conrad
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - C. Friedrich
- grid.5949.10000 0001 2172 9288Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - S. Kliesch
- grid.16149.3b0000 0004 0551 4246Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - K. I. Aston
- grid.223827.e0000 0001 2193 0096Department of Surgery, Division of Urology, University of Utah School of Medicine, Salt Lake City, UT USA
| | - A. Riera-Escamilla
- grid.418813.70000 0004 1767 1951Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia Spain
| | - C. Krausz
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - C. Gonzaga-Jauregui
- grid.418961.30000 0004 0472 2713Regeneron Genetics Center, Tarrytown, NY USA
| | - M. Santibanez-Koref
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - D. J. Elliott
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - L. E. L. M. Vissers
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - F. Tüttelmann
- grid.5949.10000 0001 2172 9288Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - M. K. O’Bryan
- grid.1008.90000 0001 2179 088XSchool of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC Australia
| | - L. Ramos
- grid.10417.330000 0004 0444 9382Department of Obstetrics and Gynaecology, Radboudumc, Nijmegen, The Netherlands
| | - M. J. Xavier
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - G. W. van der Heijden
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department of Obstetrics and Gynaecology, Radboudumc, Nijmegen, The Netherlands
| | - J. A. Veltman
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
31
|
Gong P, Pelletier M, Silverman N, Kuhlman K, Wallerstein R. Challenges in genetic counseling for congenital anomalies of the kidneys and urinary tract (CAKUT) spectrum. CASE REPORTS IN PERINATAL MEDICINE 2022; 11:20210063. [PMID: 40041231 PMCID: PMC11800668 DOI: 10.1515/crpm-2021-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/16/2022] [Indexed: 03/06/2025]
Abstract
Objectives Congenital anomalies of the kidneys and urinary tract (CAKUT) are one of the most common sets of congenital defects. Bilateral renal agenesis is a severe presentation of the CAKUT spectrum. Case presentation We report on two families who presented with recurrent pregnancies affected with bilateral renal agenesis and negative family histories. Likely pathogenic variants in the GREB1L gene were identified in the affected pregnancies and subsequently in their asymptomatic fathers. The first familial variant was identified by a multi-gene CAKUT panel and the second by whole exome sequencing. Renal ultrasound showed the father in family 1 had asymptomatic unilateral pelvic kidney and the father in family 2 had no apparent renal anomalies. Conclusions Recent identification of genes responsible for CAKUT allows for genetic testing of affected families. Identification of the genetic etiology of CAKUT cases has multiple benefits including accurate risk assessment and reproductive options. Genetic counseling around CAKUT is challenging due to the extreme variability in presentation of the disorders.
Collapse
Affiliation(s)
- Ping Gong
- Integrated Genetics, Genetic Counseling and Services, Laboratory Corporation of America, Monrovia, CA, USA
| | - Myriam Pelletier
- Integrated Genetics, Genetic Counseling and Services, Laboratory Corporation of America, Monrovia, CA, USA
| | - Neil Silverman
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Center for Fetal Medicine and Women’s Ultrasound, Los Angeles, CA, USA
| | - Kathleen Kuhlman
- Valley Perinatal Services, Maternal Fetal Medicine, Phoenix, AZ, USA
| | - Robert Wallerstein
- Integrated Genetics, Genetic Counseling and Services, Laboratory Corporation of America, Monrovia, CA, USA
| |
Collapse
|
32
|
Machado DA, Ontiveros AE, Behringer RR. Mammalian uterine morphogenesis and variations. Curr Top Dev Biol 2022; 148:51-77. [DOI: 10.1016/bs.ctdb.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Willis SC, Hess JE, Fryer JK, Whiteaker JM, Narum SR. Genomic region associated with run timing has similar haplotypes and phenotypic effects across three lineages of Chinook salmon. Evol Appl 2021; 14:2273-2285. [PMID: 34603498 PMCID: PMC8477596 DOI: 10.1111/eva.13290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Conserving life-history variation is a stated goal of many management programs, but the most effective means by which to accomplish this are often far from clear. Early- and late-migrating forms of Chinook salmon (Oncorhynchus tshawytscha) face unequal pressure from natural and anthropogenic forces that may alter the impacts of genetic variation underlying heritable migration timing. Genomic regions of chromosome 28 are known to be strongly associated with migration variation in adult Chinook salmon, but it remains unclear whether there is consistent association among diverse lineages and populations in large basins such as the Columbia River. With high-throughput genotyping (GT-seq) and phenotyping methods, we examined the association of genetic variation in 28 markers (spanning GREB1L to ROCK1 of chromosome 28) with individual adult migration timing characteristics gleaned from passive integrated transponder recordings of over 5000 Chinook salmon from the three major phylogeographic lineages that inhabit the Columbia River Basin. Despite the strong genetic differences among them in putatively neutral genomic regions, each of the three lineages exhibited very similar genetic variants in the chromosome 28 region that were significantly associated with adult migration timing phenotypes. This is particularly notable for the interior stream-type lineage, which exhibits an earlier and more constrained freshwater entry than the other lineages. In both interior stream-type and interior ocean-type lineages of Chinook salmon, heterozygotes of the most strongly associated linkage groups had largely intermediate migration timing relative to homozygotes, and results indicate codominance or possibly marginal partial dominance of the allele associated with early migration. Our results lend support to utilization of chromosome 28 variation in tracking and predicting run timing in these lineages of Chinook salmon in the Columbia River.
Collapse
Affiliation(s)
- Stuart C. Willis
- Hagerman Genetics LaboratoryColumbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Jon E. Hess
- Hagerman Genetics LaboratoryColumbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Jeff K. Fryer
- Fishery Science DepartmentColumbia River Inter‐Tribal Fish CommissionPortlandORUSA
| | - John M. Whiteaker
- Fishery Science DepartmentColumbia River Inter‐Tribal Fish CommissionPortlandORUSA
| | - Shawn R. Narum
- Hagerman Genetics LaboratoryColumbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| |
Collapse
|
34
|
Christians A, Weiss AC, Martens H, Klopf MG, Hennies I, Haffner D, Kispert A, Weber RG. Inflammation-like changes in the urothelium of Lifr-deficient mice and LIFR-haploinsufficient humans with urinary tract anomalies. Hum Mol Genet 2021; 29:1192-1204. [PMID: 32179912 DOI: 10.1093/hmg/ddaa048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/16/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of end-stage kidney disease in children. While the genetic aberrations underlying CAKUT pathogenesis are increasingly being elucidated, their consequences on a cellular and molecular level commonly remain unclear. Recently, we reported rare heterozygous deleterious LIFR variants in 3.3% of CAKUT patients, including a novel de novo frameshift variant, identified by whole-exome sequencing, in a patient with severe bilateral CAKUT. We also demonstrated CAKUT phenotypes in Lifr-/- and Lifr+/- mice, including a narrowed ureteric lumen due to muscular hypertrophy and a thickened urothelium. Here, we show that both in the ureter and bladder of Lifr-/- and Lifr+/- embryos, differentiation of the three urothelial cell types (basal, intermediate and superficial cells) occurs normally but that the turnover of superficial cells is elevated due to increased proliferation, enhanced differentiation from their progenitor cells (intermediate cells) and, importantly, shedding into the ureteric lumen. Microarray-based analysis of genome-wide transcriptional changes in Lifr-/- versus Lifr+/+ ureters identified gene networks associated with an antimicrobial inflammatory response. Finally, in a reverse phenotyping effort, significantly more superficial cells were detected in the urine of CAKUT patients with versus without LIFR variants indicating conserved LIFR-dependent urinary tract changes in the murine and human context. Our data suggest that LIFR signaling is required in the epithelium of the urinary tract to suppress an antimicrobial response under homeostatic conditions and that genetically induced inflammation-like changes underlie CAKUT pathogenesis in Lifr deficiency and LIFR haploinsufficiency.
Collapse
Affiliation(s)
- Anne Christians
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Maximilian Georg Klopf
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
35
|
Pontecorvi P, Megiorni F, Camero S, Ceccarelli S, Bernardini L, Capalbo A, Anastasiadou E, Gerini G, Messina E, Perniola G, Benedetti Panici P, Grammatico P, Pizzuti A, Marchese C. Altered Expression of Candidate Genes in Mayer-Rokitansky-Küster-Hauser Syndrome May Influence Vaginal Keratinocytes Biology: A Focus on Protein Kinase X. BIOLOGY 2021; 10:biology10060450. [PMID: 34063745 PMCID: PMC8223793 DOI: 10.3390/biology10060450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare and complex disease defined by congenital aplasia of the vagina and uterus in 46,XX women, often associated with kidney and urinary tract anomalies. The aetiopathogenesis of MRKH syndrome is still largely unknown. Herein, we investigated the role of selected candidate genes in the aetiopathogenesis of MRKH syndrome, with a focus on PRKX, which encodes for protein kinase X. Through RT-qPCR analyses performed on vaginal dimple samples from patients, and principal component analysis (PCA), we highlighted a phenotype-related expression pattern of PRKX, MUC1, HOXC8 and GREB1L in MRKH patients. By using an in vitro approach, we proved that PRKX ectopic overexpression in a cell model of vaginal keratinocytes promotes cell motility through epithelial-to-mesenchymal transition (EMT) activation, a fundamental process in urogenital tract morphogenesis. Moreover, our findings showed that PRKX upregulation in vaginal keratinocytes is able to affect transcriptional levels of HOX genes, implicated in urinary and genital tract development. Our study identified the dysregulation of PRKX expression as a possible molecular cause for MRKH syndrome. Moreover, we propose the specific role of PRKX in vaginal keratinocyte biology as one of the possible mechanisms underlying this complex disease.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Simona Camero
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Laura Bernardini
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Anna Capalbo
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Paola Grammatico
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University of Rome-San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152 Rome, Italy;
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
- Correspondence: ; Tel.: +39-06-4997-2872
| |
Collapse
|
36
|
Santana Gonzalez L, Rota IA, Artibani M, Morotti M, Hu Z, Wietek N, Alsaadi A, Albukhari A, Sauka-Spengler T, Ahmed AA. Mechanistic Drivers of Müllerian Duct Development and Differentiation Into the Oviduct. Front Cell Dev Biol 2021; 9:605301. [PMID: 33763415 PMCID: PMC7982813 DOI: 10.3389/fcell.2021.605301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
The conduits of life; the animal oviducts and human fallopian tubes are of paramount importance for reproduction in amniotes. They connect the ovary with the uterus and are essential for fertility. They provide the appropriate environment for gamete maintenance, fertilization and preimplantation embryonic development. However, serious pathologies, such as ectopic pregnancy, malignancy and severe infections, occur in the oviducts. They can have drastic effects on fertility, and some are life-threatening. Despite the crucial importance of the oviducts in life, relatively little is known about the molecular drivers underpinning the embryonic development of their precursor structures, the Müllerian ducts, and their successive differentiation and maturation. The Müllerian ducts are simple rudimentary tubes comprised of an epithelial lumen surrounded by a mesenchymal layer. They differentiate into most of the adult female reproductive tract (FRT). The earliest sign of Müllerian duct formation is the thickening of the anterior mesonephric coelomic epithelium to form a placode of two distinct progenitor cells. It is proposed that one subset of progenitor cells undergoes partial epithelial-mesenchymal transition (pEMT), differentiating into immature Müllerian luminal cells, and another subset undergoes complete EMT to become Müllerian mesenchymal cells. These cells invaginate and proliferate forming the Müllerian ducts. Subsequently, pEMT would be reversed to generate differentiated epithelial cells lining the fully formed Müllerian lumen. The anterior Müllerian epithelial cells further specialize into the oviduct epithelial subtypes. This review highlights the key established molecular and genetic determinants of the processes involved in Müllerian duct development and the differentiation of its upper segment into oviducts. Furthermore, an extensive genome-wide survey of mouse knockout lines displaying Müllerian or oviduct phenotypes was undertaken. In addition to widely established genetic determinants of Müllerian duct development, our search has identified surprising associations between loss-of-function of several genes and high-penetrance abnormalities in the Müllerian duct and/or oviducts. Remarkably, these associations have not been investigated in any detail. Finally, we discuss future directions for research on Müllerian duct development and oviducts.
Collapse
Affiliation(s)
- Laura Santana Gonzalez
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ioanna A Rota
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Developmental Immunology Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mara Artibani
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matteo Morotti
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Zhiyuan Hu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Nina Wietek
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Abdulkhaliq Alsaadi
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ashwag Albukhari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Kyei Barffour I, Kyei Baah Kwarkoh R. GREB1L as a candidate gene of Mayer-Rokitansky-Küster-Hauser Syndrome. Eur J Med Genet 2021; 64:104158. [PMID: 33548512 DOI: 10.1016/j.ejmg.2021.104158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 01/30/2021] [Indexed: 01/14/2023]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome is a sex development disorder that affects 1 in every 4500 46, XX live births. At least a subset of MRKH syndrome is genetically related to which various candidate genes have been identified. The growth regulation by estrogen in breast cancer 1-like gene (GREB1L) is an androgen-regulated gene reported to be a co-activator of the retinoic acid receptor gene (RAR). Thus expression levels of GREB1L have implications on renal system cellular differentiation, morphogenesis, and homeostasis in vertebrates. Variants of GREB1L have been reported in familial and sporadic MRKH Syndrome and more importantly, in a three-generation family ofMRKH syndrome propositae. Much the same way, Mutants of GREB1L have also been identified in isolated bilateral renal agenesis and deafness both of which are extra-genital tract anomalies in MRKH type 2. Again, renal agenesis transgenic mice have been produced from an E13.5 CRISPR/cas9 GREB1L mutagenesis. Though no GREB1L mutation has been reported in cardiac malformation, there is evidence that GREB1L is involved in ventricular development. Here, we intorigate evidence that projects GREB1L as a candidate gene of Mayer-Rokitansky-Küster-Hauser Syndrome and propose that functional validation analysis to that effect is imparative.
Collapse
Affiliation(s)
- Isaac Kyei Barffour
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana.
| | - Roselind Kyei Baah Kwarkoh
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| |
Collapse
|
38
|
Lasić V, Kosović I, Jurić M, Racetin A, Čurčić J, Šolić I, Lozić M, Filipović N, Šoljić V, Martinović V, Saraga-Babić M, Vukojević K. GREB1L, CRELD2 and ITGA10 expression in the human developmental and postnatal kidneys: an immunohistochemical study. Acta Histochem 2021; 123:151679. [PMID: 33460985 DOI: 10.1016/j.acthis.2021.151679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/19/2020] [Accepted: 01/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aim of our study is to provide an insight into the genetic expression landscape of GREB1L, ITGA10 and CRELD2 which are important in human genitourinary tract development which might help elucidate the critical stages for the onset of kidney anomalies. METHODS Morphological parameters were analyzed using immunohistochemistry on human foetal (13-38 w) and postnatal (1.5 and 7.5y) human kidney samples. RESULTS GREB1L marker had a strong intensity and the highest rate in proximal tubules (PTC) of 1.5 years' kidney (90.25%). In the distal tubules (DCT) there were statistically significant differences in 13 w, 15 w, 16 w, 21 w, 38 w and 7.5y regarding 1.5y (Kruskal-Wallis test, p < 0.001). There was significantly more GREB1L in the glomeruli at 21 w and 38 w in regard to all other stages (Kruskal-Wallis test, p < 0.01). ITGA10 staining intensity was strongest in PCT with the highest rate in 13 w (92.75%), while the lowest rate was found in glomeruli and DCT (Kruskal-Wallis test, p < 0.001). CRELD2 had the strongest staining intensity in PCT with the highest rate in 13 w and 1.5y (92.25%) and lowest in the glomeruli of 7.5 years (24.3 %). In DCT there were statistically significant differences in CRELD2 positive cells in 13 w, 15 w, 16 w, 21 w, 38 w and 7.5y regarding 1.5y (Kruskal-Wallis test, p < 0.01). ITGA10 and CRELD2 co-localised in the postnatal period in DCT. CONCLUSION High kidney expressions of GREB1L, ITGA10 and CRELD2 even in the postnatal period implicate their importance not only for the onset of CAKUT in the case of their mutation but also for maintenance of kidney homeostasis.
Collapse
|
39
|
Arora V, Khan S, W. El-Hattab A, Dua Puri R, Rocha ME, Merdzanic R, Paknia O, Beetz C, Rolfs A, Bertoli-Avella AM, Bauer P, Verma IC. Biallelic Pathogenic GFRA1 Variants Cause Autosomal Recessive Bilateral Renal Agenesis. J Am Soc Nephrol 2021; 32:223-228. [PMID: 33020172 PMCID: PMC7894660 DOI: 10.1681/asn.2020040478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/30/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) are one of the most common malformations identified in the fetal stage. Bilateral renal agenesis (BRA) represents the most severe and fatal form of CAKUT. Only three genes have been confirmed to have a causal role in humans (ITGA8, GREB1L, and FGF20). METHODS Genome sequencing within a diagnostic setting and combined data repository analysis identified a novel gene. RESULTS Two patients presented with BRA, detected during the prenatal period, without additional recognizable malformations. They had parental consanguinity and similarly affected, deceased siblings, suggesting autosomal recessive inheritance. Evaluation of homozygous regions in patient 1 identified a novel, nonsense variant in GFRA1 (NM_001348097.1:c.676C>T, p.[Arg226*]). We identified 184 patients in our repository with renal agenesis and analyzed their exome/genome data. Of these 184 samples, 36 were from patients who presented with isolated renal agenesis. Two of them had loss-of-function variants in GFRA1. The second patient was homozygous for a frameshift variant (NM_001348097.1:c.1294delA, p.[Thr432Profs*13]). The GFRA1 gene encodes a receptor on the Wolffian duct that regulates ureteric bud outgrowth in the development of a functional renal system, and has a putative role in the pathogenesis of Hirschsprung disease. CONCLUSIONS These findings strongly support the causal role of GFRA1-inactivating variants for an autosomal recessive, nonsyndromic form of BRA. This knowledge will enable early genetic diagnosis and better genetic counseling for families with BRA.
Collapse
Affiliation(s)
- Veronica Arora
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Ayman W. El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | | | | | | | | | - Arndt Rolfs
- CENTOGENE GmbH, Rostock, Germany
- University of Rostock, Rostock, Germany
| | | | | | - Ishwar C. Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
40
|
Willis SC, Hess JE, Fryer JK, Whiteaker JM, Brun C, Gerstenberger R, Narum SR. Steelhead ( Oncorhynchus mykiss) lineages and sexes show variable patterns of association of adult migration timing and age-at-maturity traits with two genomic regions. Evol Appl 2020; 13:2836-2856. [PMID: 33294026 PMCID: PMC7691471 DOI: 10.1111/eva.13088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
As life history diversity plays a critical role in supporting the resilience of exploited populations, understanding the genetic basis of those life history variations is important for conservation management. However, effective application requires a robust understanding of the strength and universality of genetic associations. Here, we examine genetic variation of single nucleotide polymorphisms in genomic regions previously associated with migration phenology and age-at-maturity in steelhead (Oncorhynchus mykiss) from the Columbia River. We found chromosome 28 markers (GREB1L, ROCK1 genes) explained significant variance in migration timing in both coastal and inland steelhead. However, strength of association was much greater in coastal than inland steelhead (R 2 0.51 vs. 0.08), suggesting that genomic background and challenging inland migration pathways may act to moderate effects of this region. Further, we found that chromosome 25 candidate markers (SIX6 gene) were significantly associated with age and size at first return migration for inland steelhead, and this pattern was mediated by sex in a predictable pattern (males R 2 = 0.139-0.170; females R 2 = 0.096-0.111). While this encourages using these candidate regions in predicting life history characteristics, we suggest that stock-specific associations and haplotype frequencies will be useful in guiding implementation of genetic assays to inform management.
Collapse
Affiliation(s)
- Stuart C. Willis
- Hagerman Genetics LaboratoryColumbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Jon E. Hess
- Hagerman Genetics LaboratoryColumbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Jeff K. Fryer
- Fishery Science DepartmentColumbia River Inter‐Tribal Fish CommissionPortlandORUSA
| | - John M. Whiteaker
- Fishery Science DepartmentColumbia River Inter‐Tribal Fish CommissionPortlandORUSA
| | - Chris Brun
- Branch of Natural Resources – Fisheries, Confederated Tribes of Warm SpringsPortlandORUSA
| | - Ryan Gerstenberger
- Branch of Natural Resources – Fisheries, Confederated Tribes of Warm SpringsPortlandORUSA
| | - Shawn R. Narum
- Hagerman Genetics LaboratoryColumbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| |
Collapse
|
41
|
Thompson NF, Anderson EC, Clemento AJ, Campbell MA, Pearse DE, Hearsey JW, Kinziger AP, Garza JC. A complex phenotype in salmon controlled by a simple change in migratory timing. Science 2020; 370:609-613. [DOI: 10.1126/science.aba9059] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Neil F. Thompson
- Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- University of California, Santa Cruz, Institute of Marine Sciences, Santa Cruz, CA 95064, USA
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA 95060, USA
| | - Eric C. Anderson
- University of California, Santa Cruz, Institute of Marine Sciences, Santa Cruz, CA 95064, USA
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA 95060, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Anthony J. Clemento
- University of California, Santa Cruz, Institute of Marine Sciences, Santa Cruz, CA 95064, USA
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA 95060, USA
| | - Matthew A. Campbell
- University of California, Santa Cruz, Institute of Marine Sciences, Santa Cruz, CA 95064, USA
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA 95060, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Devon E. Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA 95060, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - James W. Hearsey
- Department of Fisheries Biology, Humboldt State University, Arcata, CA 95521, USA
| | - Andrew P. Kinziger
- Department of Fisheries Biology, Humboldt State University, Arcata, CA 95521, USA
| | - John Carlos Garza
- Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- University of California, Santa Cruz, Institute of Marine Sciences, Santa Cruz, CA 95064, USA
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA 95060, USA
| |
Collapse
|
42
|
Herlin MK, Le VQ, Højland AT, Ernst A, Okkels H, Petersen AC, Petersen MB, Pedersen IS. Whole-exome sequencing identifies a GREB1L variant in a three-generation family with Müllerian and renal agenesis: a novel candidate gene in Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. A case report. Hum Reprod 2020; 34:1838-1846. [PMID: 31424080 DOI: 10.1093/humrep/dez126] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 11/14/2022] Open
Abstract
The aetiology of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, characterized by uterovaginal agenesis in 46,XX women, remains poorly understood. Since familial occurrences are rare, genetic findings reported so far only apply to a minority of mainly sporadic cases and most studies have not included other family members enabling segregation analysis. Herein, we report on the investigation of a unique three-generation family of two female cousins with MRKH syndrome and unilateral renal agenesis (RA) and two deceased male relatives with RA. We performed whole-exome sequencing (WES) in eight family members leading to the identification of a novel pathogenic (CADD = 33) c.705G>T missense variant in GREB1L, a gene recently identified as a novel cause of RA. Previous reports include several cases of female fetuses with bilateral RA and uterus agenesis, which support GREB1L as an important gene in both kidney and female genital tract development. The pedigree is compatible with autosomal dominant inheritance with incomplete penetrance following a parent-origin-specific manner, which could be due to imprinting. To our knowledge, this is the first investigation of a larger MRKH syndrome pedigree using WES, and we suggest GREB1L as a novel and promising candidate gene in the aetiology of MRKH syndrome.
Collapse
Affiliation(s)
- Morten K Herlin
- Department of Clinical Genetics, Aalborg University Hospital, Ladegårdsgade 5, bygning E, 5. Sal, 9000 Aalborg, Denmark.,Pediatrics and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Vang Q Le
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark
| | - Allan T Højland
- Department of Clinical Genetics, Aalborg University Hospital, Ladegårdsgade 5, bygning E, 5. Sal, 9000 Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| | - Anja Ernst
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark
| | - Henrik Okkels
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark
| | - Astrid C Petersen
- Department of Pathology, Aalborg University Hospital, Ladegårdsgade 3, 9000 Aalborg, Denmark
| | - Michael B Petersen
- Department of Clinical Genetics, Aalborg University Hospital, Ladegårdsgade 5, bygning E, 5. Sal, 9000 Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| | - Inge S Pedersen
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| |
Collapse
|
43
|
Martens H, Hennies I, Getwan M, Christians A, Weiss AC, Brand F, Gjerstad AC, Christians A, Gucev Z, Geffers R, Seeman T, Kispert A, Tasic V, Bjerre A, Lienkamp SS, Haffner D, Weber RG. Rare heterozygous GDF6 variants in patients with renal anomalies. Eur J Hum Genet 2020; 28:1681-1693. [PMID: 32737436 PMCID: PMC7784874 DOI: 10.1038/s41431-020-0678-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/22/2023] Open
Abstract
Although over 50 genes are known to cause renal malformation if mutated, the underlying genetic basis, most easily identified in syndromic cases, remains unsolved in most patients. In search of novel causative genes, whole-exome sequencing in a patient with renal, i.e., crossed fused renal ectopia, and extrarenal, i.e., skeletal, eye, and ear, malformations yielded a rare heterozygous variant in the GDF6 gene encoding growth differentiation factor 6, a member of the BMP family of ligands. Previously, GDF6 variants were reported to cause pleiotropic defects including skeletal, e.g., vertebral, carpal, tarsal fusions, and ocular, e.g., microphthalmia and coloboma, phenotypes. To assess the role of GDF6 in the pathogenesis of renal malformation, we performed targeted sequencing in 193 further patients identifying rare GDF6 variants in two cases with kidney hypodysplasia and extrarenal manifestations. During development, gdf6 was expressed in the pronephric tubule of Xenopus laevis, and Gdf6 expression was observed in the ureteric tree of the murine kidney by RNA in situ hybridization. CRISPR/Cas9-derived knockout of Gdf6 attenuated migration of murine IMCD3 cells, an effect rescued by expression of wild-type but not mutant GDF6, indicating affected variant function regarding a fundamental developmental process. Knockdown of gdf6 in Xenopus laevis resulted in impaired pronephros development. Altogether, we identified rare heterozygous GDF6 variants in 1.6% of all renal anomaly patients and 5.4% of renal anomaly patients additionally manifesting skeletal, ocular, or auricular abnormalities, adding renal hypodysplasia and fusion to the phenotype spectrum of GDF6 variant carriers and suggesting an involvement of GDF6 in nephrogenesis.
Collapse
Affiliation(s)
- Helge Martens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, 30625, Hannover, Germany
| | - Maike Getwan
- Department of Medicine, Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,Institute of Anatomy and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Anne Christians
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Hannover Medical School, 30625, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Arne Christians
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, 30625, Hannover, Germany
| | - Zoran Gucev
- Medical Faculty Skopje, University Children's Hospital, 1000, Skopje, North Macedonia
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tomáš Seeman
- Department of Paediatrics and Transplantation Center, University Hospital Motol, Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, 30625, Hannover, Germany
| | - Velibor Tasic
- Medical Faculty Skopje, University Children's Hospital, 1000, Skopje, North Macedonia
| | - Anna Bjerre
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,Institute of Anatomy and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, 30625, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
44
|
Wang A, Ji B, Wu F, Zhao X. Clinical Exome Sequencing Identifies a Novel Mutation of the GREB1L Gene in a Chinese Family with Renal Agenesis. Genet Test Mol Biomarkers 2020; 24:520-526. [PMID: 32598191 DOI: 10.1089/gtmb.2020.0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Renal agenesis (RA) is one of the most severe congenital anomalies of the kidney and urinary tract; it is known to be highly genetically heterogeneous. The purpose of this study was to explore the clinical significance of genetic diagnostics in a Chinese RA family. Methods: Five members of an RA family and 100 healthy people were recruited. Clinical exome sequencing was conducted to explore the underlying genetic cause in the affected family. Results: Exome sequencing identified a novel missense mutation (c.2333T>A, p.Val778Asp) in the GREB1L gene. This GREB1L variant was not detected in controls and was predicted to be highly damaging to the physiological function of the GREB1L protein. Conclusion: We identified a novel c.2333T>A variant in the GREB1L gene that extends the mutational spectrum associated with renal agenesis.
Collapse
Affiliation(s)
- Ancong Wang
- Department of Reproductive Medicine, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
| | - Baoju Ji
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
| | - Fengxia Wu
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, P.R. China
| | - Xiangyu Zhao
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
- Department of Medical Genetics, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
| |
Collapse
|
45
|
Autosomal Dominantly Inherited GREB1L Variants in Individuals with Profound Sensorineural Hearing Impairment. Genes (Basel) 2020; 11:genes11060687. [PMID: 32585897 PMCID: PMC7349314 DOI: 10.3390/genes11060687] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 01/15/2023] Open
Abstract
Congenital hearing impairment is a sensory disorder that is genetically highly heterogeneous. By performing exome sequencing in two families with congenital nonsyndromic profound sensorineural hearing loss (SNHL), we identified autosomal dominantly inherited missense variants [p.(Asn283Ser); p.(Thr116Ile)] in GREB1L, a neural crest regulatory molecule. The p.(Thr116Ile) variant was also associated with bilateral cochlear aplasia and cochlear nerve aplasia upon temporal bone imaging, an ultra-rare phenotype previously seen in patients with de novo GREB1L variants. An important role of GREB1L in normal ear development has also been demonstrated by greb1l-/- zebrafish, which show an abnormal sensory epithelia innervation. Last, we performed a review of all disease-associated variation described in GREB1L, as it has also been implicated in renal, bladder and genital malformations. We show that the spectrum of features associated with GREB1L is broad, variable and with a high level of reduced penetrance, which is typically characteristic of neurocristopathies. So far, seven GREB1L variants (14%) have been associated with ear-related abnormalities. In conclusion, these results show that autosomal dominantly inherited variants in GREB1L cause profound SNHL. Furthermore, we provide an overview of the phenotypic spectrum associated with GREB1L variants and strengthen the evidence of the involvement of GREB1L in human hearing.
Collapse
|
46
|
Jacquinet A, Boujemla B, Fasquelle C, Thiry J, Josse C, Lumaka A, Brischoux-Boucher E, Dubourg C, David V, Pasquier L, Lehman A, Morcel K, Guerrier D, Bours V. GREB1L variants in familial and sporadic hereditary urogenital adysplasia and Mayer-Rokitansky-Kuster-Hauser syndrome. Clin Genet 2020; 98:126-137. [PMID: 32378186 DOI: 10.1111/cge.13769] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
Congenital uterine anomalies (CUA) may have major impacts on the health and social well-being of affected individuals. Their expressivity is variable, with the most severe end of the spectrum being the absence of any fully or unilaterally developed uterus (aplastic uterus), which is a major feature in Mayer-Rokitansky-Kuster-Hauser syndrome (MRKH). So far, etiologies of CUA remain largely unknown. As reports of familial occurrences argue for strong genetic contributors in some cases, we performed whole exome sequencing in nine multiplex families with recurrence of uterine and kidney malformations, a condition called hereditary urogenital adysplasia. Heterozygous likely causative variants in the gene GREB1L were identified in four of these families, confirming GREB1L as an important gene for proper uterine and kidney development. The apparent mode of inheritance was autosomal dominant with incomplete penetrance. The four families included fetuses with uterovaginal aplasia and bilateral renal agenesis, highlighting the importance to investigate GREB1L in such phenotypes. Subsequent sequencing of the gene in a cohort of 68 individuals with MRKH syndrome or uterine malformation (mostly sporadic cases) identified six additional variants of unknown significance. We therefore conclude that heterozygous GREB1L variants contribute to MRKH syndrome and this probably requires additional genetic or environmental factors for full penetrance.
Collapse
Affiliation(s)
- Adeline Jacquinet
- Center for Human Genetics, Centre Hospitalier Universitaire, Liège, Belgium.,Human Genetic Laboratory, GIGA Institute, University of Liège, Liège, Belgium
| | - Bouchra Boujemla
- Human Genetic Laboratory, GIGA Institute, University of Liège, Liège, Belgium
| | - Corinne Fasquelle
- Center for Human Genetics, Centre Hospitalier Universitaire, Liège, Belgium
| | - Jerôme Thiry
- Human Genetic Laboratory, GIGA Institute, University of Liège, Liège, Belgium
| | - Claire Josse
- Human Genetic Laboratory, GIGA Institute, University of Liège, Liège, Belgium.,Medical Oncology, Centre Hospitalier Universitaire CHU Liege, Liège, Belgium
| | - Aimé Lumaka
- Human Genetic Laboratory, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Christèle Dubourg
- Univ. Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France.,Department of Molecular Genetics and Genomics, Université de Rennes, CHU Rennes, Rennes, France
| | - Véronique David
- Univ. Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France.,Department of Molecular Genetics and Genomics, Université de Rennes, CHU Rennes, Rennes, France
| | - Laurent Pasquier
- Department of Medical Genetics, CLAD Ouest, Université de Rennes, CHU Rennes, Rennes, France
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital and BC Women's Hospital, Vancouver, British Columbia, Canada
| | - Karine Morcel
- Univ. Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Daniel Guerrier
- Univ. Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Vincent Bours
- Center for Human Genetics, Centre Hospitalier Universitaire, Liège, Belgium.,Human Genetic Laboratory, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
47
|
Huang T, Pu Y, Song C, Sheng Z, Hu X. A quantitative trait locus on chromosome 2 was identified that accounts for a substantial proportion of phenotypic variance of the yellow plumage color in chicken. Poult Sci 2020; 99:2902-2910. [PMID: 32475423 PMCID: PMC7597730 DOI: 10.1016/j.psj.2020.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022] Open
Abstract
Chicken plumage color is an important economical trait in poultry breeding, as triple-yellow indigenous broilers are preferred over western commercial broilers in the Chinese market. However, the studies on the pigmentation of plumage coloration are relatively rare at present. Here, we performed a genome-wide mapping study on an F2 intercross, whose 2 founders were one hybrid commercial line “High Quality chicken Line A” that originated from the Anak red chicken and one indigenous line “Huiyang Beard” chicken that is a classical “triple-yellow” Chinese indigenous breed. Moreover, we used an automatic colorimeter that can quantitatively assess the colorations in L∗, a∗, and b∗ values. One major quantitative trait locus (QTL) on chromosome 2 was thus identified by both genome-wide association and linkage analyses, which could explain 10 to 20% of the total phenotypic variance of the b∗ measurements of the back plumage color. Using linkage analysis, 2 additional QTL on chromosome 1 and 20 were also found to be significantly associated with the plumage coloration in this cross. With additional samples from Anak red and Huiyang Beard chickens as well as pooled resequencing data from the 2 founders of this cross, we then further narrowed down the QTL regions and identified several candidate genes, such as CABLES1, CHST11, BCL2L1, and CHD22. As the effects of QTL found in this study were substantial, quantitatively measuring the coloration rather than the descriptive measurements provides stronger statistical power for the analyses. In addition, this major QTL on chromosome 2 that was associated with feather pigmentation at the genome-wide level will facilitate the future chicken breeding for yellow plumage color. In conclusions, we mapped 3 associated QTL on chromosome 1, 2, and 20. The candidate genes identified in this study shed light in the genetic basis of yellow plumage color in chicken.
Collapse
Affiliation(s)
- Tao Huang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, Hubei Province, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, Hubei Province, China
| | - Chi Song
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, China.
| | - Xiaoxiang Hu
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to emphasize that single gene disorders are an important and sometimes unrecognized cause of progressive chronic kidney disease. We provide an overview of the benefits of making a genetic diagnosis, the currently available genetic testing methods and examples of diseases illustrating the impact of a genetic diagnosis. RECENT FINDINGS Although there are now a number of monogenic renal diseases, only a few, such as autosomal dominant polycystic kidney disease (ADPKD), are generally diagnosable without genetic testing. Complicating clinical diagnosis is that many diseases that classically have characteristic renal or extrarenal findings, often present with an incomplete or overlapping phenotype that requires additional testing to be uncovered. Advances in sequencing technology and bioinformatic processing now give us the ability to screen the entire human genome or exome or an organ-limited subset of genes quickly and inexpensively permitting the unbiased interrogation of hundreds of genes, thus removing the need for precision in clinical diagnosis prior to testing. SUMMARY We provide an overview of the principal phenotypes seen in chronic kidney disease with a focus on the cystic diseases and ciliopathies, the glomerular diseases, disorders of renal development and the tubulointerstitial diseases. In each of these phenotypes, we provide a listing of some of the important genes that have been identified to date, a brief discussion of the clinical diagnosis, the role of genetic testing and the differentiation of distinct genetic disorders from acquired and genetic phenocopies.
Collapse
|
49
|
Pinnaro CT, Henry T, Major HJ, Parida M, DesJardin LE, Manak JR, Darbro BW. Candidate modifier genes for immune function in 22q11.2 deletion syndrome. Mol Genet Genomic Med 2019; 8:e1057. [PMID: 31830774 PMCID: PMC6978229 DOI: 10.1002/mgg3.1057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background The 22q11.2 deletion syndrome (22q11.2DS) is the most common contiguous microdeletion affecting humans and exhibits extreme phenotypic heterogeneity. Patients can manifest any combination of comorbidities including congenital heart disease, hypoparathyroidism, cleft palate, kidney abnormalities, neurodevelopmental disorders, and immune dysfunction. Immunodeficiency is present in the majority of patients with 22q11.2DS and is the second leading cause of death in these patients. Knowing the genetic determinants of immune dysfunction will aid in prognostication and potentially novel treatments. Methods We performed exome sequencing and gene‐based variant association analysis on 31 deeply phenotyped individuals with the canonical 3Mb 22q11.2 deletion to identify what genes outside the 22q11.2 locus may be modifying the immune dysregulated phenotype. Immunophenotyping was performed using preexisting medical data and a novel scoring system developed from numerous clinical laboratory values including immunoglobulin levels, lymphocyte transformation to antigens (LTA), lymphocyte transformation to mitogens (LTM), and peripheral blood flow cytometry. Immunophenotypic scoring was validated against newborn screening T‐cell receptor excision circle (TREC) results. Results Rare DNA variants in transcriptional regulators involved in retinoic acid signaling (NCOR2, OMIM *600848 and EP300, OMIM *602700) were found to be associated with immunophenotype. Conclusion The expression of TBX1, which seems to confer the major phenotypic features of 22q11.2DS, is regulated via retinoic acid signaling, and alterations in retinoic acid signaling during embryonic development can lead to phenocopies of 22q11.2DS. These observations support the hypothesis that genetic modifiers outside the microdeletion locus may influence the immune function in 22q11.2DS patients.
Collapse
Affiliation(s)
| | - Travis Henry
- Iowa State Hygienic Laboratory, Coralville, IA, USA
| | | | | | | | - John R Manak
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
50
|
Thompson B, Katsanis N, Apostolopoulos N, Thompson DC, Nebert DW, Vasiliou V. Genetics and functions of the retinoic acid pathway, with special emphasis on the eye. Hum Genomics 2019; 13:61. [PMID: 31796115 PMCID: PMC6892198 DOI: 10.1186/s40246-019-0248-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA) is a potent morphogen required for embryonic development. RA is formed in a multistep process from vitamin A (retinol); RA acts in a paracrine fashion to shape the developing eye and is essential for normal optic vesicle and anterior segment formation. Perturbation in RA-signaling can result in severe ocular developmental diseases—including microphthalmia, anophthalmia, and coloboma. RA-signaling is also essential for embryonic development and life, as indicated by the significant consequences of mutations in genes involved in RA-signaling. The requirement of RA-signaling for normal development is further supported by the manifestation of severe pathologies in animal models of RA deficiency—such as ventral lens rotation, failure of optic cup formation, and embryonic and postnatal lethality. In this review, we summarize RA-signaling, recent advances in our understanding of this pathway in eye development, and the requirement of RA-signaling for embryonic development (e.g., organogenesis and limb bud development) and life.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - Nicholas Katsanis
- Stanley Manne Research Institute, Lurie Children's Hospital, Chicago, IL, 60611, USA.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA.
| |
Collapse
|