1
|
Liu J, Zhao W, Hu C, Xia Y, Li L, Zhang F, Wang MQ, Zhou A. An antennal-specific OBP mediates bait odorant perception in fire ants. Int J Biol Macromol 2025; 293:139416. [PMID: 39746423 DOI: 10.1016/j.ijbiomac.2024.139416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Odorant binding proteins (OBPs) play a key role in the crosstalk between the external environment and dendritic neuron activation. Ham sausage is an efficient bait widely used for monitoring the invasive ant Solenopsis invicta in the field, whereas the chemoreceptors involved in bait odorant perception in S. invicta have not been functionally characterized. Here, we investigated the role of SiOBP2, an OBP specifically expressed in the antenna, from S. invicta in detecting bait odorants. SiOBP2 was specifically expressed in sensillum basiconca in S. invicta antennae and displayed strong binding affinity and diverse binding mechanisms with specific bait odorants, such as static quenching and multiple binding characteristics with 3-mercapto-2-butanone and furfuryl mercaptan. Knockdown of SiOBP2 abolished the electroantennogram and behavioral responses of S. invicta to these odorants. S. invicta with SiOBP2 knockdown exhibited inactivation of odorant receptor neuron signaling and reduced bait searching efficiency. Foraging behavior and sensory cone responses to bait odorant stimuli in S. invicta demonstrate the sensillum basiconca is particularly tuned to 3-mercapto-2-butanone and furfuryl mercaptan. Collectively, SiOBP2 is essential for the perception of S. invicta on bait odorants and can be used as an important molecular target to develop novel attractants for S. invicta.
Collapse
Affiliation(s)
- Jinlong Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenzhen Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changyuan Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Xia
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Li
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Fangping Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aiming Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Cotten ML, Starich MR, He Y, Yin J, Yuan Q, Tjandra N. NMR chemical shift assignment of Drosophila odorant binding protein 44a in complex with 8(Z)-eicosenoic acid. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:129-134. [PMID: 38822991 PMCID: PMC11511771 DOI: 10.1007/s12104-024-10178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
The odorant binding protein, OBP44a is one of the most abundant proteins expressed in the brain of the developing fruit fly Drosophila melanogaster. Its cellular function has not yet been determined. The OBP family of proteins is well established to recognize hydrophobic molecules. In this study, NMR is employed to structurally characterize OBP44a. NMR chemical shift perturbation measurements confirm that OBP44a binds to fatty acids. Complete assignments of the backbone chemical shifts and secondary chemical shift analysis demonstrate that the apo state of OBP44a is comprised of six α-helices. Upon binding 8(Z)-eicosenoic acid (8(Z)-C20:1), the OBP44a C-terminal region undergoes a conformational change, from unstructured to α-helical. In addition to C-terminal restructuring upon ligand binding, some hydrophobic residues show dramatic chemical shift changes. Surprisingly, several charged residues are also strongly affected by lipid binding. Some of these residues could represent key structural features that OBP44a relies on to perform its cellular function. The NMR chemical shift assignment is the first step towards characterizing the structure of OBP44a and how specific residues might play a role in lipid binding and release. This information will be important in deciphering the biological function of OBP44a during fly brain development.
Collapse
Affiliation(s)
- Myriam L Cotten
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Mary R Starich
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Yin
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Li R, Dai X, Zheng J, Larsen RS, Qi Y, Zhang X, Vizueta J, Boomsma JJ, Liu W, Zhang G. Juvenile hormone as a key regulator for asymmetric caste differentiation in ants. Proc Natl Acad Sci U S A 2024; 121:e2406999121. [PMID: 39495909 PMCID: PMC11573667 DOI: 10.1073/pnas.2406999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/28/2024] [Indexed: 11/06/2024] Open
Abstract
Caste differentiation involves many functional traits that diverge during larval growth and metamorphosis to produce adults irreversibly adapted to reproductive division of labor. Investigating developmental differentiation is important for general biological understanding and has increasingly been explored for social phenotypes that diverge in parallel from similar genotypes. Here, we use Monomorium pharaonis ants to investigate the extent to which canalized worker development can be shifted toward gyne (virgin-queen) phenotypes by juvenile hormone (JH) treatment. We show that excess JH can activate gyne-biased development in workers so that wing-buds, ocelli, antennal and genital imaginal discs, flight muscles, and gyne-like fat bodies and brains emerge after pupation. However, ovary development remained unresponsive to JH treatment, indicating that JH-sensitive germline sequestration happens well before somatic differentiation. Our findings reveal important qualitative restrictions in the extent to which JH treatment can redirect larval development and that these constraints are independent of body size. Our findings corroborate that JH is a key hormone for inducing caste differentiation but show that this process can be asymmetric for higher colony-level germline versus somatic caste differentiation in superorganisms as defined a century ago by Wheeler. We quantified gene expression changes in response to JH treatment throughout development and identified a set of JH-sensitive genes responsible for the emergence of gyne-like somatic traits. Our study suggests that the gonadotropic role of JH in ovary maturation has shifted from the individual level in solitary insects to the colony level in an evolutionary-derived and highly polygynous superorganism like the pharaoh ant.
Collapse
Affiliation(s)
- Ruyan Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xueqin Dai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Jixuan Zheng
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rasmus Stenbak Larsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yanmei Qi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojie Zhang
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
4
|
Chen Y, Yao X, Jiang Z, Xiao Z, Luo C, Zhong G, Yi X. OBP83b and OBP49a Involved in the Perception of Female-Derived Pheromones in Bactrocera dorsalis (Hendel). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17858-17867. [PMID: 39081139 DOI: 10.1021/acs.jafc.4c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In Bactrocera dorsalis, both males and females release chemical signals to attract mates. In our previous study, we identified ethyl laurate, ethyl myristate, and ethyl palmitate as potent female-derived pheromones that contribute to mate attraction. However, the mechanisms underlying the olfactory recognition remain unclear. In this study, we observed strong antennal and behavioral responses in male B. dorsalis to these female-derived pheromones, and further investigation revealed significant upregulation of OBP49a and OBP83b following exposure to these compounds. Through fluorescence competitive binding assays and RNA interference techniques, we demonstrated the crucial roles of OBP49a and OBP83b in detecting female-derived pheromones. Finally, molecular docking analysis identified key residues, including His134 in OBP83b and a lysine residue in OBP49a, which formed hydrogen bonds with female-derived pheromones, facilitating their binding. These findings not only advance our understanding of olfactory recognition of pheromones in B. dorsalis but also offer potential targets for developing olfaction-interfering techniques for pest control.
Collapse
Affiliation(s)
- Yaoyao Chen
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Yao
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhiyan Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Ziwei Xiao
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Chang Luo
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Ha TS, Sengupta S, Powell J, Smith DP. An angiotensin converting enzyme homolog is required for volatile pheromone detection, odorant binding protein secretion and normal courtship behavior in Drosophila melanogaster. Genetics 2023; 224:iyad109. [PMID: 37283550 PMCID: PMC10484059 DOI: 10.1093/genetics/iyad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
In many arthropods, including insects responsible for transmission of human diseases, behaviors that include mating, aggregation, and aggression are triggered by detection of pheromones. Extracellular odorant binding proteins are critical for pheromone detection in many insects and are secreted into the fluid bathing the olfactory neuron dendrites. In Drosophila melanogaster, the odorant binding protein LUSH is essential for normal sensitivity to the volatile sex pheromone, 11-cis vaccenyl acetate (cVA). Using a genetic screen for cVA pheromone insensitivity, we identified ANCE-3, a homolog of human angiotensin converting enzyme that is required for detection of cVA pheromone. The mutants have normal dose-response curves for food odors, although olfactory neuron amplitudes are reduced in all olfactory neurons examined. ance-3 mutants have profound delays in mating, and the courtship defects are primarily but not exclusively due to loss of ance-3 function in males. We demonstrate that ANCE-3 is required in the sensillae support cells for normal reproductive behavior, and that localization of odorant binding proteins to the sensillum lymph is blocked in the mutants. Expression of an ance-3 cDNA in sensillae support cells completely rescues the cVA responses, LUSH localization, and courtship defects. We show the courtship latency defects are not due to effects on olfactory neurons in the antenna nor mediated through ORCO receptors, but instead stem from ANCE-3-dependent effects on chemosensory sensillae in other body parts. These findings reveal an unexpected factor critical for pheromone detection with profound influence on reproductive behaviors.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Biomedical Science, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongbuk, 38453 Republic of Korea
| | - Samarpita Sengupta
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- Department of Physician Assistant Studies, School of Health Professions, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Jordan Powell
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Dean P Smith
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| |
Collapse
|
6
|
Pelletier J, Dawit M, Ghaninia M, Marois E, Ignell R. A mosquito-specific antennal protein is critical for the attraction to human odor in the malaria vector Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103988. [PMID: 37437853 DOI: 10.1016/j.ibmb.2023.103988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Mosquitoes rely mainly on the sense of smell to decipher their environment and locate suitable food sources, hosts for blood feeding and oviposition sites. The molecular bases of olfaction involve multigenic families of olfactory proteins that have evolved to interact with a narrow set of odorants that are critical for survival. Understanding the complex interplay between diversified repertoires of olfactory proteins and ecologically-relevant odorant signals, which elicit important behaviors, is fundamental for the design of novel control strategies targeting the sense of smell of disease vector mosquitoes. Previously, large multigene families of odorant receptor and ionotropic receptor proteins, as well as a subset of odorant-binding proteins have been shown to mediate the selectivity and sensitivity of the mosquito olfactory system. In this study, we identify a mosquito-specific antennal protein (MSAP) gene as a novel molecular actor of odorant reception. MSAP is highly conserved across mosquito species and is transcribed at an extremely high level in female antennae. In order to understand its role in the mosquito olfactory system, we generated knockout mutant lines in Anopheles gambiae, and performed comparative analysis of behavioral and physiological responses to human-associated odorants. We found that MSAP promotes female mosquito attraction to human odor and enhances the sensitivity of the antennae to a variety of odorants. These findings suggest that MSAP is an important component of the mosquito olfactory system, which until now has gone completely unnoticed.
Collapse
Affiliation(s)
- Julien Pelletier
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Mengistu Dawit
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Eric Marois
- INSERM U1257, CNRS UPR9022, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Rickard Ignell
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
7
|
Deanhardt B, Duan Q, Du C, Soeder C, Morlote A, Garg D, Saha A, Jones CD, Volkan PC. Social experience and pheromone receptor activity reprogram gene expression in sensory neurons. G3 (BETHESDA, MD.) 2023; 13:jkad072. [PMID: 36972331 PMCID: PMC10234412 DOI: 10.1093/g3journal/jkad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/11/2023] [Indexed: 06/29/2024]
Abstract
Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.
Collapse
Affiliation(s)
- Bryson Deanhardt
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chengcheng Du
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Charles Soeder
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alec Morlote
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Deeya Garg
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Aishani Saha
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
8
|
Xiang D, Abdelnabby H, Wang MQ. Predicted structure of odorant-binding protein 12 from Monochamus alternatus (Hope) suggests a mechanism of flexible odorant-binding. Int J Biol Macromol 2023:125152. [PMID: 37270128 DOI: 10.1016/j.ijbiomac.2023.125152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Odorant-binding proteins (OBPs) are thought to bind and deliver hydrophobic odorants from the environment to receptors on insect sensory neurons, and have been used to screen behaviorally active compounds of insects. In order to screen behaviorally active compounds for Monochamus alternatus by OBPs, we cloned full length of Obp12 coding sequence from M. alternatus and proved secretion property of MaltOBP12, then tested binding affinities of recombinant MaltOBP12 to 12 pine volatiles in vitro. We confirmed MaltOBP12 has binding affinities to 9 pine volatiles. The structure of MaltOBP12 and protein-ligand interactions were further analyzed by homology modeling, molecular docking, site-directed mutagenesis, and ligand-binding assays. These results demonstrated that the binding pocket of MaltOBP12 consists of several large aromatic and hydrophobic residues, and four aromatic residues (Tyr50, Phe109, Tyr112, Phe122) are essential for odorant-binding; ligands adopt extensive hydrophobic interactions with an overlapping subset of residues in the binding pocket. Finally, based on non-directional hydrophobic interactions, MaltOBP12 binds odorants flexibly. These findings will not only help us understand how OBPs flexibly bind odorants but also promote to screen of behaviourally active compounds by computer methods to prevent M. alternatus in the future.
Collapse
Affiliation(s)
- Daokun Xiang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hazem Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia 13736, Egypt
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Fabian B, Sachse S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Front Cell Neurosci 2023; 17:1130091. [PMID: 36923450 PMCID: PMC10010147 DOI: 10.3389/fncel.2023.1130091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is long known that the nervous system of vertebrates can be shaped by internal and external factors. On the other hand, the nervous system of insects was long assumed to be stereotypic, although evidence for plasticity effects accumulated for several decades. To cover the topic comprehensively, this review recapitulates the establishment of the term "plasticity" in neuroscience and introduces its original meaning. We describe the basic composition of the insect olfactory system using Drosophila melanogaster as a representative example and outline experience-dependent plasticity effects observed in this part of the brain in a variety of insects, including hymenopterans, lepidopterans, locusts, and flies. In particular, we highlight recent advances in the study of experience-dependent plasticity effects in the olfactory system of D. melanogaster, as it is the most accessible olfactory system of all insect species due to the genetic tools available. The partly contradictory results demonstrate that morphological, physiological and behavioral changes in response to long-term olfactory stimulation are more complex than previously thought. Different molecular mechanisms leading to these changes were unveiled in the past and are likely responsible for this complexity. We discuss common problems in the study of experience-dependent plasticity, ways to overcome them, and future directions in this area of research. In addition, we critically examine the transferability of laboratory data to natural systems to address the topic as holistically as possible. As a mechanism that allows organisms to adapt to new environmental conditions, experience-dependent plasticity contributes to an animal's resilience and is therefore a crucial topic for future research, especially in an era of rapid environmental changes.
Collapse
Affiliation(s)
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
10
|
Lechuga-Paredes P, Segura-León OL, Cibrián-Tovar J, Torres-Huerta B, Velázquez-González JC, Cruz-Jaramillo JL. Odorant-Binding and Chemosensory Proteins in Anthonomus eugenii (Coleoptera: Curculionidae) and Their Tissue Expression. Int J Mol Sci 2023; 24:ijms24043406. [PMID: 36834814 PMCID: PMC9961831 DOI: 10.3390/ijms24043406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
The pepper weevil Anthonomus eugenii is one of the most damaging pests to the pepper crop. To offer alternative management strategies to insecticides, several studies have identified the semiochemicals that are involved in the pepper weevil's aggregation and mating behavior; however, there is no information on its perireceptor molecular mechanism, to date. In this study, bioinformatics tools were used to functionally annotate and characterize the A. eugenii head transcriptome and their probable coding proteins. We identified twenty-two transcripts belonging to families related to chemosensory processes, seventeen corresponding to odorant-binding proteins (OBP), and six to chemosensory proteins (CSP). All results matched with closely related Coleoptera: Curculionidae homologous proteins. Likewise, twelve OBP and three CSP transcripts were experimentally characterized by RT-PCR in different female and male tissues. The results by sex and tissue display the different expression patterns of the AeugOBPs and AeugCSPs; some are present in both sexes and all tissues, while others show expressions with higher specificity, which suggests diverse physiological functions in addition to chemo-detection. This study provides information to support the understanding of odor perception in the pepper weevil.
Collapse
Affiliation(s)
- Pablo Lechuga-Paredes
- Colegio de Postgraduados, Campus Montecillo, Mexico-Texcoco Highway, Km. 36.5 Montecillo, Texcoco 56230, Mexico
| | - Obdulia Lourdes Segura-León
- Colegio de Postgraduados, Campus Montecillo, Mexico-Texcoco Highway, Km. 36.5 Montecillo, Texcoco 56230, Mexico
- Correspondence: ; Tel.: +52-554-009-3079
| | - Juan Cibrián-Tovar
- Colegio de Postgraduados, Campus Montecillo, Mexico-Texcoco Highway, Km. 36.5 Montecillo, Texcoco 56230, Mexico
| | - Brenda Torres-Huerta
- Colegio de Postgraduados, Campus Montecillo, Mexico-Texcoco Highway, Km. 36.5 Montecillo, Texcoco 56230, Mexico
| | | | - José Luis Cruz-Jaramillo
- Bioinformatics and Technologies Department, Solaria Biodata, Antonio Ortega 817, Benito Juárez, Mexico City 03100, Mexico
| |
Collapse
|
11
|
Kohlmeier P, Billeter JC. Genetic mechanisms modulating behaviour through plastic chemosensory responses in insects. Mol Ecol 2023; 32:45-60. [PMID: 36239485 PMCID: PMC10092625 DOI: 10.1111/mec.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
The ability to transition between different behavioural stages is a widespread phenomenon across the animal kingdom. Such behavioural adaptations are often linked to changes in the sensitivity of those neurons that sense chemical cues associated with the respective behaviours. To identify the genetic mechanisms that regulate neuronal sensitivity, and by that behaviour, typically *omics approaches, such as RNA- and protein-sequencing, are applied to sensory organs of individuals displaying differences in behaviour. In this review, we discuss these genetic mechanisms and how they impact neuronal sensitivity, summarize the correlative and functional evidence for their role in regulating behaviour and discuss future directions. As such, this review can help interpret *omics data by providing a comprehensive list of already identified genes and mechanisms that impact behaviour through changes in neuronal sensitivity.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Ha TS, Smith DP. Recent Insights into Insect Olfactory Receptors and Odorant-Binding Proteins. INSECTS 2022; 13:insects13100926. [PMID: 36292874 PMCID: PMC9604063 DOI: 10.3390/insects13100926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Human and insect olfaction share many general features, but insects differ from mammalian systems in important ways. Mammalian olfactory neurons share the same overlying fluid layer in the nose, and neuronal tuning entirely depends upon receptor specificity. In insects, the olfactory neurons are anatomically segregated into sensilla, and small clusters of olfactory neurons dendrites share extracellular fluid that can be independently regulated in different sensilla. Small extracellular proteins called odorant-binding proteins are differentially secreted into this sensillum lymph fluid where they have been shown to confer sensitivity to specific odorants, and they can also affect the kinetics of the olfactory neuron responses. Insect olfactory receptors are not G-protein-coupled receptors, such as vertebrate olfactory receptors, but are ligand-gated ion channels opened by direct interactions with odorant molecules. Recently, several examples of insect olfactory neurons expressing multiple receptors have been identified, indicating that the mechanisms for neuronal tuning may be broader in insects than mammals. Finally, recent advances in genome editing are finding applications in many species, including agricultural pests and human disease vectors.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Biomedical Science, College of Natural Science, Daegu University, Gyeongsan 38453, Gyeongsangbuk-do, Korea
| | - Dean P. Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
13
|
Schoberleitner I, Mertens B, Bauer I, Lusser A. Regulation of sensory perception and motor abilities by brain-specific action of chromatin remodeling factor CHD1. Front Mol Neurosci 2022; 15:840966. [PMID: 35983070 PMCID: PMC9378821 DOI: 10.3389/fnmol.2022.840966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
The ATP-dependent chromatin remodeling factor CHD1 (chromodomain-helicase-DNA binding protein 1) is involved in both the de novo assembly and the remodeling of chromatin. Recently, we discovered a crucial role of CHD1 in the incorporation of the histone variant H3.3 in the fly brain illustrated by widespread transcriptional upregulation and shortened lifespan in Chd1-mutant animals. Because many genes linked to sensory perception were dysregulated in Chd1-mutant heads, we studied the role of CHD1 in these processes. Here we show that Chd1-mutant flies have severe defects in their response behavior to olfactory and gustatory but not visual stimuli. Further analyses suggested that poor performance in gustatory response assays was caused by reduced motivation for foraging and feeding rather than defects in taste perception. Moreover, we show that shortened lifespan of Chd1-mutant flies is accompanied by indications of premature functional aging as suggested by defects in negative geotaxis and exploratory walking assays. The latter phenotype was rescued by neuronal re-expression of Chd1, while the olfactory defects were not. Interestingly, we found evidence for indirect regulation of the non-neuronal expression of odorant binding proteins (Obp) by neuronal expression of Chd1. Together, these results emphasize the crucial role of CHD1 activity controlling diverse neuronal processes thereby affecting healthy lifespan.
Collapse
Affiliation(s)
| | | | | | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Wang Z, Yang F, Sun A, Song J, Shan S, Zhang Y, Wang S. Expressional and functional comparisons of five clustered odorant binding proteins in the brown marmorated stink bug Halyomorpha halys. Int J Biol Macromol 2022; 206:759-767. [DOI: 10.1016/j.ijbiomac.2022.03.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022]
|
15
|
Time-Dependent Odorant Sensitivity Modulation in Insects. INSECTS 2022; 13:insects13040354. [PMID: 35447796 PMCID: PMC9028461 DOI: 10.3390/insects13040354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/18/2023]
Abstract
Simple Summary Insects, including blood-feeding female mosquitoes, can transmit deadly diseases, such as malaria, encephalitis, dengue, and yellow fever. Insects use olfaction to locate food sources, mates, and hosts. The nature of odorant plumes poses a challenge for insects in locating odorant sources in the environment. In order to modulate the system for the detection of fresh stimuli or changes in odorant concentrations, the olfaction system desensitizes to different concentrations and durations of stimuli. Without this ability, the chemotaxis behaviors of insects are defective. Thus, understanding how insects adjust their olfactory response dynamics to parse the chemical language of the external environment is not only a basic biology question but also has far-reaching implications for repellents and pest control. Abstract Insects use olfaction to detect ecologically relevant chemicals in their environment. To maintain useful responses over a variety of stimuli, olfactory receptor neurons are desensitized to prolonged or high concentrations of stimuli. Depending on the timescale, the desensitization is classified as short-term, which typically spans a few seconds; or long-term, which spans from minutes to hours. Compared with the well-studied mechanisms of desensitization in vertebrate olfactory neurons, the mechanisms underlying invertebrate olfactory sensitivity regulation remain poorly understood. Recently, using a large-scale functional screen, a conserved critical receptor phosphorylation site has been identified in the model insect Drosophila melanogaster, providing new insight into the molecular basis of desensitization in insects. Here, we summarize the progress in this area and provide perspectives on future directions to determine the molecular mechanisms that orchestrate the desensitization in insect olfaction.
Collapse
|
16
|
Shah JS, Buckmeier BG, Griffith W, Olafson PU, Perez de Leon AA, Renthal R. Odorant-binding protein from the stable fly (Stomoxys calcitrans) has a high-histidine N-terminal extension that binds transition metals. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103707. [PMID: 34979251 DOI: 10.1016/j.ibmb.2021.103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The role of odorant- and pheromone-binding proteins (OBPs) in olfactory function is not fully understood. We found an OBP sequence from the stable fly, Stomoxys calcitrans, ScalOBP60, that has a 25 amino acid N-terminal extension with a high content of histidine and acidic amino acids, suggesting a possible metal binding activity. A search of public databases revealed a large number of other fly OBPs with histidine-rich N-terminal extensions, as well as beetle, wasp and ant OBPs with histidine-rich C-terminal extensions. We recombinantly expressed ScalOBP60, as well as a truncated sequence which lacks the histidine-rich N-terminal region, tScalOBP60. Using fluorescence quenching and electrospray quadrupole time-of-flight mass spectrometry (ESI-QTOF), we detected two different types of metal-binding sites. Divalent copper, nickel and zinc bind to the N-terminal histidine-rich region, and divalent copper binds to an internal sequence position. Comparison of the ESI-QTOF spectra of ScalOBP60 and tScalOBP60 showed that the histidine-rich sequence is structurally disordered, but it becomes more ordered in the presence of divalent metal. When copper is bound to the internal site, binding of a hydrophobic ligand to ScalOBP60 is inhibited. The internal and N-terminal metal sites interact allosterically, possibly through a conformational equilibrium, suggesting a mechanism for metal regulation of ligand binding to ScalOBP60. Based on our studies of ScalOBP60, we propose several possible olfactory and non-olfactory functions for this OBP.
Collapse
Affiliation(s)
- Jaee Shailesh Shah
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | | | - Wendell Griffith
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Pia Untalan Olafson
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Lab, Kerrville, TX, 78028, USA
| | | | - Robert Renthal
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA; Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
17
|
Zhang H, Wang JY, Wan NF, Chen YJ, Ji XY, Jiang JX. Identification and expression profile of odorant-binding proteins in the parasitic wasp Microplitis pallidipes using PacBio long-read sequencing. Parasite 2022; 29:53. [PMID: 36350195 PMCID: PMC9645227 DOI: 10.1051/parasite/2022053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Microplitis pallidipes Szépligeti (Hymenoptera: Braconidae) is an important parasitic wasp of second and third-instar noctuid larvae such as the insect pests Spodoptera exigua, Spodoptera litura, and Spodoptera frugiperda. As in other insects, M. pallidipes has a chemosensory recognition system that is critical to foraging, mating, oviposition, and other behaviors. Odorant-binding proteins (OBPs) are important to the system, but those of M. pallidipes have not been determined. This study used PacBio long-read sequencing to identify 170,980 M. pallidipes unigenes and predicted 129,381 proteins. Following retrieval of possible OBP sequences, we removed those that were redundant or non-full-length and eventually cloned five OBP sequences: MpOBP2, MpOBP3, MpOBP8, MpOBP10, and MpPBP 429, 429, 459, 420, and 429 bp in size, respectively. Each M. pallidipes OBP had six conserved cysteine residues. Phylogenetic analysis revealed that the five OBPs were located at different branches of the phylogenetic tree. Additionally, tissue expression profiles indicated that MpOBP2 and MpPBP were mainly expressed in the antennae of male wasps, while MpOBP3, MpOBP8, and MpOBP10 were mainly expressed in the antennae of female wasps. MpOBP3 was also highly expressed in the legs of female wasps. Temporal profiles revealed that the expression of each M. pallidipes OBP peaked at different days after emergence to adulthood. In conclusion, we identified five novel odorant-binding proteins of M. pallidipes and demonstrated biologically relevant differences in expression patterns.
Collapse
Affiliation(s)
- Hao Zhang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-Carbon Agriculture Shanghai 201403 China
| | - Jin-Yan Wang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-Carbon Agriculture Shanghai 201403 China
| | - Nian-Feng Wan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Yi-Juan Chen
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-Carbon Agriculture Shanghai 201403 China
| | - Xiang-Yun Ji
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-Carbon Agriculture Shanghai 201403 China
- Corresponding authors: ;
| | - Jie-Xian Jiang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-Carbon Agriculture Shanghai 201403 China
- Corresponding authors: ;
| |
Collapse
|
18
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
19
|
Pheromone binding protein is involved in temporal olfactory resolution in the silkmoth. iScience 2021; 24:103334. [PMID: 34805794 PMCID: PMC8586810 DOI: 10.1016/j.isci.2021.103334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Male moths utilize spatio-temporal female sex pheromone information to orient toward conspecific females. Pheromones are distributed as discontinuous plumes owing to air turbulence; thus, efficient tracking of intermittent stimuli is expected to require a high temporal resolution. Here, using pheromone binding protein (BmPBP1)-knockout silkmoths, we showed that a loss of functional PBP lowered the temporal sensory resolution of male antennae. This altered temporal resolution resulted in significantly reduced straight walking and longer turning behavior, which respectively occurred when males detected and lost contact with pheromones, indicating that temporal resolution was also lowered at the behavioral level. BmPBP1-knockout males required significantly longer time than wild-type males in locating pheromone sources and female moths. Our results suggest that BmPBP1 plays a critical role in determining olfactory response kinetics. Accordingly, high temporal olfactory and behavioral resolutions, as shaped by PBP, are essential for tracking pheromone plumes and locating females efficiently.
Collapse
|
20
|
Jing D, Prabu S, Zhang T, Bai S, He K, Wang Z. Genetic knockout and general odorant-binding/chemosensory protein interactions: Revealing the function and importance of GOBP2 in the yellow peach moth's olfactory system. Int J Biol Macromol 2021; 193:1659-1668. [PMID: 34742835 DOI: 10.1016/j.ijbiomac.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
The GOBP2 protein has a unique function in the yellow peach moth (Conogethes punctiferalis (Guenée)). Several general odorant-binding proteins (GOBPs) have been identified in various lepidopteran species, but the functional difference between GOBP1 and GOBP2 in recognition of host plant odorants is still unknown. The functions of GOBP1 and GOBP2 in the yellow peach moth were evaluated in this study by using the CRISPR-Cas9 system. The results revealed the importance of GOBP2 in the olfaction mechanism in the yellow peach moth. The perception of the GOBP1-knockout larvae toward feeding decreased but did not reach a significant level while knocking out the GOBP2 and GOBP1/2 genes resulted in huge differences. On the other hand, electroantennograms (EAGs) and wind tunnel tests showed that the sensitivity of GOBP2 knockout adults to odorants decreased more than that of GOBP1 knockout individuals. The results of STRING database text mining grabbed our attention in protein-protein interaction studies. In this research, we first proved the existence of physical interactions between GOBPs and chemosensory proteins (CSPs) through the surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) methods. Interestingly, GOBP1 and GOBP2 could not interact with each other, but they could interact with CSPs. The interaction results indicated that GOBP2 could physically interact with CSP15, CSP5, and OBP17, whereas GOBP1 could bind only with CSP5 and CSP10, and its association constant (ka) was also more substantial than that of GOBP1. These results strongly suggest the importance of the function of GOBP2 in the perception of host plant odorants by the yellow peach moth.
Collapse
Affiliation(s)
- Dapeng Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
21
|
Dong Y, Li T, Liu J, Sun M, Chen X, Liu Y, Xu P. Sex- and stage-dependent expression patterns of odorant-binding and chemosensory protein genes in Spodoptera exempta. PeerJ 2021; 9:e12132. [PMID: 34603852 PMCID: PMC8445084 DOI: 10.7717/peerj.12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
As potential molecular targets for developing novel pest management strategies, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) have been considered to initiate odor recognition in insects. Herein, we investigated the OBPs and CSPs in a major global crop pest (Spodoptera exempta). Using transcriptome analysis, we identified 40 OBPs and 33 CSPs in S. exempta, among which 35 OBPs and 29 CSPs had intact open reading frames. Sequence alignment indicated that 30 OBPs and 23 CSPs completely contained the conserved cysteines. OBPs of lepidopteran insects usually belonged to classical, minus-C, and plus-C groups. However, phylogenetic analyses indicated that we only identified 28 classical and seven minus-C OBPs in S. exempta, suggesting that we might have missed some typical OBPs in lepidopteran insects, probably due to their low expression levels. All of the CSPs from S. exempta clustered with the orthologs of other moths. The identification and expression of the OBPs and CSPs were well studied in insect adults by transcriptional analyses, and herein we used samples at different stages to determine the expression of OBPs and CSPs in S. exempta. Interestingly, our data indicated that several OBPs and CSPs were especially or more highly expressed in larvae or pupae than other stages, including three exclusively (SexeOBP13, SexeOBP16 and SexeCSP23) and six more highly (SexeOBP15, SexeOBP37, SexeCSP4, SexeCSP8, SexeCSP19, and SexeCSP33) expressed in larvae, two exclusively (SexeCSP6 and SexeCSP20) and three more highly (SexeOBP18, SexeCSP17, and SexeCSP26) expressed in pupae. Usually, OBPs and CSPs had both male- and female-biased expression patterns in adult antennae. However, our whole-body data indicated that all highly expressed OBPs and CSPs in adults were male-biased or did not differ, suggesting diverse OBP and CSP functions in insect adults. Besides identifying OBPs and CSPs as well as their expression patterns, these results provide a molecular basis to facilitate functional studies of OBPs and CSPs for exploring novel management strategies to control S. exempta.
Collapse
Affiliation(s)
- Yonghao Dong
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China.,Qingdao Special Crops Research Center, Chinese Academy of Agricultural Sciences, Qingdao, Shandong Province, China
| | - Tong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Jin Liu
- Shandong Agriculture and Engineering University, Jinan, Shandong Province, China
| | - Meixue Sun
- Qingdao Special Crops Research Center, Chinese Academy of Agricultural Sciences, Qingdao, Shandong Province, China
| | - Xingyu Chen
- Qingdao Special Crops Research Center, Chinese Academy of Agricultural Sciences, Qingdao, Shandong Province, China
| | - Yongjie Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Pengjun Xu
- Qingdao Special Crops Research Center, Chinese Academy of Agricultural Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
22
|
Liu F, Chen Z, Ye Z, Liu N. The Olfactory Chemosensation of Hematophagous Hemipteran Insects. Front Physiol 2021; 12:703768. [PMID: 34434117 PMCID: PMC8382127 DOI: 10.3389/fphys.2021.703768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
As one of the most abundant insect orders on earth, most Hemipteran insects are phytophagous, with the few hematophagous exceptions falling into two families: Cimicidae, such as bed bugs, and Reduviidae, such as kissing bugs. Many of these blood-feeding hemipteran insects are known to be realistic or potential disease vectors, presenting both physical and psychological risks for public health. Considerable researches into the interactions between hemipteran insects such as kissing bugs and bed bugs and their human hosts have revealed important information that deepens our understanding of their chemical ecology and olfactory physiology. Sensory mechanisms in the peripheral olfactory system of both insects have now been characterized, with a particular emphasis on their olfactory sensory neurons and odorant receptors. This review summarizes the findings of recent studies of both kissing bugs (including Rhodnius prolixus and Triatoma infestans) and bed bugs (Cimex lectularius), focusing on their chemical ecology and peripheral olfactory systems. Potential chemosensation-based applications for the management of these Hemipteran insect vectors are also discussed.
Collapse
Affiliation(s)
- Feng Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Zhou Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Zi Ye
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
23
|
Wulff JP, Segura DF, Devescovi F, Muntaabski I, Milla FH, Scannapieco AC, Cladera JL, Lanzavecchia SB. Identification and characterization of soluble binding proteins associated with host foraging in the parasitoid wasp Diachasmimorpha longicaudata. PLoS One 2021; 16:e0252765. [PMID: 34138896 PMCID: PMC8211293 DOI: 10.1371/journal.pone.0252765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/22/2021] [Indexed: 11/19/2022] Open
Abstract
The communication and reproduction of insects are driven by chemical sensing. During this process, chemical compounds are transported across the sensillum lymph to the sensory neurons assisted by different types of soluble binding proteins: odorant-binding proteins (OBPs); chemosensory proteins (CSPs); some members of ML-family proteins (MD-2 (myeloid differentiation factor-2)-related Lipid-recognition), also known as NPC2-like proteins. Potential transcripts involved in chemosensing were identified by an in silico analysis of whole-body female and male transcriptomes of the parasitic wasp Diachasmimorpha longicaudata. This analysis facilitated the characterization of fourteen OBPs (all belonging to the Classic type), seven CSPs (and two possible isoforms), and four NPC2-like proteins. A differential expression analysis by qPCR showed that eleven of these proteins (CSPs 2 and 8, OBPs 2, 3, 4, 5, 6, 9, 10, and 11, and NPC2b) were over-expressed in female antenna and two (CSP 1 and OBP 12) in the body without antennae. Foraging behavior trials (linked to RNA interference) suggest that OBPs 9, 10, and 11 are potentially involved in the female orientation to chemical cues associated with the host. OBP 12 seems to be related to physiological processes of female longevity regulation. In addition, transcriptional silencing of CSP 3 showed that this protein is potentially associated with the regulation of foraging behavior. This study supports the hypothesis that soluble binding proteins are potentially linked to fundamental physiological processes and behaviors in D. longicaudata. The results obtained here contribute useful information to increase the parasitoid performance as a biological control agent of fruit fly pest species.
Collapse
Affiliation(s)
- Juan P. Wulff
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Diego F. Segura
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Francisco Devescovi
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Irina Muntaabski
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Fabian H. Milla
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Alejandra C. Scannapieco
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Jorge L. Cladera
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Silvia B. Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| |
Collapse
|
24
|
Johnstun JA, Shankar V, Mokashi SS, Sunkara LT, Ihearahu UE, Lyman RL, Mackay TFC, Anholt RRH. Functional Diversification, Redundancy, and Epistasis among Paralogs of the Drosophila melanogaster Obp50a-d Gene Cluster. Mol Biol Evol 2021; 38:2030-2044. [PMID: 33560417 PMCID: PMC8097280 DOI: 10.1093/molbev/msab004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Large multigene families, such as the insect odorant-binding proteins (OBPs), are thought to arise through functional diversification after repeated gene duplications. Whereas many OBPs function in chemoreception, members of this family are also expressed in tissues outside chemosensory organs. Paralogs of the Obp50 gene cluster are expressed in metabolic and male reproductive tissues, but their functions and interrelationships remain unknown. Here, we report the genetic dissection of four members of the Obp50 cluster, which are in close physical proximity without intervening genes. We used CRISPR technology to excise the entire cluster while introducing a PhiC31 reintegration site to reinsert constructs in which different combinations of the constituent Obp genes were either intact or rendered inactive. We performed whole transcriptome sequencing and assessed sexually dimorphic changes in transcript abundances (transcriptional niches) associated with each gene-edited genotype. Using this approach, we were able to estimate redundancy, additivity, diversification, and epistasis among Obp50 paralogs. We analyzed the effects of gene editing of this cluster on organismal phenotypes and found a significant skewing of sex ratios attributable to Obp50a, and sex-specific effects on starvation stress resistance attributable to Obp50d. Thus, there is functional diversification within the Obp50 cluster with Obp50a contributing to development and Obp50d to stress resistance. The deletion-reinsertion approach we applied to the Obp50 cluster provides a general paradigm for the genetic dissection of paralogs of multigene families.
Collapse
Affiliation(s)
- Joel A Johnstun
- Department of Biological Sciences, Program in Genetics and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - Vijay Shankar
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Sneha S Mokashi
- Department of Biological Sciences, Program in Genetics and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Lakshmi T Sunkara
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Ugonna E Ihearahu
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roberta L Lyman
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, Program in Genetics and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Robert R H Anholt
- Department of Biological Sciences, Program in Genetics and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, USA
| |
Collapse
|
25
|
Diallo S, Shahbaaz M, Makwatta JO, Muema JM, Masiga D, Christofells A, Getahun MN. Antennal Enriched Odorant Binding Proteins Are Required for Odor Communication in Glossina f. fuscipes. Biomolecules 2021; 11:541. [PMID: 33917773 PMCID: PMC8068202 DOI: 10.3390/biom11040541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Olfaction is orchestrated at different stages and involves various proteins at each step. For example, odorant-binding proteins (OBPs) are soluble proteins found in sensillum lymph that might encounter odorants before reaching the odorant receptors. In tsetse flies, the function of OBPs in olfaction is less understood. Here, we investigated the role of OBPs in Glossina fuscipes fuscipes olfaction, the main vector of sleeping sickness, using multidisciplinary approaches. Our tissue expression study demonstrated that GffLush was conserved in legs and antenna in both sexes, whereas GffObp44 and GffObp69 were expressed in the legs but absent in the antenna. GffObp99 was absent in the female antenna but expressed in the male antenna. Short odorant exposure induced a fast alteration in the transcription of OBP genes. Furthermore, we successfully silenced a specific OBP expressed in the antenna via dsRNAi feeding to decipher its function. We found that silencing OBPs that interact with 1-octen-3-ol significantly abolished flies' attraction to 1-octen-3-ol, a known attractant for tsetse fly. However, OBPs that demonstrated a weak interaction with 1-octen-3-ol did not affect the behavioral response, even though it was successfully silenced. Thus, OBPs' selective interaction with ligands, their expression in the antenna and their significant impact on behavior when silenced demonstrated their direct involvement in olfaction.
Collapse
Affiliation(s)
- Souleymane Diallo
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - JohnMark O Makwatta
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Jackson M Muema
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Alan Christofells
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Merid N Getahun
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| |
Collapse
|
26
|
Guo H, Guo PP, Sun YL, Huang LQ, Wang CZ. Contribution of odorant binding proteins to olfactory detection of (Z)-11-hexadecenal in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103554. [PMID: 33600999 DOI: 10.1016/j.ibmb.2021.103554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 05/14/2023]
Abstract
Helicoverpa armigera utilizes (Z)-11-hexadecenal (Z11-16:Ald) as its major sex pheromone component. Three pheromone binding proteins (PBPs) and two general odorant binding proteins (GOBPs) are abundantly expressed in the male antennae of H. armigera. However, their precise roles in the olfactory detection of Z11-16:Ald remain enigmatic. To answer this question, we first synthesized the antibody against HarmOR13, an olfactory receptor (OR) primarily responding to Z11-16:Ald and mapped the local associations between PBPs/GOBPs and HarmOR13. Immunostaining showed that HarmPBPs and HarmGOBPs were localized in the supporting cells of trichoid sensilla and basiconic sensilla respectively. In particular, HarmPBP1 and HarmPBP2 were colocalized in the cells surrounding the olfactory receptor neurons (ORNs) expressing HarmOR13. Next, using two noninterfering binary expression tools, we heterologously expressed HarmPBP1, HarmPBP2 and HarmOR13 in Drosophila T1 sensilla to validate the functional interplay between PBPs and HarmOR13. We found that the addition of HarmPBP1 or HarmPBP2, not HarmPBP3, significantly increased HarmOR13's response to Z11-16:Ald. However, the presence of either HarmPBP1 or HarmPBP2 was ineffective to change the tuning breadth of HarmOR13 and modulate the response kinetics of this receptor. Taken together, this work demonstrates both HarmPBP1 and HarmPBP2 are involved in Z11-16:Ald detection. Our results support the idea that PBPs can contribute to the peripheral olfactory sensitivity but do little in modulating the selectivity and the response kinetics of corresponding ORs.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Ping-Ping Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Ya-Lan Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; Forest College, Henan University of Science and Technology, Luoyang, PR China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
27
|
The 40-Year Mystery of Insect Odorant-Binding Proteins. Biomolecules 2021; 11:biom11040509. [PMID: 33808208 PMCID: PMC8067015 DOI: 10.3390/biom11040509] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted "transporter role", OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthparts, pheromone glands, reproductive organs, digestive tract and venom glands, remain to be investigated. This review provides an updated panorama on the varied structural aspects, binding properties, tissue expression and functional roles of insect OBPs.
Collapse
|
28
|
Abstract
The sense of smell enables insects to recognize olfactory signals crucial for survival and reproduction. In insects, odorant detection highly depends on the interplay of distinct proteins expressed by specialized olfactory sensory neurons (OSNs) and associated support cells which are housed together in chemosensory units, named sensilla, mainly located on the antenna. Besides odorant-binding proteins (OBPs) and olfactory receptors, so-called sensory neuron membrane proteins (SNMPs) are indicated to play a critical role in the detection of certain odorants. SNMPs are insect-specific membrane proteins initially identified in pheromone-sensitive OSNs of Lepidoptera and are indispensable for a proper detection of pheromones. In the last decades, genome and transcriptome analyses have revealed a wide distribution of SNMP-encoding genes in holometabolous and hemimetabolous insects, with a given species expressing multiple subtypes in distinct cells of the olfactory system. Besides SNMPs having a neuronal expression in subpopulations of OSNs, certain SNMP types were found expressed in OSN-associated support cells suggesting different decisive roles of SNMPs in the peripheral olfactory system. In this review, we will report the state of knowledge of neuronal and non-neuronal members of the SNMP family and discuss their possible functions in insect olfaction.
Collapse
Affiliation(s)
- Sina Cassau
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jürgen Krieger
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
29
|
Abstract
Insects thrive in diverse ecological niches in large part because of their highly sophisticated olfactory systems. Over the last two decades, a major focus in the study of insect olfaction has been on the role of olfactory receptors in mediating neuronal responses to environmental chemicals. In vivo, these receptors operate in specialized structures, called sensilla, which comprise neurons and non-neuronal support cells, extracellular lymph fluid and a precisely shaped cuticle. While sensilla are inherent to odour sensing in insects, we are only just beginning to understand their construction and function. Here, we review recent work that illuminates how odour-evoked neuronal activity is impacted by sensillar morphology, lymph fluid biochemistry, accessory signalling molecules in neurons and the physiological crosstalk between sensillar cells. These advances reveal multi-layered molecular and cellular mechanisms that determine the selectivity, sensitivity and dynamic modulation of odour-evoked responses in insects.
Collapse
Affiliation(s)
- Hayden R Schmidt
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
30
|
Shah JS, Renthal R. Antennal Proteome of the Solenopsis invicta (Hymenoptera: Formicidae): Caste Differences in Olfactory Receptors and Chemosensory Support Proteins. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5937575. [PMID: 33098433 PMCID: PMC7585320 DOI: 10.1093/jisesa/ieaa118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the expression pattern of odorant and pheromone transporters, receptors, and deactivation enzymes in the antennae of ants carrying out different tasks. In order to begin filling in this information gap, we compared the proteomes of the antennae of workers and males of the red fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Male ants do not perform any colony work, and their only activity is to leave the nest on a mating flight. Previous studies showed that male ants express fewer types of odorant receptors than workers. Thus, we expected to find large differences between male and worker antennae for expression of receptors, transporters, and deactivators of signaling chemicals. We found that the abundance of receptors was consistent with the expected caste-specific signaling complexity, but the numbers of different antenna-specific transporters and deactivating enzymes in males and workers were similar. It is possible that some of these proteins have antenna-specific functions that are unrelated to chemosensory reception. Alternatively, the similar complexity could be a vestige of ant progenitors that had more behaviorally active males. As the reduced behavior of male ants evolved, the selection process may have favored a complex repertoire of transporters and deactivating enzymes alongside a limited repertoire of odorant receptors.
Collapse
Affiliation(s)
- Jaee Shailesh Shah
- Department of Biology, University of Texas at San Antonio, San Antonio, TX
| | - Robert Renthal
- Department of Biology, University of Texas at San Antonio, San Antonio, TX
| |
Collapse
|
31
|
Abstract
The technique of two-electrode voltage-clamp (TEVC) recording from the heterologous expression system of olfactory receptors (ORs) in Xenopus laevis oocytes has been widely used to deorphanize insect ORs, that is to identify specific ligands for each of them. However, there is a controversial issue on whether ORs are activated by the odorant/OBP complex or the odorant alone. The mechanism of interaction among odorants, odorant-binding proteins (OBPs) and ORs remains largely unknown, due to the limitations in the use of scientific and innovative methods. In this chapter, the modified Xenopus oocytes expression system combined with TEVC technique is used to approach this issue. We describe the experimental strategies and provide detailed protocols for recording the signals generated by ORs in response to odorant/OBP complex at different concentrations. Results obtained by this approach have revealed that the presence of OBPs in the system affects the selectivity and sensitivity responses of ORs. Such studies help understanding the molecular mechanism of odorant detection in peripheral nervous system.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
32
|
Modulation of Sex Pheromone Discrimination by A UDP-Glycosyltransferase in Drosophila melanogaster. Genes (Basel) 2020; 11:genes11030237. [PMID: 32106439 PMCID: PMC7140800 DOI: 10.3390/genes11030237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
The detection and processing of chemical stimuli involve coordinated neuronal networks that process sensory information. This allows animals, such as the model species Drosophila melanogaster, to detect food sources and to choose a potential mate. In peripheral olfactory tissues, several classes of proteins are acting to modulate the detection of chemosensory signals. This includes odorant-binding proteins together with odorant-degrading enzymes (ODEs). These enzymes, which primarily act to eliminate toxic compounds from the whole organism also modulate chemodetection. ODEs are thought to neutralize the stimulus molecule concurrently to its detection, avoiding receptor saturation thus allowing chemosensory neurons to respond to the next stimulus. Here, we show that one UDP-glycosyltransferase (UGT36E1) expressed in D. melanogaster antennal olfactory sensory neurons (OSNs) is involved in sex pheromone discrimination. UGT36E1 overexpression caused by an insertion mutation affected male behavioral ability to discriminate sex pheromones while it increased OSN electrophysiological activity to male pheromones. Reciprocally, the decreased expression of UGT36E1, controlled by an RNAi transgene, improved male ability to discriminate sex pheromones whereas it decreased electrophysiological activity in the relevant OSNs. When we combined the two genotypes (mutation and RNAi), we restored wild-type-like levels both for the behavioral discrimination and UGT36E1 expression. Taken together, our results strongly suggest that this UGT plays a pivotal role in Drosophila pheromonal detection.
Collapse
|
33
|
Anholt RRH. Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 2020; 23:100799. [PMID: 31923648 PMCID: PMC6951304 DOI: 10.1016/j.isci.2019.100799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to respond to chemosensory cues is critical for survival of most organisms. Among insects, Drosophila melanogaster has the best characterized olfactory system, and the availability of genome sequences of 30 Drosophila species provides an ideal scenario for studies on evolution of chemosensation. Gene duplications of chemoreceptor genes allow for functional diversification of the rapidly evolving chemoreceptor repertoire. Although some species of the genus Drosophila are generalists for host plant selection, rapid evolution of olfactory receptors, gustatory receptors, odorant-binding proteins, and cytochrome P450s has enabled diverse host specializations of different members of the genus. Here, I review diversification of the chemoreceptor repertoire among members of the genus Drosophila along with co-evolution of detoxification mechanisms that may have enabled occupation of diverse host plant ecological niches.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
34
|
Xiao S, Sun JS, Carlson JR. Robust olfactory responses in the absence of odorant binding proteins. eLife 2019; 8:51040. [PMID: 31651397 PMCID: PMC6814364 DOI: 10.7554/elife.51040] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023] Open
Abstract
Odorant binding proteins (Obps) are expressed at extremely high levels in the antennae of insects, and have long been believed essential for carrying hydrophobic odorants to odor receptors. Previously we found that when one functional type of olfactory sensillum in Drosophila was depleted of its sole abundant Obp, it retained a robust olfactory response (Larter et al., 2016). Here we have deleted all the Obp genes that are abundantly expressed in the antennal basiconic sensilla. All of six tested sensillum types responded robustly to odors of widely diverse chemical or temporal structure. One mutant gave a greater physiological and behavioral response to an odorant that affects oviposition. Our results support a model in which many sensilla can respond to odorants in the absence of Obps, and many Obps are not essential for olfactory response, but that some Obps can modulate olfactory physiology and the behavior that it drives.
Collapse
Affiliation(s)
- Shuke Xiao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|