1
|
Pepin ME, Konrad PJM, Nazir S, Bazgir F, Maack C, Nickel A, Gorman J, Hohl M, Schreiter F, Dewenter M, de Britto Chaves Filho A, Schulze A, Karlstaedt A, Frey N, Seidman C, Seidman J, Backs J. Mitochondrial NNT Promotes Diastolic Dysfunction in Cardiometabolic HFpEF. Circ Res 2025. [PMID: 40340422 DOI: 10.1161/circresaha.125.326154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Clinical management of heart failure with preserved ejection fraction (HFpEF) is hindered by a lack of disease-modifying therapies capable of altering its distinct pathophysiology. Despite the widespread implementation of a 2-hit model of cardiometabolic HFpEF to inform precision therapy, which utilizes ad libitum high-fat diet and 0.5% N(ω)-nitro-L-arginine methyl ester, we observe that C57BL6/J mice exhibit less cardiac diastolic dysfunction in response to high-fat diet and 0.5% N(ω)-nitro-L-arginine methyl ester. METHODS Genetic strain-specific single-nucleus transcriptomic analysis identified disease-relevant genes that enrich oxidative metabolic pathways within cardiomyocytes. Because C57BL/6J mice are known to harbor a loss-of-function mutation affecting the inner mitochondrial membrane protein Nnt (nicotinamide nucleotide transhydrogenase), we used an isogenic model of Nnt loss-of-function to determine whether intact NNT is necessary for the pathological cardiac manifestations of high-fat diet and 0.5% N(ω)-nitro-L-arginine methyl ester. Twelve-week-old mice cross-bred to isolate wild-type (Nnt+/+) or loss-of-function (Nnt-/-) Nnt in the C57BL/6N background were challenged with high-fat diet and 0.5% N(ω)-nitro-L-arginine methyl ester for 9 weeks (n=6-10). RESULTS Nnt+/+ mice exhibited impaired ventricular diastolic relaxation and pathological remodeling, as assessed via E/e' (42.8 versus 21.5, P=1.2×10-10), E/A (2.3 versus 1.4, P=4.1×10-2), diastolic stiffness (0.09 versus 0.04 mm Hg/μL, P=5.1×10-3), and myocardial fibrosis (P=2.3×10-2). Liquid chromatography and mass spectroscopy exposed a 40.0% reduction in NAD+ (P=8.4×10-3) and a 38.8% reduction in glutathione:GSSG (P=2.6×10-2) among Nnt+/+ mice after high-fat diet and 0.5% N(ω)-nitro-L-arginine methyl ester feeding. Using single-nucleus ligand-receptor analysis, we implicate Fgf1 (fibroblast growth factor 1) as a putative NNT-dependent mediator of cardiomyocyte-to-fibroblast signaling of myocardial fibrosis. CONCLUSIONS Together, these findings underscore the pivotal role of mitochondrial dysfunction in HFpEF pathogenesis, implicating both NNT and Fgf1 as novel therapeutic targets.
Collapse
Affiliation(s)
- Mark E Pepin
- Medical Faculty Heidelberg, Institute of Experimental Cardiology, Heidelberg University, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- Department of Internal Medicine VIII, Heidelberg University Hospital, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- German Center for Cardiovascular Research (DZHK) (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., N.F., J.B.)
- Department of Genetics, Harvard Medical School, Boston, MA (M.E.P., J.G., C.S., J.S.)
- Broad Institute of Harvard and MIT, Boston, MA (M.E.P.)
- Division of Cardiovascular Medicine, Stanford University Hospital, CA (M.E.P.)
| | - Philipp J M Konrad
- Medical Faculty Heidelberg, Institute of Experimental Cardiology, Heidelberg University, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- Department of Internal Medicine VIII, Heidelberg University Hospital, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- Department of Internal Medicine III, Heidelberg University Hospital, Germany. (P.J.M.K., N.F.)
- German Center for Cardiovascular Research (DZHK) (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., N.F., J.B.)
| | - Sumra Nazir
- Medical Faculty Heidelberg, Institute of Experimental Cardiology, Heidelberg University, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- Department of Internal Medicine VIII, Heidelberg University Hospital, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- German Center for Cardiovascular Research (DZHK) (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., N.F., J.B.)
| | - Farhad Bazgir
- Medical Faculty Heidelberg, Institute of Experimental Cardiology, Heidelberg University, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- Department of Internal Medicine VIII, Heidelberg University Hospital, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- German Center for Cardiovascular Research (DZHK) (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., N.F., J.B.)
| | - Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Germany (C.M., A.N.)
- Medical Clinic I, University Clinic Würzburg, Germany (C.M.)
| | - Alexander Nickel
- Comprehensive Heart Failure Center, University Clinic Würzburg, Germany (C.M., A.N.)
| | - Joshua Gorman
- Department of Genetics, Harvard Medical School, Boston, MA (M.E.P., J.G., C.S., J.S.)
| | - Mathias Hohl
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H.)
| | - Friederike Schreiter
- Medical Faculty Heidelberg, Institute of Experimental Cardiology, Heidelberg University, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- Department of Internal Medicine VIII, Heidelberg University Hospital, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- German Center for Cardiovascular Research (DZHK) (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., N.F., J.B.)
| | - Matthias Dewenter
- Medical Faculty Heidelberg, Institute of Experimental Cardiology, Heidelberg University, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- Department of Internal Medicine VIII, Heidelberg University Hospital, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- German Center for Cardiovascular Research (DZHK) (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., N.F., J.B.)
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Germany and Heidelberg University, Germany (M.D., J.B.)
| | | | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg (A.d.B.C.F., A.S.)
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.K.)
| | - Norbert Frey
- Department of Internal Medicine III, Heidelberg University Hospital, Germany. (P.J.M.K., N.F.)
- German Center for Cardiovascular Research (DZHK) (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., N.F., J.B.)
| | - Christine Seidman
- Department of Genetics, Harvard Medical School, Boston, MA (M.E.P., J.G., C.S., J.S.)
| | - Jonathan Seidman
- Department of Genetics, Harvard Medical School, Boston, MA (M.E.P., J.G., C.S., J.S.)
| | - Johannes Backs
- Medical Faculty Heidelberg, Institute of Experimental Cardiology, Heidelberg University, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Heidelberg University, Germany. (J.B.)
- Department of Internal Medicine VIII, Heidelberg University Hospital, Germany. (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., J.B.)
- German Center for Cardiovascular Research (DZHK) (M.E.P., P.J.M.K., S.N., F.B., F.S., M.D., N.F., J.B.)
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Germany and Heidelberg University, Germany (M.D., J.B.)
| |
Collapse
|
2
|
Zhou J, Wei J, Wang H, Li H, Zhao L, Fu R, Yue B. Multiplex Detection of SNPs for Genetic Monitoring in Laboratory Mice by Luminex xTAG Assay. Genes (Basel) 2024; 15:1622. [PMID: 39766889 PMCID: PMC11675309 DOI: 10.3390/genes15121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The genetic quality of laboratory mice may have a direct impact on the results of research. Therefore, it is essential to improve genetic monitoring methods to guarantee research quality. However, few current methods boast high efficiency, high throughput, low cost, and general applicability at the same time. Methods: First, we got 34 SNP loci from previous studies for inbred strains and screened out 15 loci with good polymorphism for outbred groups from these 34 loci. Then, by using the Luminex xTAG assay, we tested inbred strains and outbred groups. Results: We tested commonly used inbred strains and five DNA samples from the International Council for Laboratory Animal Science, obtaining correct genotyping results. Additionally, some loci were potentially confirmed to be useful for distinguishing C57BL/6 and BALB/c mouse substrains. Furthermore, we tested three outbred groups and analyzed the genetic structure, and we compared the results of the SNP markers by xTAG assay to the STR markers by PCR, the trends of the three groups are the same. Conclusions: In our studies, the panels could meet the requirements for method promotion and provide a good choice for the genetic monitoring of inbred and outbred mice.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.Z.); (J.W.); (H.W.); (H.L.)
- R&D Center, Beijing Minhai Biotechnology Co., Ltd., Beijing 102629, China
| | - Jie Wei
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.Z.); (J.W.); (H.W.); (H.L.)
| | - Hong Wang
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.Z.); (J.W.); (H.W.); (H.L.)
| | - Huan Li
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.Z.); (J.W.); (H.W.); (H.L.)
| | - Lan Zhao
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.Z.); (J.W.); (H.W.); (H.L.)
| | - Rui Fu
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.Z.); (J.W.); (H.W.); (H.L.)
| | - Bingfei Yue
- China National Rodent Laboratory Animal Resources Center, Beijing 102629, China
| |
Collapse
|
3
|
Ikeda E, Yamaguchi M, Kawabata S. Gut Microbiota-mediated Alleviation of Dextran Sulfate Sodium-induced Colitis in Mice. GASTRO HEP ADVANCES 2024; 3:461-470. [PMID: 39131720 PMCID: PMC11308119 DOI: 10.1016/j.gastha.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/29/2024] [Indexed: 08/13/2024]
Abstract
Background and Aims Gut dysbiosis characterized by an imbalanced microbiota is closely involved in the pathogenesis of a widespread gastrointestinal inflammatory disorder, inflammatory bowel disease. However, it is unclear how the complex intestinal microbiota affects development or resistant of mucosal inflammation. Our aim was to investigate the impact of the gut microbiota on susceptibility in a mouse model of ulcerative colitis. Methods We compared the susceptibility to dextran sulfate sodium (DSS)-induced colitis of inbred BALB/c mice obtained from the 3 main distributors of laboratory animals in Japan. Clinical symptoms of the colitis and the faecal microbiota were assessed. Cohousing approach was used to identify whether the gut microbiota is a primary factor determining disease susceptibility. Results Here, we showed differences in the susceptibility of BALB/c mice from the vendors to DSS colitis. Analysis of the gut microbiota using 16S ribosomal RNA sequencing revealed clear separation of the gut microbial composition among mice from the vendors. Notably, the abundance of the phylum Actinobacteriota was strongly associated with disease activity. We also observed the expansion of butyrate-producing Roseburia species in mice with decreased susceptibility of the disease. Further cohousing experiments showed that variation in clinical outcomes was more correlated with the gut microbiota than genetic variants among substrains from different suppliers. Conclusion A BALB/c substrain that was resistant to DSS-induced colitis was observed, and the severity of DSS-induced colitis was mainly influenced by the gut microbiota. Targeting butyrate-producing bacteria could have therapeutic potential for ulcerative colitis.
Collapse
Affiliation(s)
- Eri Ikeda
- Department of Microbiology, Graduates School of Dentistry, Osaka University, Suita, Osaka, Japan
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaya Yamaguchi
- Department of Microbiology, Graduates School of Dentistry, Osaka University, Suita, Osaka, Japan
- Bioinformatics Research Unit, Graduates School of Dentistry, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Graduates School of Dentistry, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Jaric I, Voelkl B, Amrein I, Wolfer DP, Novak J, Detotto C, Weber-Stadlbauer U, Meyer U, Manuella F, Mansuy IM, Würbel H. Using mice from different breeding sites fails to improve replicability of results from single-laboratory studies. Lab Anim (NY) 2024; 53:18-22. [PMID: 38151528 PMCID: PMC10766513 DOI: 10.1038/s41684-023-01307-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
Theoretical and empirical evidence indicates that low external validity due to rigorous standardization of study populations is a cause of poor replicability in animal research. Here we report a multi-laboratory study aimed at investigating whether heterogenization of study populations by using animals from different breeding sites increases the replicability of results from single-laboratory studies. We used male C57BL/6J mice from six different breeding sites to test a standardized against a heterogenized (HET) study design in six independent replicate test laboratories. For the standardized design, each laboratory ordered mice from a single breeding site (each laboratory from a different one), while for the HET design, each laboratory ordered proportionate numbers of mice from the five remaining breeding sites. To test our hypothesis, we assessed 14 outcome variables, including body weight, behavioral measures obtained from a single session on an elevated plus maze, and clinical blood parameters. Both breeding site and test laboratory affected variation in outcome variables, but the effect of test laboratory was more pronounced for most outcome variables. Moreover, heterogenization of study populations by breeding site (HET) did not reduce variation in outcome variables between test laboratories, which was most likely due to the fact that breeding site had only little effect on variation in outcome variables, thereby limiting the scope for HET to reduce between-lab variation. We conclude that heterogenization of study populations by breeding site has limited capacity for improving the replicability of results from single-laboratory animal studies.
Collapse
Affiliation(s)
- Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irmgard Amrein
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland
| | - David P Wolfer
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Janja Novak
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carlotta Detotto
- Central Animal Facilities, Experimental Animal Center, University of Bern, Bern, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty and Center of Neuroscience Zürich, University of Zürich, Zürich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty and Center of Neuroscience Zürich, University of Zürich, Zürich, Switzerland
| | - Francesca Manuella
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty, University of Zürich, Zürich, Switzerland
- Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich (ETHZ), Zurich, Switzerland
- Center for Neuroscience Zürich, University Zürich and ETHZ, Zürich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty, University of Zürich, Zürich, Switzerland
- Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich (ETHZ), Zurich, Switzerland
- Center for Neuroscience Zürich, University Zürich and ETHZ, Zürich, Switzerland
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Sharma H, Chang KA, Hulme J, An SSA. Mammalian Models in Alzheimer's Research: An Update. Cells 2023; 12:2459. [PMID: 37887303 PMCID: PMC10605533 DOI: 10.3390/cells12202459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
A form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans. As such, this review seeks to provide insight regarding current applications of mammalian models in AD research by addressing recent developments and characterizations of prominent transgenic models and their contributions to pathogenesis as well as discuss the advantages, limitations, and application of emerging models that better capture genetic heterogeneity and mixed pathologies observed in the clinical situation.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Fujii S, Murata Y, Imamura Y, Nakachi Y, Bundo M, Kubota-Sakashita M, Kato T, Iwamoto K. Sex-dependent behavioral alterations in a poly(I:C)-induced maternal immune activation mouse model without segment filamentous bacteria. Neurosci Lett 2023; 814:137467. [PMID: 37652351 DOI: 10.1016/j.neulet.2023.137467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Maternal immune activation is one of the environmental risk factors for offspring to develop psychiatric disorders. A synthetic viral mimetic immunogen, polyinosinic-polycytidylic acid (poly(I:C)), is used to induce maternal immune activation in animal models of psychiatric disorders. In the mouse poly(I:C) model, the existence of segment filamentous bacteria (SFB) in the maternal intestine has been reported to be important for the induction of ASD-related behavioral alterations as well as atypical cortical development called cortical patches. This study aimed to elucidate the effect of a single poly(I:C) injection during embryonic day (E) 9 to E16 on offspring's behavior in the ensured absence of maternal SFB by vancomycin drinking in C57BL/6N mice. The cortical patches were not found at either injection timings with poly(I:C) or PBS vehicle, tested in male or female offspring at postnatal day 0 or 1. Prepulse inhibition was decreased in male adult offspring most strongly at poly(I:C) injection timings later than E11, whereas a modest but significant decrease was observed in female offspring with an injection during E12 to E15. The decrease in social interaction was observed in female offspring most conspicuously at injection timings later than E11, whereas a significant decrease was observed in male offspring with an injection during E12 to E15. In conclusion, this study indicated that behavioral alterations could be induced without maternal SFB. The effect on behavior was substantially different between males and females.
Collapse
Affiliation(s)
- Shinya Fujii
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Yui Murata
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Yuko Imamura
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Mie Kubota-Sakashita
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Molecular Pathology of Mood Disorders, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Molecular Pathology of Mood Disorders, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan.
| |
Collapse
|
7
|
Kobayashi M, Kanbe F, Ishii R, Tsubouchi H, Hirai K, Miyasaka Y, Ohno T, Oda H, Ikeda S, Katoh H, Ichiyanagi K, Ishikawa A, Murai A, Horio F. C3H/HeNSlc mouse with low phospholipid transfer protein expression showed dyslipidemia. Sci Rep 2023; 13:13813. [PMID: 37620514 PMCID: PMC10449841 DOI: 10.1038/s41598-023-40917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
High serum levels of triglycerides (TG) and low levels of high-density lipoprotein cholesterol (HDL-C) increase the risk of coronary heart disease in humans. Herein, we first reported that the C3H/HeNSlc (C3H-S) mouse, a C3H/HeN-derived substrain, is a novel model for dyslipidemia. C3H-S showed hypertriglyceridemia and low total cholesterol (TC), HDL-C, and phospholipid (PL) concentrations. To identify the gene locus causing dyslipidemia in C3H-S, we performed genetic analysis. In F2 intercrosses between C3H-S mice and strains with normal serum lipids, the locus associated with serum lipids was identified as 163-168 Mb on chromosome 2. The phospholipid transfer protein (Pltp) gene was a candidate gene within this locus. Pltp expression and serum PLTP activity were markedly lower in C3H-S mice. Pltp expression was negatively correlated with serum TG and positively correlated with serum TC and HDL-C in F2 mice. Genome sequencing analysis revealed that an endogenous retrovirus (ERV) sequence called intracisternal A particle was inserted into intron 12 of Pltp in C3H-S. These results suggest that ERV insertion within Pltp causes aberrant splicing, leading to reduced Pltp expression in C3H-S. This study demonstrated the contribution of C3H-S to our understanding of the relationship between TG, TC, and PL metabolism via PLTP.
Collapse
Affiliation(s)
- Misato Kobayashi
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan.
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan.
| | - Fumi Kanbe
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Reika Ishii
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Hiroki Tsubouchi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Kana Hirai
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Hiroaki Oda
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Saiko Ikeda
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan
| | - Hirokazu Katoh
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Kenji Ichiyanagi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Akira Ishikawa
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Atsushi Murai
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Fumihiko Horio
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
- Department of Life Studies and Environmental Science, Nagoya Women's University, Aichi, Japan
| |
Collapse
|
8
|
Yoshiki A, Ballard G, Perez AV. Genetic quality: a complex issue for experimental study reproducibility. Transgenic Res 2022; 31:413-430. [PMID: 35751794 PMCID: PMC9489590 DOI: 10.1007/s11248-022-00314-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.
Collapse
Affiliation(s)
- Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, 3050074, Japan.
| | - Gregory Ballard
- Comparative Medicine and Quality, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
9
|
Rawle DJ, Le TT, Dumenil T, Bishop C, Yan K, Nakayama E, Bird PI, Suhrbier A. Widespread discrepancy in Nnt genotypes and genetic backgrounds complicates granzyme A and other knockout mouse studies. eLife 2022; 11:e70207. [PMID: 35119362 PMCID: PMC8816380 DOI: 10.7554/elife.70207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Thuy T Le
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Troy Dumenil
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Cameron Bishop
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kexin Yan
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Eri Nakayama
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Department of Virology I, National Institute of Infectious DiseasesTokyoJapan
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Australian Infectious Disease Research Centre, GVN Center of ExcellenceBrisbaneAustralia
| |
Collapse
|
10
|
Cooper TK, Meyerholz DK, Beck AP, Delaney MA, Piersigilli A, Southard TL, Brayton CF. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J 2022; 62:77-132. [PMID: 34979559 DOI: 10.1093/ilar/ilab022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana-Champaign, Illinois, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology and the Genetically Modified Animal Phenotyping Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Brayton CF. Laboratory Codes in Nomenclature and Scientific Communication (Advancing Organism Nomenclature in Scientific Communication to Improve Research Reporting and Reproducibility). ILAR J 2021; 62:295-309. [PMID: 36528817 DOI: 10.1093/ilar/ilac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2022] [Indexed: 12/23/2022] Open
Abstract
Laboratory registration codes, also known as laboratory codes or lab codes, are a key element in standardized laboratory animal and genetic nomenclature. As such they are critical to accurate scientific communication and to research reproducibility and integrity. The original committee on Mouse Genetic Nomenclature published nomenclature conventions for mice genetics in 1940, and then conventions for inbred strains in 1952. Unique designations were needed, and have been in use since the 1950s, for the sources of animals and substrains, for the laboratories that identified new alleles or mutations, and then for developers of transgenes and induced mutations. Current laboratory codes are typically a 2- to 4-letter acronym for an institution or an investigator. Unique codes are assigned from the International Laboratory Code Registry, which was developed and is maintained by ILAR in the National Academies (National Academies of Sciences Engineering and Medicine and previously National Academy of Sciences). As a resource for the global research community, the registry has been online since 1997. Since 2003 mouse and rat genetic and strain nomenclature rules have been reviewed and updated annually as a joint effort of the International Committee on Standardized Genetic Nomenclature for Mice and the Rat Genome and Nomenclature Committee. The current nomenclature conventions (particularly conventions for non-inbred animals) are applicable beyond rodents, although not widely adopted. Ongoing recognition, since at least the 1930s, of the research relevance of genetic backgrounds and origins of animals, and of spontaneous and induced genetic variants speaks to the need for broader application of standardized nomenclature for animals in research, particularly given the increasing numbers and complexities of genetically modified swine, nonhuman primates, fish, and other species.
Collapse
Affiliation(s)
- Cory F Brayton
- Johns Hopkins Medicine, Molecular and Comparative Pathobiology, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Miura I, Kikkawa Y, Yasuda SP, Shinogi A, Usuda D, Kumar V, Takahashi JS, Tamura M, Masuya H, Wakana S. Characterization of single nucleotide polymorphisms for a forward genetics approach using genetic crosses in C57BL/6 and BALB/c substrains of mice. Exp Anim 2021; 71:240-251. [PMID: 34980769 PMCID: PMC9130033 DOI: 10.1538/expanim.21-0181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Forward genetics is a powerful approach based on chromosomal mapping of phenotypes and has successfully led to the discovery of many mouse mutations in genes responsible for various
phenotypes. Although crossing between genetically remote strains can produce F2 and backcross mice for chromosomal mapping, the phenotypes are often affected by background effects
from the partner strains in genetic crosses. Genetic crosses between substrains might be useful in genetic mapping to avoid genetic background effects. In this study, we investigated single
nucleotide polymorphisms (SNPs) available for genetic mapping using substrains of C57BL/6 and BALB/c mice. In C57BL/6 mice, 114 SNP markers were developed and assigned to locations on all
chromosomes for full utilization for genetic mapping using genetic crosses between the C57BL/6J and C57BL/6N substrains. Moreover, genetic differences were identified in the 114 SNP markers
among the seven C57BL/6 substrains from five production breeders. In addition, 106 SNPs were detected on all chromosomes of BALB/cAJcl and BALB/cByJJcl substrains. These SNPs could be used
for genotyping in BALB/cJ, BALB/cAJcl, BALB/cAnNCrlCrlj, and BALB/cCrSlc mice, and they are particularly useful for genetic mapping using crosses between BALB/cByJJcl and other BALB/c
substrains. The SNPs characterized in this study can be utilized for genetic mapping to identify the causative mutations of the phenotypes induced by N-ethyl-N-nitrosourea mutagenesis and
the SNPs responsible for phenotypic differences between the substrains of C57BL/6 and BALB/c mice.
Collapse
Affiliation(s)
- Ikuo Miura
- Division of Molecular Genetics, Department of Cooperative Graduate School, School of Medicine, Faculty of Medicine, Graduate School of Medical and Dental Sciences (Medicine), Niigata University.,Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center.,Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science
| | - Yoshiaki Kikkawa
- Division of Molecular Genetics, Department of Cooperative Graduate School, School of Medicine, Faculty of Medicine, Graduate School of Medical and Dental Sciences (Medicine), Niigata University.,Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science
| | - Shumpei P Yasuda
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science
| | - Akiko Shinogi
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center
| | - Daiki Usuda
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center.,Integrated Bioresource Information Division, RIKEN BioResource Research Center
| | | | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center
| | - Hiroshi Masuya
- Integrated Bioresource Information Division, RIKEN BioResource Research Center
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center.,Department of Animal Experimentation, Foundation for Biomedical Research and Innovation at Kobe, Creative Lab for Innovation in Kobe
| |
Collapse
|
13
|
Mizuno-Iijima S, Nakashiba T, Ayabe S, Nakata H, Ike F, Hiraiwa N, Mochida K, Ogura A, Masuya H, Kawamoto S, Tamura M, Obata Y, Shiroishi T, Yoshiki A. Mouse resources at the RIKEN BioResource Research Center and the National BioResource Project core facility in Japan. Mamm Genome 2021; 33:181-191. [PMID: 34532769 PMCID: PMC8445257 DOI: 10.1007/s00335-021-09916-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023]
Abstract
The RIKEN BioResource Research Center (BRC) was established in 2001 as a comprehensive biological resource center in Japan. The Experimental Animal Division, one of the BRC infrastructure divisions, has been designated as the core facility for mouse resources within the National BioResource Project (NBRP) by the Japanese government since FY2002. Our activities regarding the collection, preservation, quality control, and distribution of mouse resources have been supported by the research community, including evaluations and guidance on advancing social and research needs, as well as the operations and future direction of the BRC. Expenditure for collection, preservation, and quality-control operations of the BRC, as a national core facility, has been funded by the government, while distribution has been separately funded by users' reimbursement fees. We have collected over 9000 strains created mainly by Japanese scientists including Nobel laureates and researchers in cutting-edge fields and distributed mice to 7000 scientists with 1500 organizations in Japan and globally. Our users have published 1000 outstanding papers and a few dozen patents. The collected mouse resources are accessible via the RIKEN BRC website, with a revised version of the searchable online catalog. In addition, to enhance the visibility of useful strains, we have launched web corners designated as the "Mouse of the Month" and "Today's Tool and Model." Only high-demand strains are maintained in live colonies, while other strains are cryopreserved as embryos or sperm to achieve cost-effective management. Since 2007, the RIKEN BRC has built up a back-up facility in the RIKEN Harima branch to protect the deposited strains from disasters. Our mice have been distributed with high quality through the application of strict microbial and genetic quality control programs that cover a globally accepted pathogens list and mutated alleles generated by various methods. Added value features, such as information about users' publications, standardized phenotyping data, and genome sequences of the collected strains, are important to facilitate the use of our resources. We have added and disseminated such information in collaboration with the NBRP Information Center and the NBRP Genome Information Upgrading Program. The RIKEN BRC has participated in international mouse resource networks such as the International Mouse Strain Resource, International Mouse Phenotyping Consortium, and Asian Mouse Mutagenesis and Resource Association to facilitate the worldwide use of high-quality mouse resources, and as a consequence it contributes to reproducible life science studies and innovation around the globe.
Collapse
Affiliation(s)
- Saori Mizuno-Iijima
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Toshiaki Nakashiba
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Hatsumi Nakata
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Fumio Ike
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Noriko Hiraiwa
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Keiji Mochida
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Hiroshi Masuya
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shoko Kawamoto
- Genetics Informatics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yuichi Obata
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | | | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan.
| |
Collapse
|
14
|
Abstract
The inbred mouse strain C57BL/6 has been widely used as a background strain for spontaneous and induced mutations. Developed in the 1930s, the C57BL/6 strain
diverged into two major groups in the 1950s, namely, C57BL/6J and C57BL/6N, and more than 20 substrains have been established from them worldwide. We previously
reported genetic differences among C57BL/6 substrains in 2009 and 2015. Since then, dozens of reports have been published on phenotypic differences in
behavioral, neurological, cardiovascular, and metabolic traits. Substrains need to be chosen according to the purpose of the study because phenotypic
differences might affect the experimental results. In this paper, we review recent reports of phenotypic and genetic differences among C57BL/6 substrains, focus
our attention on the proper use of C57BL/6 and other inbred strains in the era of genome editing, and provide the life science research community wider
knowledge about this subject.
Collapse
Affiliation(s)
- Kazuyuki Mekada
- Department of Zoology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.,Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
15
|
A combination of genetics and microbiota influences the severity of the obesity phenotype in diet-induced obesity. Sci Rep 2020; 10:6118. [PMID: 32273571 PMCID: PMC7145845 DOI: 10.1038/s41598-020-63340-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/30/2020] [Indexed: 12/03/2022] Open
Abstract
Obesity has emerged as a major global health problem and is associated with various diseases, such as metabolic syndrome, type 2 diabetes mellitus, and cardiovascular diseases. The inbred C57BL/6 mouse strain is often used for various experimental investigations, such as metabolic research. However, over time, genetically distinguishable C57BL/6 substrains have evolved. The manifestation of genetic alterations has resulted in behavioral and metabolic differences. In this study, a comparison of diet-induced obesity in C57BL/6JHanZtm, C57BL/6NCrl and C57BL/6 J mice revealed several metabolic and immunological differences such as blood glucose level and cytokine expression, respectively, among these C57BL/6 substrains. For example, C57BL/6NCrl mice developed the most pronounced adiposity, whereas C57BL/6 J mice showed the highest impairment in glucose tolerance. Moreover, our results indicated that the immunological phenotype depends on the intestinal microbiota, as the cell subset composition of the colon was similar in obese ex-GF B6NRjB6JHanZtm and obese B6JHanZtm mice. Phenotypic differences between C57BL/6 substrains are caused by a complex combination of genetic and microbial alterations. Therefore, in performing metabolic research, considering substrain-specific characteristics, which can influence the course of study, is important. Moreover, for unbiased comparison of data, the entire strain name should be shared with the scientific community.
Collapse
|
16
|
Tonelli Gombalová Z, Košuth J, Alexovič Matiašová A, Zrubáková J, Žežula I, Giallongo T, Di Giulio AM, Carelli S, Tomašková L, Daxnerová Z, Ševc J. Majority of cerebrospinal fluid‐contacting neurons in the spinal cord of
C57Bl/6N
mice is present in ectopic position unlike in other studied experimental mice strains and mammalian species. J Comp Neurol 2020; 528:2523-2550. [DOI: 10.1002/cne.24909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Zuzana Tonelli Gombalová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Ján Košuth
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Anna Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Jarmila Zrubáková
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Ivan Žežula
- Institute of Mathematics, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Toniella Giallongo
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Anna Maria Di Giulio
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Stephana Carelli
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Lenka Tomašková
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Zuzana Daxnerová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Juraj Ševc
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| |
Collapse
|
17
|
Shimamoto-Mitsuyama C, Ohnishi T, Balan S, Ohba H, Watanabe A, Maekawa M, Hisano Y, Iwayama Y, Owada Y, Yoshikawa T. Evaluation of the role of fatty acid-binding protein 7 in controlling schizophrenia-relevant phenotypes using newly established knockout mice. Schizophr Res 2020; 217:52-59. [PMID: 30765249 DOI: 10.1016/j.schres.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/20/2023]
Abstract
Dampened prepulse inhibition (PPI) is a consistent observation in psychiatric disorders, including schizophrenia and qualifies as a robust endophenotype for genetic evaluation. Using high PPI C57BL/6NCrlCrlj (B6Nj) and low PPI C3H/HeNCrlCrlj (C3HNj) inbred mouse strains, we have previously reported a quantitative trait locus (QTL) for PPI at chromosome 10 and identified Fabp7 as a candidate gene for regulating PPI and schizophrenia pathogenesis using Fabp7-deficient mice (B6.Cg-Fabp7 KO). Here, considering a possibility of carryover of residual genetic materials from embryonic stem (ES) cells used in generating knockout (KO) mice, we set out to re-address the genotype-phenotype correlation in a uniform genetic background. By generating a new Fabp7 KO mouse model in C57BL/6NCrl (B6N) background using the CRISPR-Cas9 nickase system, we evaluated the impact of Fabp7 ablation on schizophrenia-related behavioral phenotypes. To our surprise, we found no significant differences in PPI or any of the schizophrenia-related behavioral scores, as observed in our previous B6.Cg-Fabp7 KO mice. We identified several C3H/He mouse strain-specific alleles within the interval of chromosome 10-QTL, which are shared with 129/Sv mouse strains. These alleles, derived from 129/Sv ES cells, were retained in the B6.Cg-Fabp7 KO, despite multiple backcrossing and are thought to be responsible for the dampened PPI. In summary, our study demonstrates a precise genotype-phenotype relation for Fabp7 loss-of-function in a uniform B6N background, and raises the necessity of further analysis of the effects of genomic variants flanking the Fabp7 interval on phenotypes.
Collapse
Affiliation(s)
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan.
| |
Collapse
|
18
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Benavides F, Rülicke T, Prins JB, Bussell J, Scavizzi F, Cinelli P, Herault Y, Wedekind D. Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report. Lab Anim 2019; 54:135-148. [PMID: 31431136 PMCID: PMC7160752 DOI: 10.1177/0023677219867719] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic quality assurance (QA), including genetic monitoring (GeMo) of inbred
strains and background characterization (BC) of genetically altered (GA) animal
models, should be an essential component of any QA programme in laboratory
animal facilities. Genetic quality control is as important for ensuring the
validity of the animal model as health and microbiology monitoring are. It
should be required that studies using laboratory rodents, mainly mice and rats,
utilize genetically defined animals. This paper, presented by the FELASA Working
Group on Genetic Quality Assurance and Genetic Monitoring of Laboratory Murines,
describes the objectives of and available methods for genetic QA programmes in
rodent facilities. The main goals of any genetic QA programme are: (a) to verify
the authenticity and uniformity of inbred stains and substrains, thus ensuring a
genetically reliable colony maintenance; (b) to detect possible genetic
contamination; and (c) to precisely describe the genetic composition of GA
lines. While this publication focuses mainly on mouse and rat genetic QA, the
principles will apply to other rodent species some of which are briefly
mentioned within the context of inbred and outbred stocks.
Collapse
Affiliation(s)
- Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, USA
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine, Vienna, Austria
| | - Jan-Bas Prins
- The Francis Crick Institute, London, UK.,Leiden University Medical Centre, Leiden, The Netherlands
| | - James Bussell
- Biomedical and Veterinary Services Department, University of Oxford, Oxford, UK
| | | | - Paolo Cinelli
- Department of Trauma Surgery, University of Zurich, Zurich, Switzerland
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France.,Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, CELPHEDIA-PHENOMIN-ICS, Illkirch, France
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Methodology and theoretical basis of forward genetic screening for sleep/wakefulness in mice. Proc Natl Acad Sci U S A 2019; 116:16062-16067. [PMID: 31337678 DOI: 10.1073/pnas.1906774116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulatory network of genes and molecules in sleep/wakefulness remains to be elucidated. Here we describe the methodology and workflow of the dominant screening of randomly mutagenized mice and discuss theoretical basis of forward genetics research for sleep in mice. Our high-throughput screening employs electroencephalogram (EEG) and electromyogram (EMG) to stage vigilance states into a wake, rapid eye movement sleep (REMS) and non-REM sleep (NREMS). Based on their near-identical sleep/wake behavior, C57BL/6J (B6J) and C57BL/6N (B6N) are chosen as mutagenized and counter strains, respectively. The total time spent in the wake and NREMS, as well as the REMS episode duration, shows sufficient reproducibility with small coefficients of variance, indicating that these parameters are most suitable for quantitative phenotype-driven screening. Coarse linkage analysis of the quantitative trait, combined with whole-exome sequencing, can identify the gene mutation associated with sleep abnormality. Our simulations calculate the achievable LOD score as a function of the phenotype strength and the numbers of mice examined. A pedigree showing a mild decrease in total wake time resulting from a heterozygous point mutation in the Cacna1a gene is described as an example.
Collapse
|
21
|
Nonphosphorylatable Src Ser75 Mutation Increases Ethanol Preference and Consumption in Mice. eNeuro 2019; 6:eN-NWR-0418-18. [PMID: 30963106 PMCID: PMC6451160 DOI: 10.1523/eneuro.0418-18.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/21/2022] Open
Abstract
Src is highly expressed in CNS neurons and contributes not only to developmental proliferation and differentiation but also to high-order brain functions, such as those contributing to alcohol consumption. Src knock-out mice exhibit no CNS abnormalities, presumably due to compensation by other Src family kinases (SFKs), but have a shortened lifespan and osteopetrosis-associated defects, impeding investigations of the role of Src on behavior in adult mice. However, the Unique domain of Src differs from those in other SFKs and is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and Cdk5 at Ser75, which influences its postmitotic function in neurons. Therefore, ethanol consumption in mice harboring nonphosphorylatable (Ser75Ala) or phosphomimetic (Ser75Asp) Src mutants was investigated. Mice harboring the Ser75Ala Src mutant, but not the Ser75Asp mutant, had a higher preference for and consumption of solutions containing 5% and 10% ethanol than wild-type mice. However, plasma ethanol concentrations and sensitivities to the sedative effects of ethanol were not different among the groups. In mice harboring the Ser75Ala Src mutant, the activity of Rho-associated kinase (ROCK) in the striatum was significantly lower and Akt Ser473 phosphorylation was significantly higher than in wild-type mice. These results suggest that Src regulates voluntary ethanol drinking in a manner that depends on Ser75 phosphorylation.
Collapse
|
22
|
Yokoyama T, Miura Y, Yamamoto A, Hasegawa C, Kawanishi K, Takada N, Omotehara T, Hirano T, Mantani Y, Miki T, Hoshi N. Genetic differences between C57BL/6 substrains affect the process of testis differentiation in Y POS mice. J Vet Med Sci 2019; 81:608-611. [PMID: 30828038 PMCID: PMC6483905 DOI: 10.1292/jvms.18-0621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
C57BL/6J-XYPOS (B6J-XYPOS) mice, which have the Y chromosome
derived from Mus musculus poschiavinus on a B6J genetic background, form
ovotestes or ovaries. Previously, we replaced the genetic background of
B6J-XYPOS mice with B6N and found that individuals with testes also appeared
in addition to those with ovaries or ovotestes. To investigate the effect of the B6J
genetic sequence on the testis differentiation, the genetic background of
B6N-XYPOS mice was replaced with B6J again. The recovery of the B6J genetic
background significantly decreased the incidence of testes; only ovaries developed. These
results indicate that the testicular differentiation process tends to be perturbed
especially in the B6J substrain. This shows the importance of substrain differences in
mice usually treated as B6 collectively.
Collapse
Affiliation(s)
- Toshifumi Yokoyama
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yuuka Miura
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Anzu Yamamoto
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chinatsu Hasegawa
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kohei Kawanishi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nanako Takada
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takuya Omotehara
- Department of Anatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yohei Mantani
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takanori Miki
- Departments of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kagawa 761-0793, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
23
|
Kawashita E, Ishihara K, Nomoto M, Taniguchi M, Akiba S. A comparative analysis of hepatic pathological phenotypes in C57BL/6J and C57BL/6N mouse strains in non-alcoholic steatohepatitis models. Sci Rep 2019; 9:204. [PMID: 30659241 PMCID: PMC6338790 DOI: 10.1038/s41598-018-36862-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
C57BL/6J (BL6J) and C57BL/6N (BL6N) inbred substrains are most widely used to understand the pathological roles of target molecules in a variety of diseases, including non-alcoholic steatohepatitis (NASH), based on transgenic mouse technologies. There are notable differences in the metabolic phenotypes, including glucose tolerance, between the BL6J and BL6N substrains, but the phenotypic differences in NASH are still unknown. We performed a comparative analysis of the two mouse substrains to identify the pathological phenotypic differences in NASH models. In the CCl4-induced NASH model, the BL6J mice exhibited a more severe degree of oxidative stress and fibrosis in the liver than the BL6N mice. In contrast, in the high-fat diet-induced NASH model, more accumulation of hepatic triglycerides but less weight gain and liver injury were noted in the BL6J mice than in the BL6N mice. Our findings strongly suggest caution be exercised with the use of unmatched mixed genetic background C57BL6 mice for studies related to NASH, especially when generating conditional knockout C57BL6 mice.
Collapse
Affiliation(s)
- Eri Kawashita
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Keiichi Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Madoka Nomoto
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Mika Taniguchi
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
24
|
Nowak TS, Mulligan MK. Impact of C57BL/6 substrain on sex-dependent differences in mouse stroke models. Neurochem Int 2018; 127:12-21. [PMID: 30448566 DOI: 10.1016/j.neuint.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023]
Abstract
We have recently found significant variation in stroke vulnerability among substrains of C57BL/6 mice, observing that commonly used N-lineage substrains exhibit larger infarcts than C57BL/6J and related substrains. Parallel variation was also seen with respect to sex differences in stroke vulnerability, in that C57BL/6 mice of the N-lineage exhibited comparable infarct sizes in males and females, whereas infarcts tended to be smaller in females than in males of J-lineage substrains. This adds to the growing list of recognized phenotypic and genetic differences among C57BL/6 substrains. Although no previous studies have explicitly compared substrains with respect to sex differences in stroke vulnerability, unrecognized background mismatch has occurred in some studies involving control and genetically modified mice. The aims of this review are to: present the evidence for associated substrain- and sex-dependent differences in a mouse permanent occlusion stroke model; examine the extent to which the published literature in other models compares with these recent results; and consider the potential impact of unrecognized heterogeneity in substrain background on the interpretation of studies investigating the impact of genetic modifications on sex differences in stroke outcome. Substrain emerges as a critical variable to be documented in any experimental stroke study in mice.
Collapse
Affiliation(s)
- Thaddeus S Nowak
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
25
|
Hull RL, Willard JR, Struck MD, Barrow BM, Brar GS, Andrikopoulos S, Zraika S. High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. J Endocrinol 2017; 233:53-64. [PMID: 28138002 PMCID: PMC5358546 DOI: 10.1530/joe-16-0377] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
Abstract
Mouse models are widely used for elucidating mechanisms underlying type 2 diabetes. Genetic background profoundly affects metabolic phenotype; therefore, selecting the appropriate model is critical. Although variability in metabolic responses between mouse strains is now well recognized, it also occurs within C57BL/6 mice, of which several substrains exist. This within-strain variability is poorly understood and could emanate from genetic and/or environmental differences. To better define the within-strain variability, we performed the first comprehensive comparison of insulin secretion from C57BL/6 substrains 6J, 6JWehi, 6NJ, 6NHsd, 6NTac and 6NCrl. In vitro, glucose-stimulated insulin secretion correlated with Nnt mutation status, wherein responses were uniformly lower in islets from C57BL/6J vs C57BL/6N mice. In contrast, in vivo insulin responses after 18 weeks of low fat feeding showed no differences among any of the six substrains. When challenged with a high-fat diet for 18 weeks, C57BL/6J substrains responded with a similar increase in insulin release. However, variability was evident among C57BL/6N substrains. Strikingly, 6NJ mice showed no increase in insulin release after high fat feeding, contributing to the ensuing hyperglycemia. The variability in insulin responses among high-fat-fed C57BL/6N mice could not be explained by differences in insulin sensitivity, body weight, food intake or beta-cell area. Rather, as yet unidentified genetic and/or environmental factor(s) are likely contributors. Together, our findings emphasize that caution should be exercised in extrapolating data from in vitro studies to the in vivo situation and inform on selecting the appropriate C57BL/6 substrain for metabolic studies.
Collapse
Affiliation(s)
- Rebecca L Hull
- Veterans Affairs Puget Sound Health Care SystemSeattle, Washington, USA
- Division of MetabolismEndocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua R Willard
- Veterans Affairs Puget Sound Health Care SystemSeattle, Washington, USA
| | - Matthias D Struck
- Division of MetabolismEndocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Breanne M Barrow
- Veterans Affairs Puget Sound Health Care SystemSeattle, Washington, USA
| | - Gurkirat S Brar
- Veterans Affairs Puget Sound Health Care SystemSeattle, Washington, USA
| | - Sofianos Andrikopoulos
- Department of MedicineUniversity of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
| | - Sakeneh Zraika
- Veterans Affairs Puget Sound Health Care SystemSeattle, Washington, USA
- Division of MetabolismEndocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Characterization of novel dystonia musculorum mutant mice: Implications for central nervous system abnormality. Neurobiol Dis 2016; 96:271-283. [DOI: 10.1016/j.nbd.2016.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022] Open
|
27
|
Fontaine DA, Davis DB. Attention to Background Strain Is Essential for Metabolic Research: C57BL/6 and the International Knockout Mouse Consortium. Diabetes 2016; 65:25-33. [PMID: 26696638 PMCID: PMC4686949 DOI: 10.2337/db15-0982] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The International Knockout Mouse Consortium (IKMC) introduces its targeted constructs into C57BL/6N embryonic stem cells. However, breeding with a Cre-recombinase and/or Flp-recombinase mouse is required for the generation of a null allele with the IKMC cassette. Many recombinase strains are in the C57BL/6J background, resulting in knockout animals on a mixed strain background. This can lead to variability in metabolic data and the use of improper control groups. While C57BL/6N and C57BL/6J are derived from the same parental C57BL/6 strain, there are key genotypic and phenotypic differences between these substrains. Many researchers may not even be aware of these differences, as the shorthand C57BL/6 is often used to describe both substrains. We found that 58% of articles involving genetically modified mouse models did not completely address background strain. This review will describe these two substrains and highlight the importance of separate consideration in mouse model development. Our aim is to increase awareness of this issue in the diabetes research community and to provide practical strategies to enable researchers to avoid mixed strain animals when using IKMC knockout mice.
Collapse
Affiliation(s)
- Danielle A Fontaine
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Dawn Belt Davis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|