1
|
Ibrahim J, Azzuqa A, Kloesz J, Balest A. Implementation of Nasogastric Tube Feedings at Discharge in a Large Quaternary NICU: A Literature Review, Proposed Algorithm, and Our Center Experience. Am J Perinatol 2025. [PMID: 40355104 DOI: 10.1055/a-2592-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The aim of this study is to provide an extensive review of the published literature regarding the use of nasogastric (NG) feeds at discharge in the neonatal population as well as our experience with the implementation of an NG feeds at discharge program in our level IV neonatal intensive care unit.We reviewed and compared the use of NG tubes at discharge and gastrostomy tubes in the neonatal population. We provide an extensive review of previous publications regarding programs of NG feeds at discharge in neonates across the United States and Europe including preterm neonates, neonates with chronic lung disease, and neurological injury. We also reviewed parents' perspectives on NG use at discharge in the neonatal population as well as the use of telehealth in remote monitoring of neonates discharged on NG feeds. We reviewed the economic benefits of such programs. We finally provide our center's algorithm and workflow as well as our center's experience.Twenty-five patients have been discharged so far from this program since its implementation in December 2020. Only 1 patient of the 25 patients discharged on NG tube feeds required gastrostomy tube placement.Discharge with NG tube feeds in a carefully selected population is safe, and feasible and can lead to increased parent satisfaction, besides offering a developmental advantage for the neonates when the only remaining inpatient need is achieving full oral feeds. · Discharge with NG tube feeds in a carefully selected neonatal population is safe and feasible.. · Nasogastric feeds at discharge can lead to increased parent satisfaction and a developmental advantage for the neonates when the only remaining inpatient need is achieving full oral feeds.. · Carefully structured education at discharge, as well as follow-up programs in place can ensure adequate parental support during this process.. · Telehealth can play a key role in implementation of such programs..
Collapse
Affiliation(s)
- John Ibrahim
- Division of Newborn Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Magee Women's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Abeer Azzuqa
- Neonatal Intensive Care Unit, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer Kloesz
- Division of Newborn Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Magee Women's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Arcangela Balest
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Buchmayer J, Fuiko R, Kienast P, Stummer S, Kasprian G, Berger A, Goeral K. Cerebellar haemorrhage and atrophy in infants born extremely preterm with intraventricular haemorrhage. Dev Med Child Neurol 2025; 67:609-617. [PMID: 39428664 PMCID: PMC11965970 DOI: 10.1111/dmcn.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
AIM To investigate the impact of cerebellar haemorrhage (CBH) and atrophy in infants born extremely preterm with intraventricular haemorrhage (IVH) on neurodevelopment at 2 years of age. METHOD This retrospective case-control study included infants born at less than 28 weeks' gestation with IVH over a 10-year period. CBH, along with the assessment of cerebellar size, using magnetic resonance imaging, were studied. The impact of injuries on neurodevelopmental outcome at 2 years' corrected age was conducted, using multivariable regression analysis for comprehensive evaluation. RESULTS In a cohort of 103 patients, 69 (67.0%) showed CBH with a median grade of 1 (interquartile range = 0-3). At the corrected age of 2 years, CBH was significantly associated with impaired cognitive and motor outcome. CBH emerged as an independent predictor of poor cognitive and motor development, as well as cerebral palsy. Cerebellar atrophy, affecting 30 (29.1%) infants, was linked to a significantly worse outcome across all domains. Conversely, an increase in cerebellar size was correlated with improved motor development. INTERPRETATION Infants born extremely preterm with IVH and concomitant CBH exhibited significant cognitive and motor impairment. The severity of developmental delay correlated with the grade of CBH. These findings hold potential to support the prediction of long-term outcome and parental counselling.
Collapse
Affiliation(s)
- Julia Buchmayer
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and NeuropediatricsMedical University of ViennaViennaAustria
| | - Renate Fuiko
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and NeuropediatricsMedical University of ViennaViennaAustria
| | - Patric Kienast
- Department of Radiology, Division of Neuroradiology and Musculoskeletal RadiologyMedical University of ViennaViennaAustria
| | - Sophie Stummer
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and NeuropediatricsMedical University of ViennaViennaAustria
| | - Gregor Kasprian
- Department of Radiology, Division of Neuroradiology and Musculoskeletal RadiologyMedical University of ViennaViennaAustria
| | - Angelika Berger
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and NeuropediatricsMedical University of ViennaViennaAustria
| | - Katharina Goeral
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and NeuropediatricsMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Jia H, Wang K, Zhang M, Gu G, Mai Y, Wu X, Chu C, Yin X, Zhang P, Fan L, Zhang L. Individualized cerebellar damage predicts the presence of behavioral disorders in children with brainstem tumors. COMMUNICATIONS MEDICINE 2025; 5:91. [PMID: 40133403 PMCID: PMC11937406 DOI: 10.1038/s43856-025-00810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Brainstem tumors often cause intractable neurobehavioral issues, which can be a challenge for patients and surgeons. Research on cerebellar changes in these patients is limited, despite symptoms similar to cerebellar injuries. This study aims to investigate cerebellar damage pattern resulting from brainstem tumors and its association with behavioral disorders. METHODS This study enrolled 147 children with brainstem tumors. A U-Net-based segmentation algorithm is used to divide their cerebellums into 26 lobules. And these lobules are then used to build a normative model for assessing individual structural deviations. Furthermore, a behavior prediction model is developed using the total outlier count (tOC) index and cerebellar lobule volume as predictive features. RESULTS Over 95% of patients are found to have negative deviations in cerebellar regions, particularly in anterior lobules like Left V. Higher tOC is significantly associated with severe social problems (r = 0.31, p = 0.001) and withdrawal behavior (r = 0.28, p = 0.001). Smaller size of cerebellar regions strongly correlates with more pronounced social problems (r = 0.27, p = 0.007) and withdrawal behavior (r = 0.25, p = 0.015). Notably, lobules Right X, V, IV, VIIB, Left IX, VIII, and X influence social problems, while Left V, Right IV, Vermis VI, and VIII impact withdrawal behavior. CONCLUSIONS Our study reveals cerebellar damage patterns in patients with brainstem tumors, emphasizing the role of both anterior and posterior cerebellar lobes in social problems and withdrawal behavior. This research sheds light on the cerebro-brainstem-cerebellar underlying complex behavioral disorders in brainstem tumor patients.
Collapse
Affiliation(s)
- Heyuan Jia
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
- Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Hangzhou, China
| | - Kaikai Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Mingxin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiying Mai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Wu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xuntao Yin
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Choi G, Choi YH, Lee SB, Cho YJ, Lee S, Cheon JE, Shin SH, Je BK. Cerebellar hemorrhage in neonates: pattern analysis by ultrasonography and magnetic resonance imaging. Pediatr Radiol 2025; 55:324-333. [PMID: 39754651 PMCID: PMC11805865 DOI: 10.1007/s00247-024-06126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Cerebellar hemorrhage in neonates is increasingly being identified but is still underdiagnosed. While magnetic resonance imaging (MRI) is the optimal imaging modality for cerebellar hemorrhage evaluation, ultrasonography (US) is commonly used for screening. Characterizing the patterns and distribution of cerebellar hemorrhage lesions can help facilitate its detection by aiding to focus on prevailing type of cerebellar hemorrhage. OBJECTIVE This study aimed to analyze the patterns of cerebellar hemorrhage in neonates, comparing US findings with MRI. MATERIALS AND METHODS This was a retrospective study of 765 neonatal intensive care unit (NICU)-admitted neonates who underwent brain MRI due to various clinical and radiological requirements. Two pediatric radiologists reviewed brain MRI and US in consensus, and cerebellar hemorrhage patterns were classified based on MRI findings: type 1, punctate cerebellar hemorrhage without cerebellar volume loss; type 2, focal cerebellar hemorrhage with cerebellar volume loss; type 3, ovoid/crescent cerebellar hemorrhage in the periphery of the cerebellar hemisphere; type 4, isolated vermian cerebellar hemorrhage; type 5, cerebellar hemorrhage involving almost the entire cerebellar hemisphere. The distribution and US detection rates of cerebellar hemorrhage were compared according to the cerebellar hemorrhage type. RESULTS A total of 56 (33 male, 23 female) cases (7.32%) among 765 MRIs showed cerebellar hemorrhage (median gestational age, 27 + 1 weeks [IQR 5 + 2]; median birth weight, 955 g [IQR 882.5]). The most common pattern was type 1 (60.7%). Type 3 cerebellar hemorrhage was more commonly observed in the inferior and peripheral cerebellum compared to types 1 and 2 cerebellar hemorrhage (P=0.002). In retrospective review of images, type 3 was the most commonly missed type of cerebellar hemorrhage (initial US detection rate, 33.3%; retrospective US detection rate, 75%). CONCLUSION This study underscores the importance of understanding cerebellar hemorrhage patterns and suggests that careful inspection of inferior and periphery of the cerebellum is important to avoid missed diagnosis of cerebellar hemorrhage.
Collapse
Affiliation(s)
- Gayoung Choi
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Young Hun Choi
- Department of Radiology, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Seul Bi Lee
- Department of Radiology, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Yeon Jin Cho
- Department of Radiology, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Jung-Eun Cheon
- Department of Radiology, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Seung Han Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bo-Kyung Je
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| |
Collapse
|
5
|
Catoira B, Lombardo D, De Smet S, Guiomar R, Van Schuerbeek P, Raeymaekers H, Deroost N, Van Overwalle F, Baeken C. Exploring the Effects of Cerebellar tDCS on Brain Connectivity Using Resting-State fMRI. Brain Behav 2025; 15:e70302. [PMID: 39924992 PMCID: PMC11808187 DOI: 10.1002/brb3.70302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
PURPOSE The cerebellum's role extends beyond motor control, impacting various cognitive functions. A growing body of evidence supports the idea that the cerebellum optimizes performance across cognitive domains, suggesting critical connectivity with the neocortex. This study investigates how cerebellar transcranial direct current stimulation (tDCS) targeting the right Crus II region modulates functional brain connectivity. METHOD Using a within-subject design, 21 healthy participants underwent both sham and anodal cerebellar tDCS at 2 mA during 20 min of concurrent resting-state fMRI sessions. Data was preprocessed, and connectivity changes were examined using seed-to-voxel analysis. Given the potential impact of cerebellar dysfunctions on symptoms associated with autism spectrum disorders, we also assessed how individual autism quotient (AQ) scores might influence cerebellar functional connectivity. Moreover, electrical field simulations were computed for each participant to explore the effects of individual differences. FINDINGS Results indicated increased functional connectivity between the cerebellar Crus II and the right inferior frontal gyrus (IFG) during active tDCS compared to sham stimulation. The IFG (part of the Action Observation Network) plays a crucial role in understanding the actions and intentions of others, implicating the cerebellum in higher-order cognitive processes. In addition, linear mixed-effects models revealed an interaction between electric field strength and AQ scores, suggesting that functional connectivity changes are based on individual psychobiological differences. CONCLUSION Cerebellar tDCS significantly altered functional brain connectivity, particularly between the cerebellar Crus II and the IFG, both involved in social cognition. These findings contribute to our understanding of the cerebellum's role beyond motor control, highlighting its impact on cognitive and social processes and its potential for therapeutic applications, such as autism spectrum disorders.
Collapse
Affiliation(s)
- Beatriz Catoira
- Department of Psychiatry (UZ Brussel)Vrije Universiteit BrusselBrusselsBelgium
- Ghent Experimental Psychiatry (GHEP) LabGhent UniversityGhentBelgium
| | | | - Stefanie De Smet
- Ghent Experimental Psychiatry (GHEP) LabGhent UniversityGhentBelgium
- Brain Stimulation and Cognition (BSC) Lab, Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Raquel Guiomar
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention, Faculty of Psychology and Educational SciencesUniversity of CoimbraCoimbraPortugal
| | | | | | - Natacha Deroost
- Department of Psychology and Center for NeuroscienceVrije Universiteit BrusselBrusselsBelgium
| | - Frank Van Overwalle
- Department of Psychology and Center for NeuroscienceVrije Universiteit BrusselBrusselsBelgium
| | - Chris Baeken
- Department of Psychiatry (UZ Brussel)Vrije Universiteit BrusselBrusselsBelgium
- Ghent Experimental Psychiatry (GHEP) LabGhent UniversityGhentBelgium
- Department of Electrical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
6
|
Muehlbacher T, Dudink J, Steggerda SJ. Cerebellar Development and the Burden of Prematurity. CEREBELLUM (LONDON, ENGLAND) 2025; 24:39. [PMID: 39885037 PMCID: PMC11782465 DOI: 10.1007/s12311-025-01790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
The role of the cerebellum in the neurodevelopmental outcomes of preterm infants has often been neglected. However, accumulating evidence indicates that normal cerebellar development is disrupted by prematurity-associated complications causing cerebellar injury and by prematurity itself. This hampers not only the normal development of motor skills and gait, but also cognitive, language, and behavioral development, collectively referred to as "developmental cognitive affective syndrome." In this comprehensive narrative review, we provide the results of an extensive literature search in PubMed and Embase to summarize recent evidence on altered cerebellar development in premature infants, focusing on neuroimaging findings, its causative factors and its impact on long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Tobias Muehlbacher
- Department of Neonatology, Newborn Research Zurich, University Hospital Zurich, Zurich, Switzerland.
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sylke J Steggerda
- Department of Pediatrics, Division of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
7
|
Field NK, Venkatesan C, Gano D, Agarwal S, Young KA, Wheeler S, Russ JB, Lemmon ME. Communicating neurological prognosis in the prenatal period: a narrative review and practice guidelines. Pediatr Res 2025:10.1038/s41390-025-03805-8. [PMID: 39809859 DOI: 10.1038/s41390-025-03805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025]
Abstract
Clinicians may face an array of challenges in conducting fetal neurological consultations including prognostic uncertainty, a lack of training in fetal counseling, and limited opportunity to build rapport with families. In this setting, it is critical to employ high-quality, family-centered care to allow expectant parents to make informed decisions. Despite the challenges and gravity of these consultations, there remains limited data outlining best conduct and communication practices. This narrative review aims to summarize relevant literature around counseling within fetal neurology, focusing on three key themes: (1) discussing neurological prognosis and uncertainty, (2) navigating evolving decision making, (3) recognizing bias and understanding patient context. We provide practical recommendations to clinicians conducting fetal neurological counseling and outline future research priorities. IMPACT: Fetal neurological conditions can have a significant impact on child short- and long-term health outcomes. Prenatal consultations are an important venue to discuss information regarding fetal prognosis and decision making with expectant parents. However, there is limited evidence supporting best communication practices within this setting. This review summarizes current literature around expectant parent prognostic communication preferences and outlines practical recommendations and priorities for future research.
Collapse
Affiliation(s)
| | - Charu Venkatesan
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Dawn Gano
- Departments of Neurology and Pediatrics, UCSF Benioff Children's Hospitals, University of California San Francisco, San Francisco, CA, USA
| | - Sonika Agarwal
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sarahn Wheeler
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey B Russ
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Monica E Lemmon
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Kshetri R, Beavers JO, Hyde R, Ewa R, Schwertman A, Porcayo S, Richardson BD. Behavioral decline in Shank3 Δex4-22 mice during early adulthood parallels cerebellar granule cell glutamatergic synaptic changes. Mol Autism 2024; 15:52. [PMID: 39633421 PMCID: PMC11616285 DOI: 10.1186/s13229-024-00628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND SHANK3, a gene encoding a synaptic scaffolding protein, is implicated in autism spectrum disorder (ASD) and is disrupted in Phelan-McDermid syndrome (PMS). Despite evidence of regression or worsening of ASD-like symptoms in individuals with PMS, the underlying mechanisms remain unclear. Although Shank3 is highly expressed in the cerebellar cortical granule cells, its role in cerebellar function and contribution to behavioral deficits in ASD models are unknown. This study investigates behavioral changes and cerebellar synaptic alterations in Shank3Δex4-22 mice at two developmental stages. METHODS Shank3Δex4-22 wildtype, heterozygous, and homozygous knockout mice lacking exons 4-22 (all functional isoforms) were subjected to a behavioral battery in both juvenile (5-7 weeks old) and adult (3-5 months old) mouse cohorts of both sexes. Immunostaining was used to show the expression of Shank3 in the cerebellar cortex. Spontaneous excitatory postsynaptic currents (sEPSCs) from cerebellar granule cells (CGCs) were recorded by whole-cell patch-clamp electrophysiology. RESULTS Deletion of Shank3 caused deficits in motor function, heightened anxiety, and repetitive behaviors. These genotype-dependent behavioral alterations were more prominent in adult mice than in juveniles. Reduced social preference was only identified in adult Shank3Δex4-22 knockout male mice, while self-grooming was uniquely elevated in males across both age groups. Heterozygous mice showed little to no changes in behavioral phenotypes in most behavioral tests. Immunofluorescence staining indicated the presence of Shank3 predominantly in the dendrite-containing rosette-like structures in CGCs, colocalizing with presynaptic markers of glutamatergic mossy fiber. Electrophysiological findings identified a parallel relationship between the age-related exacerbation of behavioral impairments and the enhancement of sEPSC amplitude in CGCs. LIMITATIONS Other behavioral tests of muscle strength (grip strength test), memory (Barnes/water maze), and communication (ultrasonic vocalization), were not performed. Further study is necessary to elucidate how Shank3 modulates synaptic function at the mossy fiber-granule cell synapse in the cerebellum and whether these changes shape the behavioral phenotype. CONCLUSIONS Our findings reveal an age-related exacerbation of behavioral impairments in Shank3Δex4-22 mutant mice. These results suggest that Shank3 may alter the function of glutamatergic receptors at the mossy fiber-cerebellar granule cell synapse as a potential mechanism causing cerebellar disruption in ASD.
Collapse
Affiliation(s)
- Rajaram Kshetri
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - James O Beavers
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Romana Hyde
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Roseline Ewa
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Amber Schwertman
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Sarahi Porcayo
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Ben D Richardson
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
9
|
Van Overwalle F. Social and emotional learning in the cerebellum. Nat Rev Neurosci 2024; 25:776-791. [PMID: 39433716 DOI: 10.1038/s41583-024-00871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
The posterior cerebellum has a critical role in human social and emotional learning. Three systems and related neural networks support this cerebellar function: a biological action observation system as part of an extended sensorimotor integration network, a mentalizing system for understanding a person's mental and emotional state subserved by a mentalizing network, and a limbic network supporting core emotional (dis)pleasure and arousal processes. In this Review, I describe how these systems and networks support social and emotional learning via functional reciprocal connections initiating and terminating in the posterior cerebellum and cerebral neocortex. It is hypothesized that a major function of the posterior cerebellum is to identify and encode temporal sequences of events, which might help to fine-tune and automatize social and emotional learning. I discuss research using neuroimaging and non-invasive stimulation that provides converging evidence for this hypothesized function of cerebellar sequencing, but also other potential functional accounts of the posterior cerebellum's role in these social and emotional processes.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
10
|
Sefik E, Duan K, Li Y, Sholar B, Evans L, Pincus J, Ammar Z, Murphy MM, Klaiman C, Saulnier CA, Pulver SL, Goldman-Yassen AE, Guo Y, Walker EF, Li L, Mulle JG, Shultz S. Structural deviations of the posterior fossa and the cerebellum and their cognitive links in a neurodevelopmental deletion syndrome. Mol Psychiatry 2024; 29:3395-3411. [PMID: 38744992 PMCID: PMC11541222 DOI: 10.1038/s41380-024-02584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
High-impact genetic variants associated with neurodevelopmental disorders provide biologically-defined entry points for mechanistic investigation. The 3q29 deletion (3q29Del) is one such variant, conferring a 40-100-fold increased risk for schizophrenia, as well as high risk for autism and intellectual disability. However, the mechanisms leading to neurodevelopmental disability remain largely unknown. Here, we report the first in vivo quantitative neuroimaging study in individuals with 3q29Del (N = 24) and neurotypical controls (N = 1608) using structural MRI. Given prior radiology reports of posterior fossa abnormalities in 3q29Del, we focused our investigation on the cerebellum and its tissue-types and lobules. Additionally, we compared the prevalence of cystic/cyst-like malformations of the posterior fossa between 3q29Del and controls and examined the association between neuroanatomical findings and quantitative traits to probe gene-brain-behavior relationships. 3q29Del participants had smaller cerebellar cortex volumes than controls, before and after correction for intracranial volume (ICV). An anterior-posterior gradient emerged in finer grained lobule-based and voxel-wise analyses. 3q29Del participants also had larger cerebellar white matter volumes than controls following ICV-correction and displayed elevated rates of posterior fossa arachnoid cysts and mega cisterna magna findings independent of cerebellar volume. Cerebellar white matter and subregional gray matter volumes were associated with visual-perception and visual-motor integration skills as well as IQ, while cystic/cyst-like malformations yielded no behavioral link. In summary, we find that abnormal development of cerebellar structures may represent neuroimaging-based biomarkers of cognitive and sensorimotor function in 3q29Del, adding to the growing evidence identifying cerebellar pathology as an intersection point between syndromic and idiopathic forms of neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Esra Sefik
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Kuaikuai Duan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yiheng Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brittney Sholar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsey Evans
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Pincus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Zeena Ammar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa M Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheryl Klaiman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Celine A Saulnier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Atlanta, GA, USA
| | - Stormi L Pulver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Adam E Goldman-Yassen
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G Mulle
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
van der Heijden ME. Converging and Diverging Cerebellar Pathways for Motor and Social Behaviors in Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1754-1767. [PMID: 38780757 PMCID: PMC11489171 DOI: 10.1007/s12311-024-01706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Evidence from clinical and preclinical studies has shown that the cerebellum contributes to cognitive functions, including social behaviors. Now that the cerebellum's role in a wider range of behaviors has been confirmed, the question arises whether the cerebellum contributes to social behaviors via the same mechanisms with which it modulates movements. This review seeks to answer whether the cerebellum guides motor and social behaviors through identical pathways. It focuses on studies in which cerebellar cells, synapses, or genes are manipulated in a cell-type specific manner followed by testing of the effects on social and motor behaviors. These studies show that both anatomically restricted and cerebellar cortex-wide manipulations can lead to social impairments without abnormal motor control, and vice versa. These studies suggest that the cerebellum employs different cellular, synaptic, and molecular pathways for social and motor behaviors. Future studies warrant a focus on the diverging mechanisms by which the cerebellum contributes to a wide range of neural functions.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, USA.
- Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
12
|
Hadi E, Haddad L, Levy M, Gindes L, Hausman-Kedem M, Bassan H, Ben-Sira L, Libzon S, Kassif E, Hoffmann C, Leibovitz Z, Kasprian G, Lerman-Sagie T. Fetal intraventricular hemorrhage and periventricular hemorrhagic venous infarction: time for dedicated classification system. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:285-293. [PMID: 38363592 DOI: 10.1002/uog.27613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Affiliation(s)
- E Hadi
- Diagnostic Ultrasound Unit, The Institute of Obstetrical and Gynecological Imaging, Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Haddad
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Ultrasound Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Levy
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - L Gindes
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Ultrasound Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel
| | - M Hausman-Kedem
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - H Bassan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Neurology and Development Center, Shamir Medical Center (Assaf Harofeh), Be'er Ya'akov, Israel
| | - L Ben-Sira
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Radiology, Division of Pediatric Radiology, Dana Children's Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - S Libzon
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - E Kassif
- Diagnostic Ultrasound Unit, The Institute of Obstetrical and Gynecological Imaging, Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - C Hoffmann
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neuroradiology Unit, Department of Diagnostic Radiology, Sheba Medical Center, Ramat Gan, Israel
| | - Z Leibovitz
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Obstetrics and Gynecology Ultrasound Unit, Bnai-Zion Medical Center, Haifa, Israel
| | - G Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology, Medical University of Vienna, Vienna, Austria
| | - T Lerman-Sagie
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
13
|
Dewan MV, Weber PD, Felderhoff-Mueser U, Huening BM, Dathe AK. A Simple MRI Score Predicts Pathological General Movements in Very Preterm Infants with Brain Injury-Retrospective Cohort Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1067. [PMID: 39334600 PMCID: PMC11430197 DOI: 10.3390/children11091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND/OBJECTIVES Very preterm infants are at increased risk of brain injury and impaired brain development. The Total Abnormality Score and biometric parameters, such as biparietal width, interhemispheric distance and transcerebellar diameter, are simple measures to evaluate brain injury, development and growth using cerebral magnetic resonance imaging data at term-equivalent age. The aim of this study was to evaluate the association between the Total Abnormality Score and biometric parameters with general movements in very preterm infants with brain injury. METHODS This single-center retrospective cohort study included 70 very preterm infants (≤32 weeks' gestation and/or <1500 g birth weight) born between January 2017 and June 2021 in a level-three neonatal intensive care unit with brain injury-identified using cerebral magnetic resonance imaging data at term-equivalent age. General movements analysis was carried out at corrected age of 8-16 weeks. Binary logistic regression and Spearman correlation were used to examine the associations between the Total Abnormality Score and biometric parameters with general movements. RESULTS There was a significant association between the Total Abnormality Score and the absence of fidgety movements [OR: 1.19, 95% CI = 1.38-1.03] as well as a significant association between the transcerebellar diameter and fidgety movements (Spearman ρ = -0.269, p < 0.05). CONCLUSIONS Among very preterm infants with brain injury, the Total Abnormality Score can be used to predict the absence of fidgety movements and may be an easily accessible tool for identifying high-risk very preterm infants and planning early interventions accordingly.
Collapse
Affiliation(s)
- Monia Vanessa Dewan
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (M.V.D.); (U.F.-M.); (B.M.H.)
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Pia Deborah Weber
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (M.V.D.); (U.F.-M.); (B.M.H.)
| | - Ursula Felderhoff-Mueser
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (M.V.D.); (U.F.-M.); (B.M.H.)
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Britta Maria Huening
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (M.V.D.); (U.F.-M.); (B.M.H.)
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Anne-Kathrin Dathe
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (M.V.D.); (U.F.-M.); (B.M.H.)
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
- Department of Health and Nursing, Occupational Therapy, Ernst-Abbe-University of Applied Sciences, 07745 Jena, Germany
| |
Collapse
|
14
|
Verpeut JL, Oostland M. The significance of cerebellar contributions in early-life through aging. Front Comput Neurosci 2024; 18:1449364. [PMID: 39258107 PMCID: PMC11384999 DOI: 10.3389/fncom.2024.1449364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Marlies Oostland
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Hanzel M, Fernando K, Maloney SE, Horn Z, Gong S, Mätlik K, Zhao J, Pasolli HA, Heissel S, Dougherty JD, Hull C, Hatten ME. Mice lacking Astn2 have ASD-like behaviors and altered cerebellar circuit properties. Proc Natl Acad Sci U S A 2024; 121:e2405901121. [PMID: 39150780 PMCID: PMC11348334 DOI: 10.1073/pnas.2405901121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/05/2024] [Indexed: 08/18/2024] Open
Abstract
Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. Individuals with ASTN2 mutations exhibit neurodevelopmental disorders, including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), learning difficulties, and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity, repetitive behaviors, altered behavior in the three-chamber test, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors are also prominent in Astn2 cKO animals, but they do not show altered behavior in the three-chamber test. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrate a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.
Collapse
Affiliation(s)
- Michalina Hanzel
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - Kayla Fernando
- Neurobiology Department, Duke University, Durham, NC27710
| | - Susan E. Maloney
- Department of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St. Louis, MO63130
| | - Zachi Horn
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
- InVitro Cell Research LLC, Englewood, NJ07631
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer’s Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY10021
| | - Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - Jiajia Zhao
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY10065
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY10065
| | - Joseph D. Dougherty
- Department of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St. Louis, MO63130
- Department of Genetics, Washington University Medical School, St. Louis, MO63130
| | - Court Hull
- Neurobiology Department, Duke University, Durham, NC27710
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| |
Collapse
|
16
|
Weaver O, Gano D, Zhou Y, Kim H, Tognatta R, Yan Z, Ryu JK, Brandt C, Basu T, Grana M, Cabriga B, Alzamora MDPS, Barkovich AJ, Akassoglou K, Petersen MA. Fibrinogen inhibits sonic hedgehog signaling and impairs neonatal cerebellar development after blood-brain barrier disruption. Proc Natl Acad Sci U S A 2024; 121:e2323050121. [PMID: 39042684 PMCID: PMC11295022 DOI: 10.1073/pnas.2323050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cerebellar injury in preterm infants with central nervous system (CNS) hemorrhage results in lasting neurological deficits and an increased risk of autism. The impact of blood-induced pathways on cerebellar development remains largely unknown, so no specific treatments have been developed to counteract the harmful effects of blood after neurovascular damage in preterm infants. Here, we show that fibrinogen, a blood-clotting protein, plays a central role in impairing neonatal cerebellar development. Longitudinal MRI of preterm infants revealed that cerebellar bleeds were the most critical factor associated with poor cerebellar growth. Using inflammatory and hemorrhagic mouse models of neonatal cerebellar injury, we found that fibrinogen increased innate immune activation and impeded neurogenesis in the developing cerebellum. Fibrinogen inhibited sonic hedgehog (SHH) signaling, the main mitogenic pathway in cerebellar granule neuron progenitors (CGNPs), and was sufficient to disrupt cerebellar growth. Genetic fibrinogen depletion attenuated neuroinflammation, promoted CGNP proliferation, and preserved normal cerebellar development after neurovascular damage. Our findings suggest that fibrinogen alters the balance of SHH signaling in the neurovascular niche and may serve as a therapeutic target to mitigate developmental brain injury after CNS hemorrhage.
Collapse
Affiliation(s)
- Olivia Weaver
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Dawn Gano
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Hosung Kim
- Department of Neurology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Reshmi Tognatta
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Zhaoqi Yan
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Caroline Brandt
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Trisha Basu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Martin Grana
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
| | - Belinda Cabriga
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Maria del Pilar S. Alzamora
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - A. James Barkovich
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA94143
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Mark A. Petersen
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| |
Collapse
|
17
|
Guerra M, Medici V, La Sala G, Farini D. Unravelling the Cerebellar Involvement in Autism Spectrum Disorders: Insights into Genetic Mechanisms and Developmental Pathways. Cells 2024; 13:1176. [PMID: 39056758 PMCID: PMC11275240 DOI: 10.3390/cells13141176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorders (ASDs) are complex neurodevelopmental conditions characterized by deficits in social interaction and communication, as well as repetitive behaviors. Although the etiology of ASD is multifactorial, with both genetic and environmental factors contributing to its development, a strong genetic basis is widely recognized. Recent research has identified numerous genetic mutations and genomic rearrangements associated with ASD-characterizing genes involved in brain development. Alterations in developmental programs are particularly harmful during critical periods of brain development. Notably, studies have indicated that genetic disruptions occurring during the second trimester of pregnancy affect cortical development, while disturbances in the perinatal and early postnatal period affect cerebellar development. The developmental defects must be viewed in the context of the role of the cerebellum in cognitive processes, which is now well established. The present review emphasizes the genetic complexity and neuropathological mechanisms underlying ASD and aims to provide insights into the cerebellar involvement in the disorder, focusing on recent advances in the molecular landscape governing its development in humans. Furthermore, we highlight when and in which cerebellar neurons the ASD-associated genes may play a role in the development of cortico-cerebellar circuits. Finally, we discuss improvements in protocols for generating cerebellar organoids to recapitulate the long period of development and maturation of this organ. These models, if generated from patient-induced pluripotent stem cells (iPSC), could provide a valuable approach to elucidate the contribution of defective genes to ASD pathology and inform diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (M.G.); (V.M.)
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (M.G.); (V.M.)
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), 00015 Monterotondo Scalo, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
18
|
Mitoma H, Manto M, Shaikh AG. Alcohol Toxicity in the Developing Cerebellum. Diagnostics (Basel) 2024; 14:1415. [PMID: 39001305 PMCID: PMC11241390 DOI: 10.3390/diagnostics14131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The impact of ethanol on the fetus is a significant concern as an estimated 2-5% of live births may be affected by prenatal alcohol exposure. This exposure can lead to various functional and structural abnormalities in the cerebral cortex, basal ganglia, diencephalon, and cerebellum, resulting in region-specific symptoms. The deficits relate to the motor and cognitive domains, affecting, in particular, general intelligence, attention, executive functions, language, memory, visual perception, and social skills-collectively called the fetal alcohol spectrum disorder (FASD). Recent studies suggest that damage to the developing cerebellum (in form of alcohol exposure) can impair the cortical targets of the cerebello-thalamo-cortical tract. This malfunction in the cerebello-cerebral loop optimization may be due to disruptions in the formation of the foundational elements of the internal model within the developing cerebellum. Alcohol exposure targets multiple nodes in the reciprocal loops between the cerebellum and cerebral cortex. Here, we examine the possibility that prenatal alcohol exposure damages the developing cerebellum and disrupts the connectivity within the cerebello-cerebral neuronal circuits, exacerbating FASD-related cortical dysfunctions. We propose that malfunctions between cerebellar internal model (critically involved in predictions) and cerebral regions contribute to the deficits observed in FASD. Given the major role of the cerebellum in motor, cognitive, and affective functions, we suggest that therapies should target these malfunctions to mitigate the burden of FASD. We discuss the concept of therapies oriented towards malfunctioning cerebello-cerebral loops (TOMCCLs), emphasizing anti-inflammatory strategies and treatments aimed at modulating cerebellar myelination to restore optimal and predictive cerebello-cerebral functions.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, 6000 Charleroi, Belgium
- Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Aasef G Shaikh
- Louis Stokes Cleveland VA Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Spruijt MS, van Klink JMM, de Vries LS, Slaghekke F, Middeldorp JM, Lopriore E, Tan RNGB, Toirkens JP, Steggerda SJ. Fetal and neonatal neuroimaging in twin-twin transfusion syndrome. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:746-757. [PMID: 38214436 DOI: 10.1002/uog.27583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
OBJECTIVES To describe the types of brain injury and subsequent neurodevelopmental outcome in fetuses and neonates from pregnancies with twin-twin transfusion syndrome (TTTS). Additionally, to determine risk factors for brain injury and to review the use of neuroimaging modalities in these cases. METHODS This was a retrospective cohort study of consecutive TTTS pregnancies treated with laser surgery in a single fetal therapy center between January 2010 and January 2020. The primary outcome was the incidence of brain injury, classified into predefined groups. Secondary outcomes included adverse outcome (perinatal mortality or neurodevelopmental impairment), risk factors for brain injury and the number of magnetic resonance imaging (MRI) scans. RESULTS Cranial ultrasound was performed in all 466 TTTS pregnancies and in 685/749 (91%) liveborn neonates. MRI was performed in 3% of pregnancies and 4% of neonates. Brain injury was diagnosed in 16/935 (2%) fetuses and 37/685 (5%) neonates and all predefined injury groups were represented. Four fetal and four neonatal cases of cerebellar hemorrhage were detected. Among those with brain injury, perinatal mortality occurred in 11/16 (69%) fetuses and 8/37 (22%) neonates. Follow-up was available for 29/34 (85%) long-term survivors with brain injury and the mean age at follow-up was 46 months. Neurodevelopmental impairment was present in 9/29 (31%) survivors with brain injury. Adverse outcome occurred in 28/53 (53%) TTTS individuals with brain injury. The risk of brain injury was increased after recurrent TTTS/post-laser twin anemia-polycythemia sequence (TAPS) (odds ratio (OR), 3.095 (95% CI, 1.581-6.059); P = 0.001) and lower gestational age at birth (OR per 1-week decrease in gestational age, 1.381 (95% CI, 1.238-1.541); P < 0.001). CONCLUSIONS Based on dedicated neurosonography and limited use of MRI, brain injury was diagnosed in 2% of fetuses and 5% of neonates with TTTS. Adverse outcome was seen in over half of cases with brain injury. Brain injury was related to recurrent TTTS/post-laser TAPS and a lower gestational age at birth. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- M S Spruijt
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Division of Perinatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J M M van Klink
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - L S de Vries
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - F Slaghekke
- Department of Obstetrics, Division of Fetal Therapy, Leiden University Medical Center, Leiden, The Netherlands
| | - J M Middeldorp
- Department of Obstetrics, Division of Fetal Therapy, Leiden University Medical Center, Leiden, The Netherlands
| | - E Lopriore
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R N G B Tan
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - J P Toirkens
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - S J Steggerda
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Suresh H, Morgan BR, Mithani K, Warsi NM, Yan H, Germann J, Boutet A, Loh A, Gouveia FV, Young J, Quon J, Morgado F, Lerch J, Lozano AM, Al-Fatly B, Kühn AA, Laughlin S, Dewan MC, Mabbott D, Gorodetsky C, Bartels U, Huang A, Tabori U, Rutka JT, Drake JM, Kulkarni AV, Dirks P, Taylor MD, Ramaswamy V, Ibrahim GM. Postoperative cerebellar mutism syndrome is an acquired autism-like network disturbance. Neuro Oncol 2024; 26:950-964. [PMID: 38079480 PMCID: PMC11066932 DOI: 10.1093/neuonc/noad230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Cerebellar mutism syndrome (CMS) is a common and debilitating complication of posterior fossa tumor surgery in children. Affected children exhibit communication and social impairments that overlap phenomenologically with subsets of deficits exhibited by children with Autism spectrum disorder (ASD). Although both CMS and ASD are thought to involve disrupted cerebro-cerebellar circuitry, they are considered independent conditions due to an incomplete understanding of their shared neural substrates. METHODS In this study, we analyzed postoperative cerebellar lesions from 90 children undergoing posterior fossa resection of medulloblastoma, 30 of whom developed CMS. Lesion locations were mapped to a standard atlas, and the networks functionally connected to each lesion were computed in normative adult and pediatric datasets. Generalizability to ASD was assessed using an independent cohort of children with ASD and matched controls (n = 427). RESULTS Lesions in children who developed CMS involved the vermis and inferomedial cerebellar lobules. They engaged large-scale cerebellothalamocortical circuits with a preponderance for the prefrontal and parietal cortices in the pediatric and adult connectomes, respectively. Moreover, with increasing connectomic age, CMS-associated lesions demonstrated stronger connectivity to the midbrain/red nuclei, thalami and inferior parietal lobules and weaker connectivity to the prefrontal cortex. Importantly, the CMS-associated lesion network was independently reproduced in ASD and correlated with communication and social deficits, but not repetitive behaviors. CONCLUSIONS Our findings indicate that CMS-associated lesions may result in an ASD-like network disturbance that occurs during sensitive windows of brain development. A common network disturbance between CMS and ASD may inform improved treatment strategies for affected children.
Collapse
Affiliation(s)
- Hrishikesh Suresh
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin R Morgan
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Karim Mithani
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nebras M Warsi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Han Yan
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jürgen Germann
- Division of Neurosurgery, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Flavia Venetucci Gouveia
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Julia Young
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Quon
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Felipe Morgado
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jason Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Bassam Al-Fatly
- Department of Neurology and Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité, Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology and Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité, Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Exzellenzcluster NeuroCure, Charité, Universitätsmedizin, Berlin, Germany
| | - Suzanne Laughlin
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Michael C Dewan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Donald Mabbott
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ute Bartels
- Division of Neuro-Oncology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Division of Neuro-Oncology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Neuro-Oncology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James T Rutka
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - James M Drake
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Abhaya V Kulkarni
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Peter Dirks
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Taylor
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Division of Neuro-Oncology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - George M Ibrahim
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Kim JH, Kapse K, Limperopoulos C, De Asis-Cruz J. Cerebellar volume and functional connectivity in neonates predicts social and emotional development in toddlers. Front Neurosci 2024; 18:1294527. [PMID: 38756409 PMCID: PMC11097671 DOI: 10.3389/fnins.2024.1294527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Over the past decade, a growing body of research in adults has emphasized the role of the cerebellum in social and emotional cognition. This has been further supported by findings of delayed social and emotional development in toddlers with cerebellar injury during the fetal and newborn periods. However, the contributions of the cerebellum to social-emotional development in typically developing newborns are unclear. To bridge this gap in knowledge, we used multimodal MRI to investigate associations between cerebellar structure and function in 88 healthy neonates (mean ± sd of postmenstrual age, = 42.00 ± 1.91 weeks) and social-emotional development at 18-months assessed using the Infant-Toddler Social-Emotional Assessment (ITSEA) (mean age on ITSEA: 18.32 ± 1.19 months old). We found that cerebellar volume was not associated with ITSEA domain scores at 18 months. We further demonstrated cerebellar functional gradient (FGR) defined using principal component analysis (PCA) was associated with Externalizing domain (linear regression model, false-discovery-rate-adjusted p = 0.013). This cluster (FGR7) included the left dentate, right VI, left Vermis VIIIb, and right V lobules. Finally, we demonstrated that either structural or functional features of the cerebellum reliably predicted scores on the Externalizing and Internalizing domains (correlation between actual and predicted scores: for structural, Fisher's z = 0.48 ± 0.01 for Internalizing, p = 0.01; for functional, Fisher's z = 0.45 ± 0.01 for Externalizing, p = 0.02; with permutation test). Collectively, our findings suggest that the cerebellum plays an important role in social-emotional development during the critical early stages of life.
Collapse
|
22
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
23
|
Goto S, Nishimura T, Okumura A, Harada T, Rahman MS, Iwabuchi T, Sumiya M, Senju A, Tsuchiya KJ. Fine Motor Skills, a Surrogate of Motor Planning Ability, at Age 2 Predict Social Skills at Age 6. J Dev Behav Pediatr 2024; 45:e168-e175. [PMID: 38619153 DOI: 10.1097/dbp.0000000000001258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 12/07/2023] [Indexed: 04/16/2024]
Abstract
OBJECTIVES Motor planning is the cognitive process of planning necessary steps for achieving a purposeful movement and is specifically reflected through object manipulation. This study aimed to investigate whether fine motor skills, a surrogate of the motor planning ability of object manipulation, in early childhood are associated with later social skills, in a general-population birth cohort. METHODS A total of 913 children, participating in the Hamamatsu Birth Cohort for Mothers and Children, were enrolled. Social skills were measured using the Vineland Adaptive Behavior Scales-II, Socialization domain, at age 6 years. Fine motor skills were measured using the Mullen Scales of Early Learning at 14, 24, and 32 months. The associations between fine motor skills at ages 14, 24, and 32 months and social skills at age 6 years were tested separately through multivariable linear regression after adjusting for covariates, including gross motor and language skills at the contemporaneous age, autistic symptoms at age 6 years, and demographic factors. RESULTS Fine motor skills at 24 and 32 months were significantly associated with social skills at age 6 years (at 24 months: nonstandardized regression coefficient = 1.38 [95% CI, 0.50-2.26], p = 0.002; at 32 months: 1.47 [0.56-2.38], p = 0.001). CONCLUSION Fine motor skills in early childhood predicted social skills at age 6 years, indicating an association between the complex motor planning ability of object manipulation and later social skills. Children who demonstrate fine motor delay at as early an age as 2 years should be closely monitored by child professionals.
Collapse
Grants
- 19H03582, 21KK0145, 22H00492 Ministry of Education, Culture, Sports, Science, & Technology in Japan
- 20K07941 Ministry of Education, Culture, Sports, Science, & Technology in Japan
- 20K13928 Ministry of Education, Culture, Sports, Science, & Technology in Japan
- 20K02628 Ministry of Education, Culture, Sports, Science, & Technology in Japan
- 21K17268 Ministry of Education, Culture, Sports, Science, & Technology in Japan
- 22K02405 Ministry of Education, Culture, Sports, Science, & Technology in Japan
- JP21gk0110039 AMED
Collapse
Affiliation(s)
- Satoko Goto
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomoko Nishimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Akemi Okumura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Taeko Harada
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mohammad Shafiur Rahman
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshiki Iwabuchi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Motofumi Sumiya
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Atsushi Senju
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji J Tsuchiya
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
24
|
Msall ME, Lagatta JM, Bora S. Optimizing trajectories of social adaptive competencies after extreme prematurity during the first 1000 days. Semin Fetal Neonatal Med 2024; 29:101531. [PMID: 38632009 PMCID: PMC11156543 DOI: 10.1016/j.siny.2024.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Over 75% of surviving extremely preterm infants do not have major neurodevelopmental disabilities; however, more than half face difficulties with communication, coordination, attention, learning, social, and executive function abilities. These "minor" challenges can have a negative impact on educational and social outcomes, resulting in physical, behavioral, and social health problems in adulthood. We will review assessment tools for social-emotional and adaptive functional skills in early childhood as these determine family and early childhood supports. We highlight bronchopulmonary dysplasia as an example of the critical intersections of parental wellbeing, medical and developmental adaptive trajectories in infancy and early childhood, and partnerships between child neurologists and community medical and developmental professionals. We examine studies of engaging parents to promote developmental trajectories, with a focus on supporting parent-child interactions that underlie communication, social-adaptive behaviors, and learning in the first 1000 days of life. Recommendations for neurodevelopmental surveillance and screening of extremely preterm infants can also be applied to infants with other risk factors for altered neurodevelopment.
Collapse
Affiliation(s)
- Michael E Msall
- Department of Pediatrics, Section of Developmental and Behavioral Pediatrics and Kennedy Research Center on Intellectual and Developmental Disabilities, University of Chicago Medicine, Chicago, IL, USA.
| | - Joanne M Lagatta
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Samudragupta Bora
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
25
|
Jimenez-Gomez A, Nguyen MX, Gill JS. Understanding the role of AMPA receptors in autism: insights from circuit and synapse dysfunction. Front Psychiatry 2024; 15:1304300. [PMID: 38352654 PMCID: PMC10861716 DOI: 10.3389/fpsyt.2024.1304300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Autism spectrum disorders represent a diverse etiological spectrum that converge on a syndrome characterized by discrepant deficits in developmental domains often highlighted by concerns in socialization, sensory integration, and autonomic functioning. Importantly, the incidence and prevalence of autism spectrum disorders have seen sharp increases since the syndrome was first described in the 1940s. The wide etiological spectrum and rising number of individuals being diagnosed with the condition lend urgency to capturing a more nuanced understanding of the pathogenic mechanisms underlying the autism spectrum disorders. The current review seeks to understand how the disruption of AMPA receptor (AMPAr)-mediated neurotransmission in the cerebro-cerebellar circuit, particularly in genetic autism related to SHANK3 or SYNGAP1 protein dysfunction function and autism associated with in utero exposure to the anti-seizure medications valproic acid and topiramate, may contribute to the disease presentation. Initially, a discussion contextualizing AMPAr signaling in the cerebro-cerebellar circuitry and microstructural circuit considerations is offered. Subsequently, a detailed review of the literature implicating mutations or deletions of SHANK3 and SYNGAP1 in disrupted AMPAr signaling reveals how bidirectional pathogenic modulation of this key circuit may contribute to autism. Finally, how pharmacological exposure may interact with this pathway, via increased risk of autism diagnosis with valproic acid and topiramate exposure and potential treatment of autism using AMPAr modulator perampanel, is discussed. Through the lens of the review, we will offer speculation on how neuromodulation may be used as a rational adjunct to therapy. Together, the present review seeks to synthesize the disparate considerations of circuit understanding, genetic etiology, and pharmacological modulation to understand the mechanistic interaction of this important and complex disorder.
Collapse
Affiliation(s)
- Andres Jimenez-Gomez
- Neurodevelopmental Disabilities Program, Department of Neurology, Joe DiMaggio Children’s Hospital, Hollywood, FL, United States
| | - Megan X. Nguyen
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Jason S. Gill
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
26
|
Newman J, Tong X, Tan A, Yeasky T, De Paiva VN, Presicce P, Kannan PS, Williams K, Damianos A, Tamase Newsam M, Benny MK, Wu S, Young KC, Miller LA, Kallapur SG, Chougnet CA, Jobe AH, Brambilla R, Schmidt AF. Chorioamnionitis accelerates granule cell and oligodendrocyte maturation in the cerebellum of preterm nonhuman primates. J Neuroinflammation 2024; 21:16. [PMID: 38200558 PMCID: PMC10777625 DOI: 10.1186/s12974-024-03012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity. METHODS Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55:B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications. RESULTS We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes. CONCLUSION These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.
Collapse
Affiliation(s)
- Josef Newman
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Xiaoying Tong
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - April Tan
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Toni Yeasky
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Vanessa Nunes De Paiva
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Pietro Presicce
- Division of Neonatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, USA
| | - Paranthaman S Kannan
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Kevin Williams
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Andreas Damianos
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Marione Tamase Newsam
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Merline K Benny
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Shu Wu
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Karen C Young
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, USA
| | - Suhas G Kallapur
- Division of Neonatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, USA
| | - Claire A Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Alan H Jobe
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Augusto F Schmidt
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
- Batchelor Children's Research Institute, 1580 NW 10Th Ave, Room 348, Miami, FL, 33146, USA.
| |
Collapse
|
27
|
Hadaya L, Vanes L, Karolis V, Kanel D, Leoni M, Happé F, Edwards AD, Counsell SJ, Batalle D, Nosarti C. Distinct Neurodevelopmental Trajectories in Groups of Very Preterm Children Screening Positively for Autism Spectrum Conditions. J Autism Dev Disord 2024; 54:256-269. [PMID: 36273367 DOI: 10.1007/s10803-022-05789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 10/24/2022]
Abstract
Very preterm (VPT; < 33 weeks' gestation) toddlers screening positively for autism spectrum conditions (ASC) may display heterogenous neurodevelopmental trajectories. Here we studied neonatal brain volumes and childhood ASC traits evaluated with the Social Responsiveness Scale (SRS-2) in VPT-born toddlers (N = 371; median age 20.17 months) sub-divided into three groups based on their Modified-Checklist for Autism in Toddlers scores. These were: those screening positively failing at least 2 critical items (critical-positive); failing any 3 items, but less than 2 critical items (non-critical-positive); and screening negatively. Critical-positive scorers had smaller neonatal cerebellar volumes compared to non-critical-positive and negative scorers. However, both positive screening groups exhibited higher childhood ASC traits compared to the negative screening group, suggesting distinct aetiological trajectories associated with ASC outcomes.
Collapse
Affiliation(s)
- Laila Hadaya
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Lucy Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Vyacheslav Karolis
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Dana Kanel
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Marguerite Leoni
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Francesca Happé
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
28
|
Malova M, Parodi A, Severino M, Tortora D, Calevo MG, Traggiai C, Massirio P, Minghetti D, Uccella S, Preiti D, Nobili L, Rossi A, Ramenghi LA. Neurodevelopmental Outcome at 3 Years of Age in Very Low Birth Weight Infants According to Brain Development and Lesions. Curr Pediatr Rev 2024; 20:94-105. [PMID: 36752291 DOI: 10.2174/1573396319666230208092416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND During the last decades, severe brain lesions affecting very low birth weight (<1500 gr, VLBW) infants were gradually substituted by milder lesions with debatable prognoses. OBJECTIVE The objective of this study is to define type, frequency and 3 years of neurodevelopmental outcome of prematurity-related brain lesions in a modern cohort of VLBW infants. METHODS VLBW infants admitted to our NICU in 5 years period with brain MRI at term-equivalent age were included. MRI scans were reviewed to identify and grade white matter lesions (WML), intraventricular hemorrhage (IVH), and cerebellar hemorrhage (CBH). Linear measurements of brain size, biparietal width (BPW) and trans-cerebellar diameter (TCD) were carried out. Total maturation score (TMS) was calculated. Developmental Coefficients (DQ) on Griffiths Scale at 3 years of age were compared between patients with different types and grades of lesions and patients without lesions; possible correlations between linear brain measurements, brain maturation and outcome were explored. RESULTS Study included 407 patients. Of them, 187 (46%) had at least one brain lesion on MRI, while 37 (9%) had severe lesions. The most frequent lesion was IVH (28%), followed by WML (21%) and CBH (17%). Mild and severe IVH, moderate and severe WML and all grades of CBH were related to worst outcome at 3 years. In patients without lesions, small BPW and small TCD were associated with worse outcomes. No correlations were observed between TMS and outcome. CONCLUSION We have observed that even mild brain lesions have a negative influence on neurological outcome at 3 years of age.
Collapse
Affiliation(s)
- Mariya Malova
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Parodi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Grazia Calevo
- Epidemiology and Biostatistics Unit, Scientific Direction, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Cristina Traggiai
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Massirio
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Diego Minghetti
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sara Uccella
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Deborah Preiti
- Psychology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Luca Antonio Ramenghi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
29
|
Horber V, Andersen GL, Arnaud C, De La Cruz J, Dakovic I, Greitane A, Hensey O, Himmelmann K, Hollody K, Horridge K, Künzle CT, Marcelli M, Ortibus E, Papavasiliou A, Perra O, Platt MJ, Rackauskaite G, Sigurdardottir S, Troha Gergeli A, Virella D, Krägeloh-Mann I, Sellier E. Prevalence, Clinical Features, Neuroimaging, and Genetic Findings in Children With Ataxic Cerebral Palsy in Europe. Neurology 2023; 101:e2509-e2521. [PMID: 37857495 PMCID: PMC10791054 DOI: 10.1212/wnl.0000000000207851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To report on prevalence, associated impairments, severity, and neuroimaging findings in children with ataxic cerebral palsy (CP). METHODS In children coded as having ataxic CP in the Central database of Joint Research Center-Surveillance of Cerebral Palsy in Europe (JRC-SCPE) and born during 1980-2010, birth characteristics, severity profiles including associated impairments, neuroimaging patterns, and the presence of syndromes were analyzed. Definitions were according to validated SCPE guidelines. Prevalence over time was estimated using Poisson regression. RESULTS In total, 679 children with ataxic CP were identified in 20 European CP registers. The proportion with ataxic CP was 3.8% and varied from 0% to 12.9%. Prevalence over time showed no significant trend. Approximately 70% of children with ataxic CP were able to walk, and 40% had severe intellectual impairment and a high impairment index. Children with ataxic CP were mostly born at term (79%) and with normal birth weight (77%). Neuroimaging patterns revealed normal findings in 29%, brain maldevelopments in 28.5%, miscellaneous findings in 23.5%, and brain injuries in 19%, according to the SCPE classification. Genetic syndromes were described in 9%. DISCUSSION This register-based multicenter study on children with ataxic CP provides a large sample size for the analysis of prevalence, severity, and origin of this rare CP subtype. Even with strict inclusion and classification criteria, there is variation between registers on how to deal with this subtype, and diagnosis of ataxic CP remains a challenge. Ataxic cerebral palsy differs from other CP subtypes: children with ataxic CP have a disability profile that is more pronounced in terms of cognitive than gross motor dysfunction. They are mostly term born and the origin rarely suggests acquired injuries. In addition to neuroimaging, a comprehensive genetic workup is particularly recommended for children with this CP type.
Collapse
Affiliation(s)
- Veronka Horber
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Guro L Andersen
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Catherine Arnaud
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Javier De La Cruz
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Ivana Dakovic
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Andra Greitane
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Owen Hensey
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Kate Himmelmann
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Katalin Hollody
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Karen Horridge
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Christoph T Künzle
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Marco Marcelli
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Els Ortibus
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Antigone Papavasiliou
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Oliver Perra
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Mary J Platt
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Gija Rackauskaite
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Solveig Sigurdardottir
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Anja Troha Gergeli
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Daniel Virella
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Ingeborg Krägeloh-Mann
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| | - Elodie Sellier
- From the Department of Paediatric Neurology (V.H., I.K.-M.), University Children's Hospital Tübingen, Germany; Norwegian Quality and Surveillance Registry for Cerebral Palsy (G.L.A.), Vestfold Hospital Trust, Tønsberg, Norway; CERPOP (C.A.), UMR 1295 Toulouse University, Inserm, Paul Sabatier University, Toulouse; Clinical Epidemiology Unit (C.A.), University Hospital of Toulouse, France; Imas12 (J.D.L.C.), Hospital Universitario 12 de Octubre, RedSAMID, Madrid Spain; Department of Pediatrics (I.D.), Children's Hospital, University of Zagreb Croatia; Association Rehabilitation Center (A.G.), Riga, Latvia; The Central Remedial Clinic (O.H.), Dublin, Ireland; Department of Pediatrics (K. Himmelmann), Clinical Sciences, Sahlgrenska Academy, University of Gothenburg; Regional Rehabilitation Centre (K. Himmelmann), Queen Silvia Children's Hospital, Gothenburg, Sweden; Department of Pediatrics (K. Hollody), Faculty of Medicine, University of Pecs, Hungary; Childhood Disability and Development (K. Horridge), University of Sunderland, UK; Zentrum für Kinderneurologie (C.T.K.), Entwicklung und Rehabilitation, Ostschweizer Kinderspital, St. Gallen, Switzerland; Developmental Age Mental Health and Rehabilitation Unit (M.M.), ASL (local Health Institution Viterbo), Viterbo, Italy; Department of Development and Regeneration (E.O.), KU Leuven, Belgium; Iaso Children's Hospital (A.P.), Athens, Greece; Queen's University Belfast (O.P.), UK; Norwich Medical School (M.J.P.), University of East Anglia, Norwich, UK; Department of Pediatrics and Adolescent Medicine (G.R.), Aarhus University Hospital, Denmark; Counselling and Diagnostic Centre (S.S.), Iceland Department of Child and Adolescent & Developmental Neurology (A.T.G.), Children´s Hospital, University Medical Centre Ljubljana, Slovenia; PVNPC (D.V.), Programa de Vigilância Nacional da Paralisia Cerebral, Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Grenoble Alpes University (E.S.), CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG; and Registre des Handicaps de l'Enfant et Observatoire Périnatal (E.S.), Grenoble, France
| |
Collapse
|
30
|
Hadoush H, Hadoush A. Modulation of Resting-State Brain Complexity After Bilateral Cerebellar Anodal Transcranial Direct Current Stimulation in Children with Autism Spectrum Disorders: a Randomized Controlled Trial Study. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1109-1117. [PMID: 36156195 DOI: 10.1007/s12311-022-01481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders characterized by aberrant neural networks. Cerebellum is best known for its role in controlling motor behaviors; however, recently, there have been significant reports showed that dysfunction in cerebellar-cerebral networks contributes significantly to many of the clinical features of ASD. Hereby, this is a randomized controlled trial (RCT) study examining the potential modulating effects of bilateral anodal tDCS stimulation over cerebellar hemispheres on the resting-state brain complexity in children with ASD. METHODS Thirty-six children with ASD (aged 4-14) years old were divided equally and randomly into a tDCS treatment group, which underwent 10 sessions (20-min duration, five sessions/per week) of bilateral anodal tDCS stimulation applied over left and right cerebellar hemispheres, and control group underwent the same procedures, but with sham tDCS stimulation. Resting-state brain complexity was evaluated through recording and calculating the approximate entropy (ApxEnt) values of the resting-state electroencephalograph (EEG) data obtained from a 64-channel EEG system before and after the interventions. RESULTS Repeated measures of ANOVA showed that tDCS had significant effects on the treatment group (Wilks' Lambda = 0.29, F (15, 16) = 2.67, p = 0.03) compared with the control group. Analyzed data showed a significant increase in the averaged ApxEnt values in the right frontal cortical region (F (1, 16) = 10.46, p = 0.005) after the bilateral cerebellar anodal tDCS stimulation. Besides, the Cohen's d effect size showed a large effect size (0.70-0.92) of bilateral cerebellar anodal tDCS on the ApxEnt values increases in the left and right frontal cortical regions, the right central cortical region, and left parietal cortical region. However, there were no any significant differences or increases in the brain complexity before and after the sham tDCS stimulation of the control group. CONCLUSION Bilateral cerebellar anodal tDCS modulated and increased the brain complexity in children with ASD with no any reported adverse effect. Hereby, cerebellum and cerebellar-cerebral circuitry would serve as a promising target for non-invasive brain stimulation and neuro-modulation as a therapeutic intervention.
Collapse
Affiliation(s)
- Hikmat Hadoush
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Ashraf Hadoush
- Department of Mechanical Engineering, Faculty of Engineering and Technology, Palestine Technical University - Kadoorie, Tulkarm, Palestine
| |
Collapse
|
31
|
Naef N, Hottinger SJ, Schlosser L, Greutmann M, Latal B, O'Gorman RT. Association of cerebellar volume with cognitive and motor function in adults with congenital heart disease. Neurol Sci 2023; 44:3979-3987. [PMID: 37351678 PMCID: PMC10570150 DOI: 10.1007/s10072-023-06861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/15/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Patients with congenital heart disease (CHD) are at risk for cognitive and motor function impairments, brain injury, and smaller total brain volumes. The specific vulnerability of the cerebellum and its role in cognitive and motor functions in adults with congenital heart disease is not well defined. METHODS Forty-three patients with CHD and 53 controls between 18 and 32 years underwent brain magnetic resonance imaging and cognitive, executive (EF), and motor function assessment. Cerebellar volumes were obtained using EasyMeasure and SUIT Toolbox. Associations between cerebellar volumes and cognitive and motor function were calculated using linear models. RESULTS General cognitive and pure motor functions were lower in patients compared to controls (P < 0.05). Executive functions were within the normal range. While total cerebellar volumes and the anterior lobes were similar in patients and controls (P > 0.1), the posterior cerebellar lobe was smaller in patients with more complex CHD (P = 0.006). Smaller posterior cerebellar gray matter was not associated with cognitive functions. Smaller anterior cerebellar gray matter was not significantly related to motor functions (P > 0.1). CONCLUSION In adults with CHD, cerebellar volume was largely unimpaired. Patients with more complex CHD may be vulnerable to changes in the posterior cerebellar gray matter. We found no significant contribution of cerebellar gray matter to cognitive and motor impairments. More advanced imaging techniques are necessary to clarify the contribution of the cerebellum to cognitive and motor functions.
Collapse
Affiliation(s)
- Nadja Naef
- Child Development Center, University Children's Hospital Zurich, Zurich, CH, Switzerland.
| | - Selma J Hottinger
- Child Development Center, University Children's Hospital Zurich, Zurich, CH, Switzerland
| | - Ladina Schlosser
- Child Development Center, University Children's Hospital Zurich, Zurich, CH, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Greutmann
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, CH, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, CH, Switzerland
| | - Ruth Tuura O'Gorman
- Children's Research Center, University Children's Hospital Zurich, Zurich, CH, Switzerland
- MR Research Center, University Children's Hospital Zurich, Zurich, CH, Switzerland
| |
Collapse
|
32
|
Buchmayer J, Kasprian G, Jernej R, Stummer S, Schmidbauer V, Giordano V, Klebermass-Schrehof K, Berger A, Goeral K. Magnetic Resonance Imaging-Based Reference Values for Two-Dimensional Quantitative Brain Metrics in a Cohort of Extremely Preterm Infants. Neonatology 2023; 121:97-105. [PMID: 37866350 PMCID: PMC10836753 DOI: 10.1159/000534009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Cerebral magnetic resonance imaging (cMRI) is an important diagnostic tool in neonatology. In addition to qualitative analysis, quantitative measurements may help identify infants with impaired brain growth. This study aimed to create reference values for brain metrics of various brain areas in neonates without major brain injuries born before 28 weeks of gestation. METHODS This retrospective study analyzes cMRI imaging data of high-risk patients without severe brain pathologies at term-equivalent age, collected over 4 years since November 2017. Nineteen brain areas were measured, reference values created, and compared to published values from fetal and postnatal MRI. Furthermore, correlations between brain metrics and gestational age at birth were evaluated. RESULTS A total of 174 cMRI examinations were available for analysis. Reference values including cut-offs for impaired brain growth were established for different gestational age groups. There was a significant correlation between gestational age at birth and larger "tissue" parameters, as well as smaller "fluid" parameters, including intracerebral and extracerebral spaces. DISCUSSION With quantitative brain metrics infants with impaired brain growth might be detected earlier. Compared to preexisting reference values, these are the first of a contemporary collective of extremely preterm neonates without severe brain injuries. Measurements can be easily performed by radiologists as well as neonatologists without specialized equipment or computational expertise. CONCLUSION Two-dimensional cMRI brain measurements at term-equivalent age represent an easy and reliable approach for the evaluation of brain size and growth in infants at high risk for neurodevelopmental impairment.
Collapse
Affiliation(s)
- Julia Buchmayer
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria,
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Radiology, Medical University of Vienna, Vienna, Austria
| | - Raphaela Jernej
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sophie Stummer
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Victor Schmidbauer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Radiology, Medical University of Vienna, Vienna, Austria
| | - Vito Giordano
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katrin Klebermass-Schrehof
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katharina Goeral
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Stróżyk A, Paraskevas T, Romantsik O, Calevo MG, Banzi R, Ley D, Bruschettini M. Pharmacological pain and sedation interventions for the prevention of intraventricular hemorrhage in preterm infants on assisted ventilation - an overview of systematic reviews. Cochrane Database Syst Rev 2023; 8:CD012706. [PMID: 37565681 PMCID: PMC10421735 DOI: 10.1002/14651858.cd012706.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
BACKGROUND Germinal matrix hemorrhage and intraventricular hemorrhage (GMH-IVH) may contribute to neonatal morbidity and mortality and result in long-term neurodevelopmental sequelae. Appropriate pain and sedation management in ventilated preterm infants may decrease the risk of GMH-IVH; however, it might be associated with harms. OBJECTIVES To summarize the evidence from systematic reviews regarding the effects and safety of pharmacological interventions related to pain and sedation management in order to prevent GMH-IVH in ventilated preterm infants. METHODS We searched the Cochrane Library August 2022 for reviews on pharmacological interventions for pain and sedation management to prevent GMH-IVH in ventilated preterm infants (< 37 weeks' gestation). We included Cochrane Reviews assessing the following interventions administered within the first week of life: benzodiazepines, paracetamol, opioids, ibuprofen, anesthetics, barbiturates, and antiadrenergics. Primary outcomes were any GMH-IVH (aGMH-IVH), severe IVH (sIVH), all-cause neonatal death (ACND), and major neurodevelopmental disability (MND). We assessed the methodological quality of included reviews using the AMSTAR-2 tool. We used GRADE to assess the certainty of evidence. MAIN RESULTS We included seven Cochrane Reviews and one Cochrane Review protocol. The reviews on clonidine and paracetamol did not include randomized controlled trials (RCTs) matching our inclusion criteria. We included 40 RCTs (3791 infants) from reviews on paracetamol for patent ductus arteriosus (3), midazolam (3), phenobarbital (9), opioids (20), and ibuprofen (5). The quality of the included reviews was high. The certainty of the evidence was moderate to very low, because of serious imprecision and study limitations. Germinal matrix hemorrhage-intraventricular hemorrhage (any grade) Compared to placebo or no intervention, the evidence is very uncertain about the effects of paracetamol on aGMH-IVH (risk ratio (RR) 0.89, 95% confidence interval (CI) 0.38 to 2.07; 2 RCTs, 82 infants; very low-certainty evidence); midazolam may result in little to no difference in the incidence of aGMH-IVH (RR 1.68, 95% CI 0.87 to 3.24; 3 RCTs, 122 infants; low-certainty evidence); the evidence is very uncertain about the effect of phenobarbital on aGMH-IVH (RR 0.99, 95% CI 0.83 to 1.19; 9 RCTs, 732 infants; very low-certainty evidence); opioids may result in little to no difference in aGMH-IVH (RR 0.85, 95% CI 0.65 to 1.12; 7 RCTs, 469 infants; low-certainty evidence); ibuprofen likely results in little to no difference in aGMH-IVH (RR 0.99, 95% CI 0.81 to 1.21; 4 RCTs, 759 infants; moderate-certainty evidence). Compared to ibuprofen, the evidence is very uncertain about the effects of paracetamol on aGMH-IVH (RR 1.17, 95% CI 0.31 to 4.34; 1 RCT, 30 infants; very low-certainty evidence). Compared to midazolam, morphine may result in a reduction in aGMH-IVH (RR 0.28, 95% CI 0.09 to 0.87; 1 RCT, 46 infants; low-certainty evidence). Compared to diamorphine, the evidence is very uncertain about the effect of morphine on aGMH-IVH (RR 0.65, 95% CI 0.40 to 1.07; 1 RCT, 88 infants; very low-certainty evidence). Severe intraventricular hemorrhage (grade 3 to 4) Compared to placebo or no intervention, the evidence is very uncertain about the effect of paracetamol on sIVH (RR 1.80, 95% CI 0.43 to 7.49; 2 RCTs, 82 infants; very low-certainty evidence) and of phenobarbital (grade 3 to 4) (RR 0.91, 95% CI 0.66 to 1.25; 9 RCTs, 732 infants; very low-certainty evidence); opioids may result in little to no difference in sIVH (grade 3 to 4) (RR 0.98, 95% CI 0.71 to 1.34; 6 RCTs, 1299 infants; low-certainty evidence); ibuprofen may result in little to no difference in sIVH (grade 3 to 4) (RR 0.82, 95% CI 0.54 to 1.26; 4 RCTs, 747 infants; low-certainty evidence). No studies on midazolam reported this outcome. Compared to ibuprofen, the evidence is very uncertain about the effects of paracetamol on sIVH (RR 2.65, 95% CI 0.12 to 60.21; 1 RCT, 30 infants; very low-certainty evidence). Compared to midazolam, the evidence is very uncertain about the effect of morphine on sIVH (grade 3 to 4) (RR 0.08, 95% CI 0.00 to 1.43; 1 RCT, 46 infants; very low-certainty evidence). Compared to fentanyl, the evidence is very uncertain about the effect of morphine on sIVH (grade 3 to 4) (RR 0.59, 95% CI 0.18 to 1.95; 1 RCT, 163 infants; very low-certainty evidence). All-cause neonatal death Compared to placebo or no intervention, the evidence is very uncertain about the effect of phenobarbital on ACND (RR 0.94, 95% CI 0.51 to 1.72; 3 RCTs, 203 infants; very low-certainty evidence); opioids likely result in little to no difference in ACND (RR 1.12, 95% CI 0.80 to 1.55; 5 RCTs, 1189 infants; moderate-certainty evidence); the evidence is very uncertain about the effect of ibuprofen on ACND (RR 1.00, 95% CI 0.38 to 2.64; 2 RCTs, 112 infants; very low-certainty evidence). Compared to midazolam, the evidence is very uncertain about the effect of morphine on ACND (RR 0.31, 95% CI 0.01 to 7.16; 1 RCT, 46 infants; very low-certainty evidence). Compared to diamorphine, the evidence is very uncertain about the effect of morphine on ACND (RR 1.17, 95% CI 0.43 to 3.19; 1 RCT, 88 infants; very low-certainty evidence). Major neurodevelopmental disability Compared to placebo, the evidence is very uncertain about the effect of opioids on MND at 18 to 24 months (RR 2.00, 95% CI 0.39 to 10.29; 1 RCT, 78 infants; very low-certainty evidence) and at five to six years (RR 1.6, 95% CI 0.56 to 4.56; 1 RCT, 95 infants; very low-certainty evidence). No studies on other drugs reported this outcome. AUTHORS' CONCLUSIONS None of the reported studies had an impact on aGMH-IVH, sIVH, ACND, or MND. The certainty of the evidence ranged from moderate to very low. Large RCTs of rigorous methodology are needed to achieve an optimal information size to assess the effects of pharmacological interventions for pain and sedation management for the prevention of GMH-IVH and mortality in preterm infants. Studies might compare interventions against either placebo or other drugs. Reporting of the outcome data should include the assessment of GMH-IVH and long-term neurodevelopment.
Collapse
Affiliation(s)
- Agata Stróżyk
- Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland
| | | | - Olga Romantsik
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Maria Grazia Calevo
- Epidemiology and Biostatistics Unit, Scientific Directorate, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Rita Banzi
- Center for Health Regulatory Policies, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
34
|
Unruh KE, Bartolotti JV, McKinney WS, Schmitt LM, Sweeney JA, Mosconi MW. Functional connectivity of cortical-cerebellar networks in relation to sensorimotor behavior and clinical features in autism spectrum disorder. Cereb Cortex 2023; 33:8990-9002. [PMID: 37246152 PMCID: PMC10350826 DOI: 10.1093/cercor/bhad177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023] Open
Abstract
Sensorimotor issues are present in the majority of individuals with autism spectrum disorder (ASD) and are associated with core symptoms. The neural systems associated with these impairments remain unclear. Using a visually guided precision gripping task during functional magnetic resonance imaging, we characterized task-based connectivity and activation of cortical, subcortical, and cerebellar visuomotor networks. Participants with ASD (n = 19; ages 10-33) and age- and sex-matched neurotypical controls (n = 18) completed a visuomotor task at low and high force levels. Relative to controls, individuals with ASD showed reduced functional connectivity of right primary motor-anterior cingulate cortex and left anterior intraparietal lobule (aIPL)-right Crus I at high force only. At low force, increased caudate, and cerebellar activation each were associated with sensorimotor behavior in controls, but not in ASD. Reduced left aIPL-right Crus I connectivity was associated with more severe clinically rated ASD symptoms. These findings suggest that sensorimotor problems in ASD, particularly at high force levels, involve deficits in the integration of multimodal sensory feedback and reduced reliance on error-monitoring processes. Adding to literature positing that cerebellar dysfunction contributes to multiple developmental issues in ASD, our data implicate parietal-cerebellar connectivity as a key neural marker underlying both core and comorbid features of ASD.
Collapse
Affiliation(s)
- Kathryn E Unruh
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - James V Bartolotti
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Walker S McKinney
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matthew W Mosconi
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
35
|
Kato M, De Schutter E. Models of Purkinje cell dendritic tree selection during early cerebellar development. PLoS Comput Biol 2023; 19:e1011320. [PMID: 37486917 PMCID: PMC10399850 DOI: 10.1371/journal.pcbi.1011320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/03/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
We investigate the relationship between primary dendrite selection of Purkinje cells and migration of their presynaptic partner granule cells during early cerebellar development. During postnatal development, each Purkinje cell grows more than three dendritic trees, from which a primary tree is selected for development, whereas the others completely retract. Experimental studies suggest that this selection process is coordinated by physical and synaptic interactions with granule cells, which undergo a massive migration at the same time. However, technical limitations hinder continuous experimental observation of multiple cell populations. To explore possible mechanisms underlying this selection process, we constructed a computational model using a new computational framework, NeuroDevSim. The study presents the first computational model that simultaneously simulates Purkinje cell growth and the dynamics of granule cell migrations during the first two postnatal weeks, allowing exploration of the role of physical and synaptic interactions upon dendritic selection. The model suggests that interaction with parallel fibers is important to establish the distinct planar morphology of Purkinje cell dendrites. Specific rules to select which dendritic trees to keep or retract result in larger winner trees with more synaptic contacts than using random selection. A rule based on afferent synaptic activity was less effective than rules based on dendritic size or numbers of synapses.
Collapse
Affiliation(s)
- Mizuki Kato
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa, Japan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa, Japan
| |
Collapse
|
36
|
Xi K, Cai SQ, Yan HF, Tian Y, Cai J, Yang XM, Wang JM, Xing GG. CSMD3 Deficiency Leads to Motor Impairments and Autism-Like Behaviors via Dysfunction of Cerebellar Purkinje Cells in Mice. J Neurosci 2023; 43:3949-3969. [PMID: 37037606 PMCID: PMC10219040 DOI: 10.1523/jneurosci.1835-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Mutations of CUB and sushi multiple domains 3 (CSMD3) gene have been reported in individuals with ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain unexplored. Here, using male CSMD3 knock-out (CSMD3 -/-) mice, we found that genetic deletion of CSMD3 produced core autistic-like symptoms (social interaction deficits, restricted interests, and repetitive and stereotyped behaviors) and motor dysfunction in mice, indicating that the CSMD3 gene can be considered as a candidate for ASD. Moreover, we discovered that the ablation of CSMD3 in mice led to abnormal cerebellar Purkinje cell (PC) morphology in Crus I/II lobules, including aberrant developmental dendritogenesis and spinogenesis of PCs. Furthermore, combining in vivo fiber photometry calcium imaging and ex vivo electrophysiological recordings, we showed that the CSMD3 -/- mice exhibited an increased neuronal activity (calcium fluorescence signals) in PCs of Crus I/II lobules in response to movement activity, as well as an enhanced intrinsic excitability of PCs and an increase of excitatory rather than inhibitory synaptic input to the PCs, and an impaired long-term depression at the parallel fiber-PC synapse. These results suggest that CSMD3 plays an important role in the development of cerebellar PCs. Loss of CSMD3 causes abnormal PC morphology and dysfunction in the cerebellum, which may underlie the pathogenesis of motor deficits and core autistic-like symptoms in CSMD3 -/- mice. Our findings provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD. Recently, a novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains (CSMDs) has been identified as a candidate gene for ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain largely unknown. Here, we unravel that loss of CSMD3 results in abnormal morphology, increased intrinsic excitabilities, and impaired synaptic plasticity in cerebellar PCs, subsequently leading to motor deficits and ASD-like behaviors in mice. These results provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.
Collapse
Affiliation(s)
- Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Si-Qing Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Hui-Fang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jing-Min Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
- Second Affiliated Hospital of Xinxiang Medical University, Henan 453002, People's Republic of China
| |
Collapse
|
37
|
Witteveen IF, McCoy E, Holsworth TD, Shen CZ, Chang W, Nance MG, Belkowitz AR, Dougald A, Puglia MH, Ribic A. Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex. Front Integr Neurosci 2023; 17:1149159. [PMID: 37255843 PMCID: PMC10225509 DOI: 10.3389/fnint.2023.1149159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Prematurity is among the leading risks for poor neurocognitive outcomes. The brains of preterm infants show alterations in structure and electrical activity, but the underlying circuit mechanisms are unclear. To address this, we performed a cross-species study of the electrophysiological activity in the visual cortices of prematurely born infants and mice. Using electroencephalography (EEG) in a sample of healthy preterm (N = 29) and term (N = 28) infants, we found that the maturation of the aperiodic EEG component was accelerated in the preterm cohort, with a significantly flatter 1/f slope when compared to the term infants. The flatter slope was a result of decreased spectral power in the theta and alpha bands and was correlated with the degree of prematurity. To determine the circuit and cellular changes that potentially mediate the changes in 1/f slope after preterm birth, we used in vivo electrophysiology in preterm mice and found that, similar to infants, preterm birth results in a flattened 1/f slope. We analyzed neuronal activity in the visual cortex of preterm (N = 6) and term (N = 9) mice and found suppressed spontaneous firing of neurons. Using immunohistochemistry, we further found an accelerated maturation of inhibitory circuits. In both preterm mice and infants, the functional maturation of the cortex was accelerated, underscoring birth as a critical checkpoint in cortical maturation. Our study points to a potential mechanism of preterm birth-related changes in resting neural activity, highlighting the utility of a cross-species approach in studying the neural circuit mechanisms of preterm birth-related neurodevelopmental conditions.
Collapse
Affiliation(s)
- Isabelle F. Witteveen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Emily McCoy
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Troy D. Holsworth
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Catherine Z. Shen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Winnie Chang
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Madelyn G. Nance
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Allison R. Belkowitz
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Avery Dougald
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Meghan H. Puglia
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
38
|
van der Heijden ME, Rey Hipolito AG, Kim LH, Kizek DJ, Perez RM, Lin T, Sillitoe RV. Glutamatergic cerebellar neurons differentially contribute to the acquisition of motor and social behaviors. Nat Commun 2023; 14:2771. [PMID: 37188723 PMCID: PMC10185563 DOI: 10.1038/s41467-023-38475-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Insults to the developing cerebellum can cause motor, language, and social deficits. Here, we investigate whether developmental insults to different cerebellar neurons constrain the ability to acquire cerebellar-dependent behaviors. We perturb cerebellar cortical or nuclei neuron function by eliminating glutamatergic neurotransmission during development, and then we measure motor and social behaviors in early postnatal and adult mice. Altering cortical and nuclei neurons impacts postnatal motor control and social vocalizations. Normalizing neurotransmission in cortical neurons but not nuclei neurons restores social behaviors while the motor deficits remain impaired in adults. In contrast, manipulating only a subset of nuclei neurons leaves social behaviors intact but leads to early motor deficits that are restored by adulthood. Our data uncover that glutamatergic neurotransmission from cerebellar cortical and nuclei neurons differentially control the acquisition of motor and social behaviors, and that the brain can compensate for some but not all perturbations to the developing cerebellum.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Alejandro G Rey Hipolito
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Linda H Kim
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Dominic J Kizek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Ross M Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Tao Lin
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
39
|
Pighini MJ, Guhn M, Zumbo BD. Over-reaching with causality language in neurodevelopmental infant research: A methodological literature review. Early Hum Dev 2023; 182:105781. [PMID: 37257252 DOI: 10.1016/j.earlhumdev.2023.105781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND A methodological review of 78 empirical articles focusing on the neurodevelopmental outcomes of at-risk infants was conducted. AIMS To examine ways language and terminology are used to describe methods, present results, and/or state conclusions in studies published during 1994-2005, a decade reflecting major advances in neurodevelopmental research and in medical intervention. More specifically, to investigate to what extent the design of the study and the language in the results section aligned in regard to causality. METHODS A process of search and selection of studies published in pediatric journals was conducted through Google Scholar. Criteria of inclusion and exclusion, following PRISMA, were used. Selected studies reported neurodevelopmental outcomes of infants and young children considered at-risk, and were further categorized accordingly to their study designs. Language use in regard to whether the presentation and interpretation of results may convey causal relationships between birth risk factors and neurodevelopmental outcomes was examined following two analytical steps. RESULTS Forty out of 78 studies, (51.28 %) used causality-implying language (e.g., effect, predict, influence) notwithstanding that the study design was non-causal. CONCLUSIONS Anticipating the next generation of neurodevelopmental-outcomes research, a framework that aims to raise awareness of the importance of language use and the impact of causality-related terms often used in longitudinal studies is proposed. The objective is to avoid ambiguities and misunderstandings around causal or non-causal connections between birth risk factors and developmental outcomes across diverse audiences, including early intervention practitioners working directly with infants and their families.
Collapse
Affiliation(s)
- Maria J Pighini
- Faculty of Education, The University of British Columbia, Canada.
| | - Martin Guhn
- Human Early Learning Partnership, School of Population and Public Health, The University of British Columbia, Canada
| | - Bruno D Zumbo
- Faculty of Education, The University of British Columbia, Canada
| |
Collapse
|
40
|
Butler DF, Skibo J, Traudt CM, Millen KJ. Neonatal subarachnoid hemorrhage disrupts multiple aspects of cerebellar development. Front Mol Neurosci 2023; 16:1161086. [PMID: 37187957 PMCID: PMC10175619 DOI: 10.3389/fnmol.2023.1161086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Over the past decade, survival rates for extremely low gestational age neonates (ELGANs; <28 weeks gestation) has markedly improved. Unfortunately, a significant proportion of ELGANs will suffer from neurodevelopmental dysfunction. Cerebellar hemorrhagic injury (CHI) has been increasingly recognized in the ELGANs population and may contribute to neurologic dysfunction; however, the underlying mechanisms are poorly understood. To address this gap in knowledge, we developed a novel model of early isolated posterior fossa subarachnoid hemorrhage (SAH) in neonatal mice and investigated both acute and long-term effects. Following SAH on postnatal day 6 (P6), we found significant decreased levels of proliferation with the external granular layer (EGL), thinning of the EGL, decreased Purkinje cell (PC) density, and increased Bergmann glial (BG) fiber crossings at P8. At P42, CHI resulted in decreased PC density, decreased molecular layer interneuron (MLI) density, and increased BG fiber crossings. Results from both Rotarod and inverted screen assays did not demonstrate significant effects on motor strength or learning at P35-38. Treatment with the anti-inflammatory drug Ketoprofen did not significantly alter our findings after CHI, suggesting that treatment of neuro-inflammation does not provide significant neuroprotection post CHI. Further studies are required to fully elucidate the mechanisms through which CHI disrupts cerebellar developmental programming in order to develop therapeutic strategies for neuroprotection in ELGANs.
Collapse
Affiliation(s)
- David F. Butler
- Division of Pediatric Critical Care, Seattle Children's Hospital, University of Washington, Seattle, WA, United States
| | - Jonathan Skibo
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Kathleen J. Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington Medical School, Seattle, WA, United States
| |
Collapse
|
41
|
Witteveen IF, McCoy E, Holsworth TD, Shen CZ, Chang W, Nance MG, Belkowitz AR, Dougald A, Puglia MH, Ribic A. Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524993. [PMID: 36711801 PMCID: PMC9882279 DOI: 10.1101/2023.01.20.524993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prematurity is among the leading risks for poor neurocognitive outcomes. The brains of preterm infants show alterations in structure and electrical activity, but the underlying circuit mechanisms are unclear. To address this, we performed a cross-species study of the electrophysiological activity in the visual cortices of prematurely born infants and mice. Using electroencephalography (EEG) in a sample of healthy preterm (N=29) and term (N=28) infants, we found that the maturation of the aperiodic EEG component was accelerated in the preterm cohort, with a significantly flatter 1/f slope when compared to the term infants. The flatter slope was a result of decreased spectral power in the theta and alpha bands and was correlated with the degree of prematurity. To determine the circuit and cellular changes that potentially mediate the changes in 1/f slope after preterm birth, we used in vivo electrophysiology in preterm mice and found that, similar to infants, preterm birth results in a flattened 1/f slope. We analyzed neuronal activity in the visual cortex of preterm mice (N=6 preterm and 9 term mice) and found suppressed spontaneous firing of neurons. Using immunohistochemistry, we further found an accelerated maturation of inhibitory circuits. In both preterm mice and infants, the functional maturation of the cortex was accelerated, underscoring birth as a critical checkpoint in cortical maturation. Our study points to a potential mechanism of preterm birth-related changes in resting neural activity, highlighting the utility of a cross-species approach in studying the neural circuit mechanisms of preterm birth-related neurodevelopmental conditions.
Collapse
Affiliation(s)
- Isabelle F. Witteveen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Emily McCoy
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Troy D. Holsworth
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Catherine Z. Shen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Winnie Chang
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Madelyn G. Nance
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Allison R. Belkowitz
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Avery Dougald
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Meghan H. Puglia
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
42
|
Bruschettini M, Brattström P, Russo C, Onland W, Davis PG, Soll R. Caffeine dosing regimens in preterm infants with or at risk for apnea of prematurity. Cochrane Database Syst Rev 2023; 4:CD013873. [PMID: 37040532 PMCID: PMC10089673 DOI: 10.1002/14651858.cd013873.pub2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
BACKGROUND Very preterm infants often require respiratory support and are therefore exposed to an increased risk of bronchopulmonary dysplasia (chronic lung disease) and later neurodevelopmental disability. Caffeine is widely used to prevent and treat apnea (temporal cessation of breathing) associated with prematurity and facilitate extubation. Though widely recognized dosage regimes have been used for decades, higher doses have been suggested to further improve neonatal outcomes. However, observational studies suggest that higher doses may be associated with harm. OBJECTIVES To determine the effects of higher versus standard doses of caffeine on mortality and major neurodevelopmental disability in preterm infants with (or at risk of) apnea, or peri-extubation. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, CINAHL, the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP), and clinicaltrials.gov in May 2022. The reference lists of relevant articles were also checked to identify additional studies. SELECTION CRITERIA We included randomized (RCTs), quasi-RCTs and cluster-RCTs, comparing high-dose to standard-dose strategies in preterm infants. High-dose strategies were defined as a high-loading dose (more than 20 mg of caffeine citrate/kg) or a high-maintenance dose (more than 10 mg of caffeine citrate/kg/day). Standard-dose strategies were defined as a standard-loading dose (20 mg or less of caffeine citrate/kg) or a standard-maintenance dose (10 mg or less of caffeine citrate/kg/day). We specified three additional comparisons according to the indication for commencing caffeine: 1) prevention trials, i.e. preterm infants born at less than 34 weeks' gestation, who are at risk for apnea; 2) treatment trials, i.e. preterm infants born at less than 37 weeks' gestation, with signs of apnea; 3) extubation trials: preterm infants born at less than 34 weeks' gestation, prior to planned extubation. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. We evaluated treatment effects using a fixed-effect model with risk ratio (RR) for categorical data and mean, standard deviation (SD), and mean difference (MD) for continuous data. MAIN RESULTS: We included seven trials enrolling 894 very preterm infants (reported in Comparison 1, i.e. any indication). Two studies included infants for apnea prevention (Comparison 2), four studies for apnea treatment (Comparison 3) and two for extubation management (Comparison 4); in one study, indication for caffeine administration was both apnea treatment and extubation management (reported in Comparison 1, Comparison 3 and Comparison 4). In the high-dose groups, loading and maintenance caffeine doses ranged from 30 mg/kg to 80 mg/kg, and 12 mg/kg to 30 mg/kg, respectively; in the standard-dose groups, loading and maintenance caffeine doses ranged from 6 mg/kg to 25 mg/kg, and 3 mg/kg to 10 mg/kg, respectively. Two studies had three study groups: infants were randomized in three different doses (two of them matched our definition of high dose and one matched our definition of standard dose); high-dose caffeine and standard-dose caffeine were compared to theophylline administration (the latter is included in a separate review). Six of the seven included studies compared high-loading and high-maintenance dose to standard-loading and standard-maintenance dose, whereas in one study standard-loading dose and high-maintenance dose was compared to standard-loading dose and standard-maintenance dose. High-dose caffeine strategies (administration for any indication) may have little or no effect on mortality prior to hospital discharge (risk ratio (RR) 0.86, 95% confidence of interval (CI) 0.53 to 1.38; risk difference (RD) -0.01, 95% CI -0.05 to 0.03; I² for RR and RD = 0%; 5 studies, 723 participants; low-certainty evidence). Only one study enrolling 74 infants reported major neurodevelopmental disability in children aged three to five years (RR 0.79, 95% CI 0.51 to 1.24; RD -0.15, 95% CI -0.42 to 0.13; 46 participants; very low-certainty evidence). No studies reported the outcome mortality or major neurodevelopmental disability in children aged 18 to 24 months and 3 to 5 years. Five studies reported bronchopulmonary dysplasia at 36 weeks' postmenstrual age (RR 0.75, 95% CI 0.60 to 0.94; RD -0.08, 95% CI -0.15 to -0.02; number needed to benefit (NNTB) = 13; I² for RR and RD = 0%; 723 participants; moderate-certainty evidence). High-dose caffeine strategies may have little or no effect on side effects (RR 1.66, 95% CI 0.86 to 3.23; RD 0.03, 95% CI -0.01 to 0.07; I² for RR and RD = 0%; 5 studies, 593 participants; low-certainty evidence). The evidence is very uncertain for duration of hospital stay (data reported in three studies could not be pooled in meta-analysis because outcomes were expressed as medians and interquartile ranges) and seizures (RR 1.42, 95% CI 0.79 to 2.53; RD 0.14, 95% CI -0.09 to 0.36; 1 study, 74 participants; very low-certainty evidence). We identified three ongoing trials conducted in China, Egypt, and New Zealand. AUTHORS' CONCLUSIONS High-dose caffeine strategies in preterm infants may have little or no effect on reducing mortality prior to hospital discharge or side effects. We are very uncertain whether high-dose caffeine strategies improves major neurodevelopmental disability, duration of hospital stay or seizures. No studies reported the outcome mortality or major neurodevelopmental disability in children aged 18 to 24 months and 3 to 5 years. High-dose caffeine strategies probably reduce the rate of bronchopulmonary dysplasia. Recently completed and future trials should report long-term neurodevelopmental outcome of children exposed to different caffeine dosing strategies in the neonatal period. Data from extremely preterm infants are needed, as this population is exposed to the highest risk for mortality and morbidity. However, caution is required when administering high doses in the first hours of life, when the risk for intracranial bleeding is highest. Observational studies might provide useful information regarding potential harms of the highest doses.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| | | | | | - Wes Onland
- Department of Neonatology, Amsterdam University Medical Centers, VU University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Peter G Davis
- Newborn Research Centre and Neonatal Services, The Royal Women's Hospital, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Australia
| | - Roger Soll
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
43
|
Martín R, Suárez-Pinilla AS, García-Font N, Laguna-Luque ML, López-Ramos JC, Oset-Gasque MJ, Gruart A, Delgado-García JM, Torres M, Sánchez-Prieto J. The activation of mGluR4 rescues parallel fiber synaptic transmission and LTP, motor learning and social behavior in a mouse model of Fragile X Syndrome. Mol Autism 2023; 14:14. [PMID: 37029391 PMCID: PMC10082511 DOI: 10.1186/s13229-023-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most common inherited intellectual disability, is caused by the loss of expression of the Fragile X Messenger Ribonucleoprotein (FMRP). FMRP is an RNA-binding protein that negatively regulates the expression of many postsynaptic as well as presynaptic proteins involved in action potential properties, calcium homeostasis and neurotransmitter release. FXS patients and mice lacking FMRP suffer from multiple behavioral alterations, including deficits in motor learning for which there is currently no specific treatment. METHODS We performed electron microscopy, whole-cell patch-clamp electrophysiology and behavioral experiments to characterise the synaptic mechanisms underlying the motor learning deficits observed in Fmr1KO mice and the therapeutic potential of positive allosteric modulator of mGluR4. RESULTS We found that enhanced synaptic vesicle docking of cerebellar parallel fiber to Purkinje cell Fmr1KO synapses was associated with enhanced asynchronous release, which not only prevents further potentiation, but it also compromises presynaptic parallel fiber long-term potentiation (PF-LTP) mediated by β adrenergic receptors. A reduction in extracellular Ca2+ concentration restored the readily releasable pool (RRP) size, basal synaptic transmission, β adrenergic receptor-mediated potentiation, and PF-LTP. Interestingly, VU 0155041, a selective positive allosteric modulator of mGluR4, also restored both the RRP size and PF-LTP in mice of either sex. Moreover, when injected into Fmr1KO male mice, VU 0155041 improved motor learning in skilled reaching, classical eyeblink conditioning and vestibuloocular reflex (VOR) tests, as well as the social behavior alterations of these mice. LIMITATIONS We cannot rule out that the activation of mGluR4s via systemic administration of VU0155041 can also affect other brain regions. Further studies are needed to stablish the effect of a specific activation of mGluR4 in cerebellar granule cells. CONCLUSIONS Our study shows that an increase in synaptic vesicles, SV, docking may cause the loss of PF-LTP and motor learning and social deficits of Fmr1KO mice and that the reversal of these changes by pharmacological activation of mGluR4 may offer therapeutic relief for motor learning and social deficits in FXS.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain.
| | - Alberto Samuel Suárez-Pinilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Nuria García-Font
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
- Centre for Discovery Brain Sciences and Simon Initiative for Developing Brain, University of Edinburgh, Edinburgh, EH89JZ, UK
| | | | - Juan C López-Ramos
- Division de Neurociencias, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - María Jesús Oset-Gasque
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
- Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense, Instituto Universitario Investigación en Neuroquímica, 28040, Madrid, Spain
| | - Agnes Gruart
- Division de Neurociencias, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | | | - Magdalena Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
44
|
Kumar M, Hiremath C, Khokhar SK, Bansal E, Sagar KJV, Padmanabha H, Girimaji AS, Narayan S, Kishore MT, Yamini BK, Jac Fredo AR, Saini J, Bharath RD. Altered cerebellar lobular volumes correlate with clinical deficits in siblings and children with ASD: evidence from toddlers. J Transl Med 2023; 21:246. [PMID: 37029372 PMCID: PMC10080978 DOI: 10.1186/s12967-023-04090-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impaired social and communication skills, narrow interests, and repetitive behavior. It is known that the cerebellum plays a vital role in controlling movement and gait posture. However, recently, researchers have reported that the cerebellum may also be responsible for other functions, such as social cognition, reward, anxiety, language, and executive functions. METHODS In this study, we ascertained volumetric differences from cerebellar lobular analysis from children with ASD, ASD siblings, and typically developing healthy controls. In this cross-sectional study, a total of 30 children were recruited, including children with ASD (N = 15; mean age = 27.67 ± 5.1 months), ASD siblings (N = 6; mean age = 17.5 ± 3.79 months), and typically developing children (N = 9; mean age = 17.67 ± 3.21 months). All the MRI data was acquired under natural sleep without using any sedative medication. We performed a correlation analysis with volumetric data and developmental and behavioral measures obtained from these children. Two-way ANOVA and Pearson correlation was performed for statistical data analysis. RESULTS We observed intriguing findings from this study, including significantly increased gray matter lobular volumes in multiple cerebellar regions including; vermis, left and right lobule I-V, right CrusII, and right VIIb and VIIIb, respectively, in children with ASD, compared to typically developing healthy controls and ASD siblings. Multiple cerebellar lobular volumes were also significantly correlated with social quotient, cognition, language, and motor scores with children with ASD, ASD siblings, and healthy controls, respectively. CONCLUSIONS This research finding helps us understand the neurobiology of ASD and ASD-siblings, and critically advances current knowledge about the cerebellar role in ASD. However, results need to be replicated for a larger cohort from longitudinal research study in future.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| | - Chandrakanta Hiremath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Sunil Kumar Khokhar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Eshita Bansal
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Kommu John Vijay Sagar
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - Akhila S Girimaji
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - Shweta Narayan
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - M Thomas Kishore
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - B K Yamini
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - A R Jac Fredo
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| |
Collapse
|
45
|
Olson IR, Hoffman LJ, Jobson KR, Popal HS, Wang Y. Little brain, little minds: The big role of the cerebellum in social development. Dev Cogn Neurosci 2023; 60:101238. [PMID: 37004475 PMCID: PMC10067769 DOI: 10.1016/j.dcn.2023.101238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Seminal work in the 1990's found alterations in the cerebellum of individuals with social disorders including autism spectrum disorder and schizophrenia. In neurotypical populations, distinct portions of the posterior cerebellum are consistently activated in fMRI studies of social cognition and it has been hypothesized that the cerebellum plays an essential role in social cognition, particularly in theory of mind. Here we review the lesion literature and find that the effect of cerebellar damage on social cognition is strongly linked to the age of insult, with dramatic impairments observed after prenatal insult, strong deficits observed after childhood damage, and mild and inconsistent deficits observed following damage to the adult cerebellum. To explain the developmental gradient, we propose that early in life, the forward model dominates cerebellar computations. The forward model learns and uses errors to help build schemas of our interpersonal worlds. Subsequently, we argue that once these schemas have been built up, the inverse model, which is the foundation of automatic processing, becomes dominant. We provide suggestions for how to test this, and also outline directions for future research.
Collapse
Affiliation(s)
- Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA.
| | - Linda J Hoffman
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Katie R Jobson
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Haroon S Popal
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
46
|
Kim YJ, Kim EK, Cheon JE, Song H, Bang MS, Shin HI, Shin SH, Kim HS. Impact of Cerebellar Injury on Neurodevelopmental Outcomes in Preterm Infants With Cerebral Palsy. Am J Phys Med Rehabil 2023; 102:340-346. [PMID: 36075880 DOI: 10.1097/phm.0000000000002099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to analyze brain imaging findings and neurodevelopmental outcomes of preterm infants diagnosed with cerebral palsy. DESIGN Brain magnetic resonance imaging of preterm infants born between 23 and 32 wks' gestation and diagnosed with cerebral palsy at 2 yrs of corrected age were evaluated. Brain lesions were categorized as periventricular leukomalacia, intraventricular hemorrhage, and cerebellar hemorrhage and graded by the severity. Neurodevelopmental outcomes were assessed using the Bayley Scales of Infant and Toddler Development, Third Edition, at 18-24 mos corrected age, and the Korean Ages and Stages Questionnaire at 18 and 24 mos of corrected age. RESULTS Cerebral palsy was found in 38 children (6.1%) among 618 survivors. Cerebellar injury of high-grade cerebellar hemorrhage and/or atrophy accounted for 25%. Among patients with supratentorial lesions, those having cerebellar injury showed significantly lower scores on each Korean Ages and Stages Questionnaire domain except gross motor than patients without cerebellar injury. They also revealed a high proportion of patients below the cutoff value of Korean Ages and Stages Questionnaire in language, fine motor, and problem-solving domains ( P < 0.05) and lower Bayley Scales of Infant and Toddler Development, Third Edition, language composite scores ( P = 0.038). CONCLUSIONS Poor neurodevelopmental outcomes other than motor function were associated with cerebellar injury. Evaluation of the cerebellum may help predict functional outcomes of patients with cerebral palsy.
Collapse
Affiliation(s)
- Yoo Jinie Kim
- From the Division of Neonatology, Department of Pediatrics, Konkuk University Medical Center, Seoul, South Korea (YJK); Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea (YJK, E-KK, SHS, H-SK); Division of Neonatology, Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea (EK-K, SHS, H-SK); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J-EC); Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea (HS); and Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, South Korea (MSB, H-IS)
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hosoki M, Bruckert L, Borchers LR, Marchman VA, Travis KE, Feldman HM. Associations of Behavioral Problems and White Matter Properties of the Cerebellar Peduncles in Boys and Girls Born Full Term and Preterm. CEREBELLUM (LONDON, ENGLAND) 2023; 22:163-172. [PMID: 35138604 PMCID: PMC9360188 DOI: 10.1007/s12311-022-01375-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/24/2022]
Abstract
Accumulating evidence suggests that the role of cerebellum includes regulation of behaviors; cerebellar impairment may lead to behavioral problems. Behavioral problems differ by sex: internalizing problems are more common in girls, externalizing problems in boys. Behavioral problems are also elevated in children born preterm (PT) compared to children born full term (FT). The current study examined internalizing and externalizing problems in 8-year-old children in relation to sex, birth-group, fractional anisotropy (FA) of the three cerebellar peduncles (superior, middle, and inferior), and interactions among these predictor variables. Participants (N = 78) were 44 boys (28 PT) and 34 girls (15 PT). We assessed behavioral problems via standardized parent reports and FA of the cerebellar peduncles using deterministic tractography. Internalizing problems were higher in children born PT compared to children born FT (p = .032); the interaction of sex and birth-group was significant (p = .044). When considering the contribution of the mean-tract FA of cerebellar peduncles to behavioral problems, there was a significant interaction of sex and mean-tract FA of the inferior cerebellar peduncle (ICP) with internalizing problems; the slope was negative in girls (p = .020) but not in boys. In boys, internalizing problems were only associated with mean-tract FA ICP in those born preterm (p = .010). We found no other significant associations contributing to internalizing or externalizing problems. Thus, we found sexual dimorphism and birth-group differences in the association of white matter metrics of the ICP and internalizing problems in school-aged children. The findings inform theories of the origins of internalizing behavioral problems in middle childhood and may suggest approaches to treatment at school age.
Collapse
Affiliation(s)
- Machiko Hosoki
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA
| | - Lisa Bruckert
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA
| | | | | | - Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA.
| |
Collapse
|
48
|
Romantsik O, Moreira A, Thébaud B, Ådén U, Ley D, Bruschettini M. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. Cochrane Database Syst Rev 2023; 2:CD013201. [PMID: 36790019 PMCID: PMC9932000 DOI: 10.1002/14651858.cd013201.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) and encephalopathy of prematurity (EoP) remain substantial issues in neonatal intensive care units worldwide. Current therapies to prevent or treat these conditions are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. This is an update of the 2019 review, which did not include EoP. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for prevention or treatment of GM-IVH and EoP in preterm infants. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search was April 2022. SELECTION CRITERIA We attempted to include randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing 1. stem cell-based interventions versus control; 2. mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; 3. stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or 4. MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH or EoP; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH or with EoP. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. all-cause neonatal mortality, 2. major neurodevelopmental disability, 3. GM-IVH, 4. EoP, and 5. extension of pre-existing non-severe GM-IVH or EoP. We planned to use GRADE to assess certainty of evidence for each outcome. MAIN RESULTS We identified no studies that met our inclusion criteria. Three studies are currently registered and ongoing. Phase 1 trials are described in the 'Excluded studies' section. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment or prevention of GM-IVH or EoP in preterm infants. We identified three ongoing studies, with a sample size range from 20 to 200. In two studies, autologous cord blood mononuclear cells will be administered to extremely preterm infants via the intravenous route; in one, intracerebroventricular injection of MSCs will be administered to preterm infants up to 34 weeks' gestational age.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Ulrika Ådén
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
49
|
Butler DF, Skibo J, Traudt CM, Millen KJ. Neonatal Subarachnoid Hemorrhage Disrupts Multiple Aspects of Cerebellar Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528048. [PMID: 36798230 PMCID: PMC9934646 DOI: 10.1101/2023.02.10.528048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Over the past decade, survival rates for extremely low gestational age neonates (ELGANs; <28 weeks gestation) has markedly improved. Unfortunately, a significant proportion of ELGANs will suffer from neurodevelopmental dysfunction. Cerebellar hemorrhagic injury (CHI) has been increasingly recognized in the ELGANs population and may contribute to neurologic dysfunction; however, the underlying mechanisms are poorly understood. To address this gap in knowledge, we developed a novel model of early isolated posterior fossa subarachnoid hemorrhage (SAH) in neonatal mice and investigated both acute and long-term effects. Following SAH on postnatal day 6 (P6), we found significant decreased levels of proliferation with the external granular layer (EGL), thinning of the EGL, decreased Purkinje cell (PC) density, and increased Bergmann glial (BG) fiber crossings at P8. At P42, CHI resulted in decreased PC density, decreased molecular layer interneuron (MLI) density, and increased BG fiber crossings. Results from both Rotarod and inverted screen assays did not demonstrate significant effects on motor strength or learning at P35-38. Treatment with the anti-inflammatory drug Ketoprofen did not significantly alter our findings after CHI, suggesting that treatment of neuro-inflammation does not provide significant neuroprotection post CHI. Further studies are required to fully elucidate the mechanisms through which CHI disrupts cerebellar developmental programming in order to develop therapeutic strategies for neuroprotection in ELGANs.
Collapse
|
50
|
Bladen M, Thorpe N, Ridout D, Barrie A, McGibbon E, Mance A, Watson L, Main E. Autism spectrum disorders in boys at a major UK hemophilia center: prevalence and risk factors. Res Pract Thromb Haemost 2023; 7:100013. [PMID: 36891525 PMCID: PMC9986098 DOI: 10.1016/j.rpth.2022.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/21/2023] Open
Abstract
Background Autism spectrum disorders (ASDs) are diagnosed by social communication difficulties strong, narrow interests, and repetitive stereotyped behavior. An apparently-elevated prevalence of ASD at a major UK hemophilia center warranted investigation. Objectives To screen boys with hemophilia for difficulties in social communication and executive function and identify the prevalence and risk factors for ASD. Methods Parents of boys with hemophilia aged 5 to 16 years completed the Social Communication Questionnaire, Children's Communication Checklist, and the Behavior Rating Inventory of executive function. Prevalence and potential risk factors for ASD were evaluated. Boys with an existing diagnosis of ASD did not complete questionnaires, but were included in the prevalence analysis. Results Negative scores on all 3 questionnaires were observed for 60 of 79 boys. Positive scores on 1, 2, and 3 questionnaires were seen in 12 of 79, 3 of 79, and 4 of 79 boys, respectively. In addition to the 11 of 214 boys with a prior ASD diagnosis, 3 further boys were diagnosed with ASD, yielding a prevalence of 14 (6.5%) of 214, greater than that of boys in the UK general population. Premature birth was linked to having ASD, but did not fully explain the increased prevalence with more boys born <37 weeks scoring positively on the Social Communications Questionnaire and Children's Communication Checklist compared with those born at term. Conclusion This study identified an increased prevalence of ASD at 1 UK hemophilia center. Prematurity was identified as a risk factor but did not fully explain the higher prevalence of ASD. Further investigation in the wider national/global hemophilia communities is warranted to determine whether this is an isolated finding.
Collapse
Affiliation(s)
- Melanie Bladen
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nicola Thorpe
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Deborah Ridout
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alpha Barrie
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Emma McGibbon
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Abigail Mance
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Eleanor Main
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|