1
|
Characterization of whole blood transcriptome and early-life fecal microbiota in high and low responder pigs before, and after vaccination for Mycoplasma hyopneumoniae. Vaccine 2019; 37:1743-1755. [PMID: 30808565 DOI: 10.1016/j.vaccine.2019.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
We investigated gene expression patterns in whole blood and fecal microbiota profile as potential predictors of immune response to vaccination, using healthy M. hyopneumoniae infection free piglets (n = 120). Eighty piglets received a dose of prophylactic antibiotics during the first two days of life, whereas the remaining 40 did not. Blood samples for RNA-Seq analysis were collected on experimental Day 0 (D0; 28 days of age) just prior to vaccination, D2, and D6 post-vaccination. A booster vaccine was given at D24. Fecal samples for microbial 16SrRNA sequencing were collected at 7 days of age, and at D0 and D35 post-vaccination. Pigs were ranked based on the levels of M. hyopneumoniae-specific antibodies in serum samples collected at D35, and groups of 'high' (HR) and 'low' (LR) responder pigs (n = 15 each) were selected. Prophylactic antibiotics did not influence antibody titer levels and differential expression analysis did not reveal differences between HR and LR at any time-point (FDR > 0.05); however, based on functional annotation with Ingenuity Pathway Analysis, D2 post-vaccination, HR pigs were enriched for biological terms relating to increased activation of immune cells. In contrast, the immune activation decreased in HR, 6 days post-vaccination. No significant differences were observed prior to vaccination (D0). Two days post-vaccination, multivariate analysis revealed that ADAM8, PROSER3, B4GALNT1, MAP7D1, SPP1, HTRA4, and ENO3 genes were the most promising potential biomarkers. At D0, OTUs annotated to Prevotella, CF21, Bacteroidales and S24-7 were more abundant in HR, whereas Fibrobacter, Paraprevotella, Anaerovibrio, [Prevotella], YRC22, and Helicobacter positively correlated with the antibody titer as well as MYL1, SPP1, and ENO3 genes. Our study integrates gene differential expression and gut microbiota to predict vaccine response in pigs. The results indicate that post-vaccination gene-expression and early-life gut microbiota profile could potentially predict vaccine response in pigs, and inform a direction for future research.
Collapse
|
2
|
Dong L, Ren H. Blood-based DNA Methylation Biomarkers for Early Detection of Colorectal Cancer. ACTA ACUST UNITED AC 2018; 11:120-126. [PMID: 30034186 PMCID: PMC6054487 DOI: 10.4172/jpb.1000477] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Early detection of CRC can significantly reduce this mortality rate. Unfortunately, recommended screening modalities, including colonoscopy, are hampered by poor patient acceptance, low sensitivity and high cost. Recent studies have demonstrated that colorectal oncogenesis is a multistep event resulting from the accumulation of a variety of genetic and epigenetic changes in colon epithelial cells, which can be reflected by epigenetic alterations in blood. DNA methylation is the most extensively studied dysregulated epigenetic mechanism in CRC. In this review, we focus on current knowledge on DNA methylation as potential blood-based biomarkers for early detection of CRC.
Collapse
Affiliation(s)
- Lixn Dong
- Mumetel LLC, University Technology Park at IIT, Chicago, IL 60616, USA
| | - Hongmei Ren
- Department of Biochemistry & Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435-0001, USA
| |
Collapse
|
3
|
Sipos F, Műzes G, Fűri I, Spisák S, Wichmann B, Germann TM, Constantinovits M, Krenács T, Tulassay Z, Molnár B. Intravenous administration of a single-dose free-circulating DNA of colitic origin improves severe murine DSS-colitis. Pathol Oncol Res 2014; 20:867-877. [PMID: 24723054 DOI: 10.1007/s12253-014-9766-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
In inflammatory bowel diseases the presence of free-circulating DNA (fcDNA) sequences in the sera is an established phenomenon, albeit its real biological function still remains unclear. In our study the immunobiologic effects of a single-dose, intravenously administered fcDNA of normal and colitic origin were assayed in DSS-colitic and control mice. In parallel with disease and histological activity evaluations changes of the TLR9 and inflammatory cytokine signaling gene expression profiles were assayed in isolated cells of the lamina propria. Intravenously administered colitis-derived fcDNA displayed a more prominent beneficial action regarding the clinical and histological severity of DSS-colitis than that of fcDNA of normal origin. Systemic administration of colitis-derived fcDNA significantly altered the expression of certain TLR9-related and proinflammatory cytokine genes in a clinically favorable manner. Presumably due to induction of severe colitis, the subsequent marked inflammatory environment may result changes in fcDNA with a potential to promote the downregulation of inflammation and improvement of tissue regeneration. Elucidating mechanisms of innate immune alterations by nucleic acids may provide further insight into the etiology of inflammatory bowel diseases, and develop the basis of novel nucleic acid-based immunotherapies.
Collapse
Affiliation(s)
- Ferenc Sipos
- Cell Analysis Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, 1088, Budapest, Hungary,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mach N, Gao Y, Lemonnier G, Lecardonnel J, Oswald IP, Estellé J, Rogel-Gaillard C. The peripheral blood transcriptome reflects variations in immunity traits in swine: towards the identification of biomarkers. BMC Genomics 2013; 14:894. [PMID: 24341289 PMCID: PMC3878494 DOI: 10.1186/1471-2164-14-894] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 12/04/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Immune traits (ITs) are potentially relevant criteria to characterize an individual's immune response. Our aim was to investigate whether the peripheral blood transcriptome can provide a significant and comprehensive view of IT variations in pig. RESULTS Sixty-day-old Large White pigs classified as extreme for in vitro production of IL2, IL10, IFNγ and TNFα, phagocytosis activity, in vivo CD4⁻/CD8⁺ or TCRγδ + cell counts, and anti-Mycoplasma antibody levels were chosen to perform a blood transcriptome analysis with a porcine generic array enriched with immunity-related genes. Differentially expressed (DE) genes for in vitro production of IL2 and IL10, phagocytosis activity and CD4⁻/CD8⁺ cell counts were identified. Gene set enrichment analysis revealed a significant over-representation of immune response functions. To validate the microarray-based results, a subset of DE genes was confirmed by RT-qPCR. An independent set of 74 animals was used to validate the covariation between gene expression levels and ITs. Five potential gene biomarkers were found for prediction of IL2 (RALGDS), phagocytosis (ALOX12) or CD4⁻/CD8⁺ cell count (GNLY, KLRG1 and CX3CR1). On average, these biomarkers performed with a sensitivity of 79% and a specificity of 86%. CONCLUSIONS Our results confirmed that gene expression profiling in blood represents a relevant molecular phenotype to refine ITs in pig and to identify potential biomarkers that can provide new insights into immune response analysis.
Collapse
Affiliation(s)
- Núria Mach
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| | - Yu Gao
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, USA
| | - Gaëtan Lemonnier
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| | - Jérôme Lecardonnel
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| | - Isabelle P Oswald
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France
- Université de Toulouse III, INP, Toxalim, F- 31076 Toulouse, France
| | - Jordi Estellé
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| | - Claire Rogel-Gaillard
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| |
Collapse
|
5
|
Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 2013; 14:18925-58. [PMID: 24065096 PMCID: PMC3794814 DOI: 10.3390/ijms140918925] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
Qualitative and quantitative testing of circulating cell free DNA (CCFDNA) can be applied for the management of malignant and benign neoplasms. Detecting circulating DNA in cancer patients may help develop a DNA profile for early stage diagnosis in malignancies. The technical issues of obtaining, using, and analyzing CCFDNA from blood will be discussed.
Collapse
Affiliation(s)
- Yahya I. Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +1-818-515-7618; Fax: +1-818-994-9875
| | - Husseina Khaddour
- Laboratory Diagnostic Medicine, Faculty of Pharmacy, Mazzeh (17th April Street), Damascus University, Damascus, Syria; E-Mail:
| | - Marianna Sarkissyan
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095-1781, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095-1781, USA
| |
Collapse
|
6
|
Tóth K, Galamb O, Spisák S, Wichmann B, Sipos F, Valcz G, Leiszter K, Molnár B, Tulassay Z. The influence of methylated septin 9 gene on RNA and protein level in colorectal cancer. Pathol Oncol Res 2011; 17:503-509. [PMID: 21267688 DOI: 10.1007/s12253-010-9338-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/22/2010] [Indexed: 02/05/2023]
Abstract
Colorectal cancer is one of the leading death causes in the world. Specificity and sensitivity of the present screening methods are unsuitable and their compliance is too low. Nowadays the most effective method is the colonoscopy, because it gives not only macroscopic diagnosis but therapeutic possibility as well, however the compliance of the patients is very low. Hence development of new diagnostic methods is needed. Altered expression of septin 9 was found in several tumor types including colorectal cancer. The aim of this study was to detect the methylation related mRNA and protein expression changes of septin 9 in colorectal adenoma-dysplasia-carcinoma sequence and to analyze its reversibility by demethylation treatment. Septin 9 protein expression showed significant difference between normal and colorectal cancer (CRC) samples (p < 0,001). According to biopsy microarray results, septin 9 mRNA expression decreased in the progression of colon neoplastic disease (p < 0,001). In laser microdissected epithelial cells, septin 9 significantly underexpressed in CRC compared to healthy controls (p < 0,001). The expression of septin9_v1 region was higher in the healthy samples, while septin9_v2, v4, v4*, v5 overexpression were detected in cancer epithelial cells compared to normal. The septin 9 mRNA and protein levels of HT29 cells increased after demethylation treatment. The increasing methylation of septin 9 gene during colorectal adenoma-dysplasia-carcinoma sequence progression is reflected in the decreasing mRNA and protein expression, especially in the epithelium. These changes can be reversed by demethylation agents converting this screening marker gene into therapeutic target.
Collapse
Affiliation(s)
- Kinga Tóth
- Semmelweis University, 2nd Department of Internal Medicine, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mead R, Duku M, Bhandari P, Cree IA. Circulating tumour markers can define patients with normal colons, benign polyps, and cancers. Br J Cancer 2011; 105:239-45. [PMID: 21712823 PMCID: PMC3142810 DOI: 10.1038/bjc.2011.230] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Early diagnosis represents the best opportunity for cure of colorectal cancer. Current screening programmes use faecal occult blood testing for screening, which has limited sensitivity and poor specificity. Methods: In this study we looked at a series of previously described diagnostic markers utilising circulating free DNA (cfDNA), with a preparation method allowing small DNA fragments to be isolated. The Circulating free DNA was isolated from samples obtained from 85 patients, including 35 patients without endoscopic abnormality, a group of 26 patients with benign colorectal adenomas, and 24 patients with colorectal carcinomas. In each case, polymerase chain reaction (PCR) was performed for Line1 79 bp, Line1 300 bp, Alu 115 bp, Alu 247 bp, and mitochondrial primers. In addition, carcinoembryonic antigen (CEA) was measured by ELISA. Each marker was analysed between normal, polyp, and cancer populations, and the best performing analysed in combination by logistic regression. Results: The best model was able to discriminate normal from populations with adenoma or carcinoma using three DNA markers and CEA, showing an area under the receiver operator characteristic (ROC) curve of 0.855 with a positive predictive value of 81.1% for polyps and cancer diagnosis. Conclusion: These circulating markers in combination with other markers offer the prospect of a simple blood test as a possible secondary screen for colorectal cancers and polyps in patients with positive faecal occult blood tests.
Collapse
Affiliation(s)
- R Mead
- Department of Gastroenterology and Translational Oncology Research Centre, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
| | | | | | | |
Collapse
|