1
|
Procès A, Luciano M, Kalukula Y, Ris L, Gabriele S. Multiscale Mechanobiology in Brain Physiology and Diseases. Front Cell Dev Biol 2022; 10:823857. [PMID: 35419366 PMCID: PMC8996382 DOI: 10.3389/fcell.2022.823857] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that mechanics play a critical role in regulating brain function at different scales. Downstream integration of mechanical inputs into biochemical signals and genomic pathways causes observable and measurable effects on brain cell fate and can also lead to important pathological consequences. Despite recent advances, the mechanical forces that influence neuronal processes remain largely unexplored, and how endogenous mechanical forces are detected and transduced by brain cells into biochemical and genetic programs have received less attention. In this review, we described the composition of brain tissues and their pronounced microstructural heterogeneity. We discuss the individual role of neuronal and glial cell mechanics in brain homeostasis and diseases. We highlight how changes in the composition and mechanical properties of the extracellular matrix can modulate brain cell functions and describe key mechanisms of the mechanosensing process. We then consider the contribution of mechanobiology in the emergence of brain diseases by providing a critical review on traumatic brain injury, neurodegenerative diseases, and neuroblastoma. We show that a better understanding of the mechanobiology of brain tissues will require to manipulate the physico-chemical parameters of the cell microenvironment, and to develop three-dimensional models that can recapitulate the complexity and spatial diversity of brain tissues in a reproducible and predictable manner. Collectively, these emerging insights shed new light on the importance of mechanobiology and its implication in brain and nerve diseases.
Collapse
Affiliation(s)
- Anthony Procès
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Yohalie Kalukula
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
2
|
Ayad NME, Kaushik S, Weaver VM. Tissue mechanics, an important regulator of development and disease. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180215. [PMID: 31431174 DOI: 10.1098/rstb.2018.0215] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A growing body of work describes how physical forces in and around cells affect their growth, proliferation, migration, function and differentiation into specialized types. How cells receive and respond biochemically to mechanical signals is a process termed mechanotransduction. Disease may arise if a disruption occurs within this mechanism of sensing and interpreting mechanics. Cancer, cardiovascular diseases and developmental defects, such as during the process of neural tube formation, are linked to changes in cell and tissue mechanics. A breakdown in normal tissue and cellular forces activates mechanosignalling pathways that affect their function and can promote disease progression. The recent advent of high-resolution techniques enables quantitative measurements of mechanical properties of the cell and its extracellular matrix, providing insight into how mechanotransduction is regulated. In this review, we will address the standard methods and new technologies available to properly measure mechanical properties, highlighting the challenges and limitations of probing different length-scales. We will focus on the unique environment present throughout the development and maintenance of the central nervous system and discuss cases where disease, such as brain cancer, arises in response to changes in the mechanical properties of the microenvironment that disrupt homeostasis. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Nadia M E Ayad
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Shelly Kaushik
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Simon M, Dokukin M, Kalaparthi V, Spedden E, Sokolov I, Staii C. Load Rate and Temperature Dependent Mechanical Properties of the Cortical Neuron and Its Pericellular Layer Measured by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1111-1119. [PMID: 26727545 DOI: 10.1021/acs.langmuir.5b04317] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When studying the mechanical properties of cells by an indentation technique, it is important to take into account the nontrivial pericellular interface (or pericellular "brush") which includes a pericellular coating and corrugation of the pericellular membrane (microvilli and microridges). Here we use atomic force microscopy (AFM) to study the mechanics of cortical neurons taking into account the presence of the above pericellular brush surrounding cell soma. We perform a systematic study of the mechanical properties of both the brush layer and the underlying neuron soma and demonstrate that the brush layer is likely responsible for the low elastic modulus (<1 kPa) typically reported for cortical neurons. When the contribution of the pericellular brush is excluded, the average elastic modulus of the cortical neuron soma is found to be 3-4 times larger than previously reported values measured under similar physiological conditions. We also demonstrate that the underlying soma behaves as a nonviscous elastic material over the indentation rates studied (1-10 μm/s). As a result, it seems that the brush layer is responsible for the previously reported viscoelastic response measured for the neuronal cell body as a whole, within these indentation rates. Due to of the similarities between the macroscopic brain mechanics and the effective modulus of the pericellular brush, we speculate that the pericellular brush layer might play an important role in defining the macroscopic mechanical properties of the brain.
Collapse
Affiliation(s)
- Marc Simon
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Maxim Dokukin
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Vivekanand Kalaparthi
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Elise Spedden
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Igor Sokolov
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Cristian Staii
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Spedden E, Staii C. Neuron biomechanics probed by atomic force microscopy. Int J Mol Sci 2013; 14:16124-40. [PMID: 23921683 PMCID: PMC3759903 DOI: 10.3390/ijms140816124] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 11/16/2022] Open
Abstract
Mechanical interactions play a key role in many processes associated with neuronal growth and development. Over the last few years there has been significant progress in our understanding of the role played by the substrate stiffness in neuronal growth, of the cell-substrate adhesion forces, of the generation of traction forces during axonal elongation, and of the relationships between the neuron soma elastic properties and its health. The particular capabilities of the Atomic Force Microscope (AFM), such as high spatial resolution, high degree of control over the magnitude and orientation of the applied forces, minimal sample damage, and the ability to image and interact with cells in physiologically relevant conditions make this technique particularly suitable for measuring mechanical properties of living neuronal cells. This article reviews recent advances on using the AFM for studying neuronal biomechanics, provides an overview about the state-of-the-art measurements, and suggests directions for future applications.
Collapse
Affiliation(s)
- Elise Spedden
- Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, 4 Colby Street, Medford, MA 02155, USA; E-Mail:
| | - Cristian Staii
- Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, 4 Colby Street, Medford, MA 02155, USA; E-Mail:
| |
Collapse
|
5
|
Spedden E, White J, Naumova E, Kaplan D, Staii C. Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. Biophys J 2012; 103:868-77. [PMID: 23009836 PMCID: PMC3433610 DOI: 10.1016/j.bpj.2012.08.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/27/2012] [Accepted: 08/01/2012] [Indexed: 11/26/2022] Open
Abstract
Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here, we combine atomic force microscopy-based force spectroscopy with fluorescence microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglion, and P-19 (mouse embryonic carcinoma stem cells) neurons. We measure how the stiffness of neurons changes both during neurite outgrowth and upon disruption of microtubules of the cell. We find reversible local stiffening of the cell during growth, and show that the increase in local elastic modulus is primarily due to the formation of microtubules. We also report that cortical and P-19 neurons have similar elasticity maps, with elastic moduli in the range 0.1-2 kPa, with typical average values of 0.4 kPa (P-19) and 0.2 kPa (cortical). In contrast, dorsal root ganglion neurons are stiffer than P-19 and cortical cells, yielding elastic moduli in the range 0.1-8 kPa, with typical average values of 0.9 kPa. Finally, we report no measurable influence of substrate protein coating on cell body elasticity for the three types of neurons.
Collapse
Affiliation(s)
- Elise Spedden
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts
- Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts
| | - James D. White
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts
- Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts
- Department of Biomedical Engineering, Department of Chemical Engineering, Tufts University, Medford, Massachusetts
| | - Elena N. Naumova
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts
| | - David L. Kaplan
- Department of Biomedical Engineering, Department of Chemical Engineering, Tufts University, Medford, Massachusetts
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts
- Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts
| |
Collapse
|