1
|
Santibanez JF. Myeloid-Derived Suppressor Cells: Implications in Cancer Immunology and Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:25203. [PMID: 40152373 DOI: 10.31083/fbl25203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 03/29/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are believed to be key promoters of tumor development and are recognized as a hallmark of cancer cells' ability to evade the immune system evasion. MDSC levels often increase in peripheral blood and the tumor microenvironment (TME). These cells exert immunosuppressive functions, weakening the anticancer immune surveillance system, in part by repressing T-cell immunity. Moreover, MDSCs may promote tumor progression and interact with cancer cells, increasing MDSC expansion and favoring an immunotolerant TME. This review analyzes the primary roles of MDSCs in cancer and T-cell immunity, discusses the urgent need to develop effective MDSC-targeted therapies, and highlights the potential synergistic combination of MDSC targeting with chimeric antigen receptors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, 8370993 Santiago, Chile
| |
Collapse
|
2
|
Liner AG, van Gogh M, Roblek M, Heikenwalder M, Borsig L. Non-redundant roles of the CCR1 and CCR2 chemokine axes in monocyte recruitment during lung metastasis. Neoplasia 2025; 59:101089. [PMID: 39566333 PMCID: PMC11617888 DOI: 10.1016/j.neo.2024.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Monocytes and monocyte-derived macrophages facilitate cancer progression and metastasis. Inflammatory monocytes expressing CCR2 are actively recruited to metastatic lungs, where they promote tumor cell extravasation, metastatic outgrowth, and an immunosuppressive environment. The role of CCR1 in this process has remained unclear. We used Ccr1- and Ccr2-deficient mice and two different tumor cells lines, MC38 and LLC1 with and without Ccl2-deficiency in vitro and in vivo. The recruitment of both Ccr1- and Ccr2-deficient monocytes towards the Ccl2 chemokine was significantly impaired, while no substantial recruitment was observed towards Ccl5 in vitro. MC38 and LLC1 Ccl2-deficient tumor cells showed reduced lung metastasis in both Ccr1- and Ccr2-deficient mice when compared to wild-type mice. We detected reduced numbers of macrophages and myeloid cells in both chemokine receptor-deficient mice. Lung metastasis in both Ccr1- and Ccr2-deficient mice could be rescued to the same levels as in wild-type mice by an adoptive transfer of Ccr2-deficient but not Ccr1-deficient monocytic cells. Accumulation of Ccr1-deficient monocytes in the lungs was severely impaired upon intravenous monocyte injection, indicating the importance of this axis in cell recruitment. Moreover, the efficient recruitment of adoptive transferred Ccr2-deficient monocytes to the lungs and the restoration of lung metastasis suggests an involvement of an additional, Ccr2-independent chemokine pathway. This data defines the non-redundant functions of the Ccr1- and Ccr2-chemokine axes in monocyte recruitment and macrophage presence during lung metastasis. While Ccr2 is essential for the release of monocytes from the bone marrow, Ccr1 is primarily responsible for monocyte presence at metastatic sites.
Collapse
Affiliation(s)
| | - Merel van Gogh
- Institute of Physiology, University of Zurich, Switzerland
| | - Marko Roblek
- Institute of Physiology, University of Zurich, Switzerland
| | - Matthias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University of Tuebingen, Otfried-Müller-Straße 37, 72076, Tübingen, Germany
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Switzerland; Comprehensive Cancer Center Zurich.
| |
Collapse
|
3
|
Q.B. Alenzi F. Survivin: A key apoptosis inhibitor in COVID-19 infection and its implication for treatment protocol. Saudi J Biol Sci 2024; 31:104021. [PMID: 38831893 PMCID: PMC11145386 DOI: 10.1016/j.sjbs.2024.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
While the relationship between cellular apoptosis and proliferation rates in COVID patients remains underexplored in existing literature, various viruses are known to impact these fundamental process to modulate response to infection. This paper aims to assess apoptosis and proliferation rates in individuals recently infected with Coronavirus, both before and after vaccination, comparing them with healthy controls. Peripheral blood cells from newly diagnosed COVID-19 patients revealed a significant increase in proliferation and apoptosis levels in fresh lymphocytes and granulocytes compared to healthy donors. Notably, as none of the patients were under corticosteroid therapy or cytotoxic drugs, the study underscores the critical role of white blood (WBC) apoptosis in viral pathogenesis, potentially contributing significantly to COVID-19's pathogenicity. Elevated levels of soluble Fas ligand (FaSL) and the pro-inflatmmatory cytokine IL-38 were identified in COVID-19 patients, indicating potential immune dysregulation. Furthermore, individual who received the vaccine or recovered from COVID-19 exhibited higher survivin rates, suggesting a protective role for survivin in migitating lung damage. These findings suggest the prospect of developing a strategy to prevent WBC apoptosis, offering potential benefits in averting lymphopenia associated with severe COVID-19 ouctomes.
Collapse
Affiliation(s)
- Faris Q.B. Alenzi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Hegde S, Giotti B, Soong BY, Halasz L, Berichel JL, Magen A, Kloeckner B, Mattiuz R, Park MD, Marks A, Belabed M, Hamon P, Chin T, Troncoso L, Lee JJ, Ahimovic D, Bale M, Chung G, D'souza D, Angeliadis K, Dawson T, Kim-Schulze S, Flores RM, Kaufman AJ, Ginhoux F, Josefowicz SZ, Ma S, Tsankov AM, Marron TU, Brown BD, Merad M. Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600383. [PMID: 38979166 PMCID: PMC11230224 DOI: 10.1101/2024.06.24.600383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.
Collapse
|
5
|
Giraud J, Chalopin D, Ramel E, Boyer T, Zouine A, Derieppe MA, Larmonier N, Adotevi O, Le Bail B, Blanc JF, Laurent C, Chiche L, Derive M, Nikolski M, Saleh M. THBS1 + myeloid cells expand in SLD hepatocellular carcinoma and contribute to immunosuppression and unfavorable prognosis through TREM1. Cell Rep 2024; 43:113773. [PMID: 38350444 DOI: 10.1016/j.celrep.2024.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/05/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an inflammation-associated cancer arising from viral or non-viral etiologies including steatotic liver diseases (SLDs). Expansion of immunosuppressive myeloid cells is a hallmark of inflammation and cancer, but their heterogeneity in HCC is not fully resolved and might underlie immunotherapy resistance. Here, we present a high-resolution atlas of innate immune cells from patients with HCC that unravels an SLD-associated contexture characterized by influx of inflammatory and immunosuppressive myeloid cells, including a discrete population of THBS1+ regulatory myeloid (Mreg) cells expressing monocyte- and neutrophil-affiliated genes. THBS1+ Mreg cells expand in SLD-associated HCC, populate fibrotic lesions, and are associated with poor prognosis. THBS1+ Mreg cells are CD163+ but distinguished from macrophages by high expression of triggering receptor expressed on myeloid cells 1 (TREM1), which contributes to their immunosuppressive activity and promotes HCC tumor growth in vivo. Our data support myeloid subset-targeted immunotherapies to treat HCC.
Collapse
Affiliation(s)
- Julie Giraud
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Domitille Chalopin
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France; University of Bordeaux, CNRS, IBGC, UMR 5095, 33000 Bordeaux, France
| | - Eloïse Ramel
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Thomas Boyer
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Atika Zouine
- Bordeaux University, CNRS UMS3427, INSERM US05, Flow Cytometry Facility, TransBioMed Core, 33000 Bordeaux, France
| | | | - Nicolas Larmonier
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Olivier Adotevi
- Université Bourgogne Franche-Comté, INSERM, UMR1098, 25000 Besançon, France
| | - Brigitte Le Bail
- Bordeaux University Hospital, Division of Pathology, Pellegrin Hospital, 33000 Bordeaux, France
| | - Jean-Frédéric Blanc
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | - Christophe Laurent
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | - Laurence Chiche
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | | | - Macha Nikolski
- University of Bordeaux, CNRS, IBGC, UMR 5095, 33000 Bordeaux, France
| | - Maya Saleh
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France; Institut National de la Recherche Scientifique (INRS), Armand Frappier Health & Biotechnology (AFSB) Research Center, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
6
|
Wu H, Wang R, Li S, Chen S, Liu S, Li X, Yang X, Zeng Q, Zhou Y, Zhu X, Zhang K, Tu C, Zhang X. Aspect ratio-dependent dual-regulation of the tumor immune microenvironment against osteosarcoma by hydroxyapatite nanoparticles. Acta Biomater 2023; 170:427-441. [PMID: 37634831 DOI: 10.1016/j.actbio.2023.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Accumulating studies demonstrated that hydroxyapatite nanoparticles (HANPs) showed a selective anti-tumor effect, making them a good candidate for osteosarcoma (OS) treatment. However, the capacity of HANPs with different aspect ratios to regulate tumor immune microenvironment (TIM) was scarcely reported before. To explore it, the three HANPs with aspect ratios from 1.86 to 6.25 were prepared by wet chemical method. After a 24 or 72 h-exposure of OS UMR106 cells or macrophages to the nanoparticles, the tumor cells exhibited immunogenic cell death (ICD) indicated by the increased production of calreticulin (CRT), adenosine triphosphate (ATP) and high mobility group box 1 (HMGB1), and macrophages were activated with the release of pro-inflammatory cytokines. Next, the beneficial crosstalk between tumor cells and macrophages generated in the presence of HANPs for improved anti-tumor immunity activation. In the OS-bearing cognate rat model, HANPs inhibited OS growth, which was positively correlated with CRT and HMGB1 expression, and macrophage polarization in the tumor tissues. Additionally, HANPs promoted CD8+ T cell infiltration into the tumor and systemic dendritic cell maturation. Particularly, HANPs bearing the highest aspect ratio exhibited the strongest immunomodulatory and anti-tumor function. This study suggested the potential of HANPs to be a safe and effective drug-free nanomaterial to control the TIM for OS therapy. STATEMENT OF SIGNIFICANCE: Emerging studies demonstrated that hydroxyapatite nanoparticles (HANPs) inhibited tumor cell proliferation and tumor growth. However, the underlying anti-tumor mechanism still remains unclear, and the capacity of HANPs without any other additive to regulate tumor immune microenvironment (TIM) was scarcely reported before. Herein, we demonstrated that HANPs, in an aspect ratio-dependent manner, showed the potential to delay the growth of osteosarcoma (OS) and to regulate TIM by promoting the invasion of CD8+ T cells and F4/80+ macrophages, and inducing immunogenic cell death (ICD) in tumors. This work revealed the new molecular mechanism for HANPs against OS, and suggested HANPs might be a novel ICD inducer for OS treatment.
Collapse
Affiliation(s)
- Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruiqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Shu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Shuo Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Mabrouk N, Racoeur C, Shan J, Massot A, Ghione S, Privat M, Dondaine L, Ballot E, Truntzer C, Boidot R, Hermetet F, Derangère V, Bruchard M, Végran F, Chouchane L, Ghiringhelli F, Bettaieb A, Paul C. GTN Enhances Antitumor Effects of Doxorubicin in TNBC by Targeting the Immunosuppressive Activity of PMN-MDSC. Cancers (Basel) 2023; 15:3129. [PMID: 37370739 DOI: 10.3390/cancers15123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Immunosuppression is a key barrier to effective anti-cancer therapies, particularly in triple-negative breast cancer (TNBC), an aggressive and difficult to treat form of breast cancer. We investigated here whether the combination of doxorubicin, a standard chemotherapy in TNBC with glyceryltrinitrate (GTN), a nitric oxide (NO) donor, could overcome chemotherapy resistance and highlight the mechanisms involved in a mouse model of TNBC. (2) Methods: Balb/C-bearing subcutaneous 4T1 (TNBC) tumors were treated with doxorubicin (8 mg/Kg) and GTN (5 mg/kg) and monitored for tumor growth and tumor-infiltrating immune cells. The effect of treatments on MDSCs reprogramming was investigated ex vivo and in vitro. (3) Results: GTN improved the anti-tumor efficacy of doxorubicin in TNBC tumors. This combination increases the intra-tumor recruitment and activation of CD8+ lymphocytes and dampens the immunosuppressive function of PMN-MDSCs PD-L1low. Mechanistically, in PMN-MDSC, the doxorubicin/GTN combination reduced STAT5 phosphorylation, while GTN +/- doxorubicin induced a ROS-dependent cleavage of STAT5 associated with a decrease in FATP2. (4) Conclusion: We have identified a new combination enhancing the immune-mediated anticancer therapy in a TNBC mouse model through the reprograming of PMN-MDSCs towards a less immunosuppressive phenotype. These findings prompt the testing of GTN combined with chemotherapies as an adjuvant in TNBC patients experiencing treatment failure.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Cindy Racoeur
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Jingxuan Shan
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Aurélie Massot
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Silvia Ghione
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Malorie Privat
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Lucile Dondaine
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Elise Ballot
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
| | - Caroline Truntzer
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology, Georges-François Leclerc Cancer Center-UNICANCER, CNRS UMR 6302, 21000 Dijon, France
| | | | - Valentin Derangère
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Mélanie Bruchard
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Frédérique Végran
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Lotfi Chouchane
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - François Ghiringhelli
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| |
Collapse
|
8
|
Wu C, Zhong Q, Shrestha R, Wang J, Hu X, Li H, Rouchka EC, Yan J, Ding C. Reactive myelopoiesis and FX-expressing macrophages triggered by chemotherapy promote cancer lung metastasis. JCI Insight 2023; 8:e167499. [PMID: 36976637 PMCID: PMC10243818 DOI: 10.1172/jci.insight.167499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Several preclinical studies have demonstrated that certain cytotoxic drugs enhance metastasis, but the importance of host responses triggered by chemotherapy in regulating cancer metastasis has not been fully explored. Here, we showed that multidose gemcitabine (GEM) treatment promoted breast cancer lung metastasis in a transgenic spontaneous breast cancer model. GEM treatment significantly increased accumulation of CCR2+ macrophages and monocytes in the lungs of tumor-bearing as well as tumor-free mice. These changes were largely caused by chemotherapy-induced reactive myelopoiesis biased toward monocyte development. Mechanistically, enhanced production of mitochondrial ROS was observed in GEM-treated BM Lin-Sca1+c-Kit+ cells and monocytes. Treatment with the mitochondria targeted antioxidant abrogated GEM-induced hyperdifferentiation of BM progenitors. In addition, GEM treatment induced upregulation of host cell-derived CCL2, and knockout of CCR2 signaling abrogated the pro-metastatic host response induced by chemotherapy. Furthermore, chemotherapy treatment resulted in the upregulation of coagulation factor X (FX) in lung interstitial macrophages. Targeting activated FX (FXa) using FXa inhibitor or F10 gene knockdown reduced the pro-metastatic effect of chemotherapy. Together, these studies suggest a potentially novel mechanism for chemotherapy-induced metastasis via the host response-induced accumulation of monocytes/macrophages and interplay between coagulation and inflammation in the lungs.
Collapse
Affiliation(s)
- Caijun Wu
- UofL Health - Brown Cancer Center and
| | | | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | - Hong Li
- UofL Health - Brown Cancer Center and
| | - Eric C. Rouchka
- Department of Computer Science and Engineering, University of Louisville J.B. Speed School of Engineering, Louisville, Kentucky, USA
| | - Jun Yan
- UofL Health - Brown Cancer Center and
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Surgery, Division of Immunotherapy, UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Chuanlin Ding
- UofL Health - Brown Cancer Center and
- Department of Surgery, Division of Immunotherapy, UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Sipos F, Műzes G. Cancer Stem Cell Relationship with Pro-Tumoral Inflammatory Microenvironment. Biomedicines 2023; 11:189. [PMID: 36672697 PMCID: PMC9855358 DOI: 10.3390/biomedicines11010189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory processes and cancer stem cells (CSCs) are increasingly recognized as factors in the development of tumors. Emerging evidence indicates that CSCs are associated with cancer properties such as metastasis, treatment resistance, and disease recurrence. However, the precise interaction between CSCs and the immune microenvironment remains unexplored. Although evasion of the immune system by CSCs has been extensively studied, new research demonstrates that CSCs can also control and even profit from the immune response. This review provides an overview of the reciprocal interplay between CSCs and tumor-infiltrating immune cells, collecting pertinent data about how CSCs stimulate leukocyte reprogramming, resulting in pro-tumor immune cells that promote metastasis, chemoresistance, tumorigenicity, and even a rise in the number of CSCs. Tumor-associated macrophages, neutrophils, Th17 and regulatory T cells, mesenchymal stem cells, and cancer-associated fibroblasts, as well as the signaling pathways involved in these pro-tumor activities, are among the immune cells studied. Although cytotoxic leukocytes have the potential to eliminate CSCs, immune evasion mechanisms in CSCs and their clinical implications are also known. We intended to compile experimental findings that provide direct evidence of interactions between CSCs and the immune system and CSCs and the inflammatory milieu. In addition, we aimed to summarize key concepts in order to comprehend the cross-talk between CSCs and the tumor microenvironment as a crucial process for the effective design of anti-CSC therapies.
Collapse
Affiliation(s)
| | - Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
10
|
Targeting tumour-reprogrammed myeloid cells: the new battleground in cancer immunotherapy. Semin Immunopathol 2022; 45:163-186. [PMID: 36161514 PMCID: PMC9513014 DOI: 10.1007/s00281-022-00965-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
Tumour microenvironment is a complex ecosystem in which myeloid cells are the most abundant immune elements. This cell compartment is composed by different cell types, including neutrophils, macrophages, dendritic cells, and monocytes but also unexpected cell populations with immunosuppressive and pro-tumour roles. Indeed, the release of tumour-derived factors influences physiological haematopoiesis producing unconventional cells with immunosuppressive and tolerogenic functions such as myeloid-derived suppressor cells. These pro-tumour myeloid cell populations not only support immune escape directly but also assist tumour invasion trough non-immunological activities. It is therefore not surprising that these cell subsets considerably impact in tumour progression and cancer therapy resistance, including immunotherapy, and are being investigated as potential targets for developing a new era of cancer therapy. In this review, we discuss emerging strategies able to modulate the functional activity of these tumour-supporting myeloid cells subverting their accumulation, recruitment, survival, and functions. These innovative approaches will help develop innovative, or improve existing, cancer treatments.
Collapse
|
11
|
Oliver L, Alvarez R, Diaz R, Valdés A, Colligan SH, Nemeth MJ, Twum DYF, Fernández A, Fernández-Medina O, Carlson LM, Yu H, Eng KH, Hensen ML, Rábade-Chediak ML, Fernández LE, Lee KP, Perez L, Muhitch JB, Mesa C, Abrams SI. Mitigating the prevalence and function of myeloid-derived suppressor cells by redirecting myeloid differentiation using a novel immune modulator. J Immunother Cancer 2022; 10:e004710. [PMID: 36150744 PMCID: PMC9511656 DOI: 10.1136/jitc-2022-004710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Immune suppression is common in neoplasia and a major driver is tumor-induced myeloid dysfunction. Yet, overcoming such myeloid cell defects remains an untapped strategy to reverse suppression and improve host defense. Exposure of bone marrow progenitors to heightened levels of myeloid growth factors in cancer or following certain systemic treatments promote abnormal myelopoiesis characterized by the production of myeloid-derived suppressor cells (MDSCs) and a deficiency in antigen-presenting cell function. We previously showed that a novel immune modulator, termed 'very small size particle' (VSSP), attenuates MDSC function in tumor-bearing mice, which was accompanied by an increase in dendritic cells (DCs) suggesting that VSSP exhibits myeloid differentiating properties. Therefore, here, we addressed two unresolved aspects of the mechanism of action of this unique immunomodulatory agent: (1) does VSSP alter myelopoiesis in the bone marrow to redirect MDSC differentiation toward a monocyte/macrophage or DC fate? and (2) does VSSP mitigate the frequency and suppressive function of human tumor-induced MDSCs? METHODS To address the first question, we first used a murine model of granulocyte-colony stimulating factor-driven emergency myelopoiesis following chemotherapy-induced myeloablation, which skews myeloid output toward MDSCs, especially the polymorphonuclear (PMN)-MDSC subset. Following VSSP treatment, progenitors and their myeloid progeny were analyzed by immunophenotyping and MDSC function was evaluated by suppression assays. To strengthen rigor, we validated our findings in tumor-bearing mouse models. To address the second question, we conducted a clinical trial in patients with metastatic renal cell carcinoma, wherein 15 patients were treated with VSSP. Endpoints in this study included safety and impact on PMN-MDSC frequency and function. RESULTS We demonstrated that VSSP diminished PMN-MDSCs by shunting granulocyte-monocyte progenitor differentiation toward monocytes/macrophages and DCs with heightened expression of the myeloid-dependent transcription factors interferon regulatory factor-8 and PU.1. This skewing was at the expense of expansion of granulocytic progenitors and rendered the remaining MDSCs less suppressive. Importantly, these effects were also demonstrated in a clinical setting wherein VSSP monotherapy significantly reduced circulating PMN-MDSCs, and their suppressive function. CONCLUSIONS Altogether, these data revealed VSSP as a novel regulator of myeloid biology that mitigates MDSCs in cancer patients and reinstates a more normal myeloid phenotype that potentially favors immune activation over immune suppression.
Collapse
Affiliation(s)
- Liliana Oliver
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Rydell Alvarez
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Raquel Diaz
- Department of Oncology, Joaquín Albarrán Hospital, Havana, Cuba
| | - Anet Valdés
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Sean H Colligan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Danielle Y F Twum
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Audry Fernández
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Olivia Fernández-Medina
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Louise M Carlson
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Han Yu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kevin H Eng
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mary L Hensen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Maura L Rábade-Chediak
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Luis Enrique Fernández
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Leslie Perez
- Clinical Direction, Center of Molecular Immunology, Havana, Cuba
| | - Jason B Muhitch
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Circe Mesa
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
- Innovative Immunotherapy Alliance, S. A. Mariel, Artemisa, Cuba
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
12
|
Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: Origin to execution. Cytokine 2022; 157:155948. [PMID: 35764025 DOI: 10.1016/j.cyto.2022.155948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Cellular communication mediated by cytokines is an important mechanism dictating immune responses, their cross talk and final immune output. Cytokines play a major role in dictating the immune outcome to cancer by regulating the events of development, differentiation and activation of innate immune cells. Cytokines are pleiotropic in nature, hence understanding their role individually or as member of network cytokines is critical to delineate their role in tumour immunity. Tumour systemically manipulates the immune system to evade and escape immune recognition for their uncontrollable growth and metastasis. The developing tumour comprise a large and diverse set of myeloid cells which are vulnerable to manipulation by the tumour-microenvironment. The innate immune cells of the monocytic lineage skew the fate of the adaptive immune cells and thus dictating cancer elimination or progression. Targeting cells at tumour cite is preposterous owing to their tight network, poor reach and abundance of immunosuppressive mechanisms. Monocytic lineage-derived cytokines (monokines) play crucial role in tumour regression or progression by either directly killing the tumour cells with TNFα or promoting its growth by TGFβ. In addition, the monokines like IL-12, IL-1β, IL-6, IL-10 and TGFβ direct the adaptive immune cells to secrete anti-tumour cytokines, TNFα, IFNγ, perforin and granzyme or pro-tumour cytokines, IL-10 and TGFβ. In this review, we elucidate the roles of monokines in dictating the fate of tumour by regulating responses at various stages of generation, differentiation and activation of immune cells along with the extensive cross talk. We have attempted to delineate the synergy and antagonism of major monokines among themselves or with tumour-derived or adaptive immune cytokines. The review provides an update on the possibilities of placing monokines to potential practical use as cytokine therapy against cancer.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
13
|
Li T, Bou-Dargham MJ, Fultang N, Li X, Pear WS, Sun H, Chen YH. c-Rel-dependent monocytes are potent immune suppressor cells in cancer. J Leukoc Biol 2022; 112:845-859. [PMID: 35694784 PMCID: PMC9530019 DOI: 10.1002/jlb.1ma0422-518rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of leukocytes that are important for tumorigenesis and tumor immunotherapy. They comprise up to 10% of leukocytes in the blood of tumor patients and their depletion may be required for successful tumor immunotherapy. However, the identity of MDSCs remains obscure, primarily due to their heterogeneity and lack of a known lineage-specific transcription factor specifying their differentiation. Using single-cell transcriptomics and gene knockout approaches, we now describe a subset of murine and human myeloid suppressor cells, named rel-dependent monocytes (rMos), which are programmed by the transcription factor c-Rel of the NF-κB family. Unlike MDSCs described previously, the c-Rel-dependent monocytes expressed a high amount of the proinflammatory cytokine IL-1β together with a low level of suppressive molecule arginase 1. Both in vitro and in tumor-bearing mice, these c-Rel+ IL-1βhi Arg1- monocytes promoted tumor growth by potently suppressing T cell function and showed a strong migratory phenotype, all of which were impaired by c-Rel deficiency or inhibition. Mechanistic studies revealed that c-Rel controlled the expression of monocyte signature genes through a unique transcriptional complex called the c-Rel enhanceosome, and IL-1β-CCL2 crosstalk between tumor cells and the rel-dependent monocytes maintained the suppressive tumor microenvironment. Thus, c-Rel specifies the development of a suppressive monocyte population and could be selectively targeted for treating cancer.
Collapse
Affiliation(s)
- Ting Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mayassa J Bou-Dargham
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Norman Fultang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Honghong Sun
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Faculty of Pharmaceutical Sciences, CAS Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Deyhle MR, Callaway CS, Neyroud D, D’Lugos AC, Judge SM, Judge AR. Depleting Ly6G Positive Myeloid Cells Reduces Pancreatic Cancer-Induced Skeletal Muscle Atrophy. Cells 2022; 11:1893. [PMID: 35741022 PMCID: PMC9221479 DOI: 10.3390/cells11121893] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022] Open
Abstract
Immune cells can mount desirable anti-cancer immunity. However, some immune cells can support cancer disease progression. The presence of cancer can lead to production of immature myeloid cells from the bone marrow known as myeloid-derived suppressor cells (MDSCs). The immunosuppressive and pro-tumorigenic effects of MDSCs are well understood. Whether MDSCs are involved in promoting cancer cachexia is not well understood. We orthotopically injected the pancreas of mice with KPC cells or PBS. One group of tumor-bearing mice was treated with an anti-Ly6G antibody that depletes granulocytic MDSCs and neutrophils; the other received a control antibody. Anti-Ly6G treatment delayed body mass loss, reduced tibialis anterior (TA) muscle wasting, abolished TA muscle fiber atrophy, reduced diaphragm muscle fiber atrophy of type IIb and IIx fibers, and reduced atrophic gene expression in the TA muscles. Anti-ly6G treatment resulted in greater than 50% Ly6G+ cell depletion efficiency in the tumors and TA muscles. These data show that, in the orthotopic KPC model, anti-Ly6G treatment reduces the number of Ly6G+ cells in the tumor and skeletal muscle and reduces skeletal muscle atrophy. These data implicate Ly6G+ cells, including granulocytic MDSCs and neutrophils, as possible contributors to the development of pancreatic cancer-induced skeletal muscle wasting.
Collapse
Affiliation(s)
- Michael R. Deyhle
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chandler S. Callaway
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| | - Daria Neyroud
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Quartier UNIL-Centre, Building Synathlon, 1015 Lausanne, Switzerland
| | - Andrew C. D’Lugos
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| | - Sarah M. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| | - Andrew R. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| |
Collapse
|
15
|
Zilio S, Bicciato S, Weed D, Serafini P. CCR1 and CCR5 mediate cancer-induced myelopoiesis and differentiation of myeloid cells in the tumor. J Immunother Cancer 2022; 10:jitc-2021-003131. [PMID: 35064009 PMCID: PMC8785210 DOI: 10.1136/jitc-2021-003131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cancer-induced ‘emergency’ myelopoiesis plays a key role in tumor progression by inducing the accumulation of myeloid cells with a suppressive phenotype peripherally and in the tumor. Chemokine receptors (CCRs) and, in particular, CCR1, CCR2, CCR5, and CCR7 are emerging as key regulators of myeloid cell trafficking and function but their precise role has not been completely clarified yet because of the signal redundancy, integration, and promiscuity of chemokines and of the expression of these CCRs on other leukocyte subsets. Methods We used the 4PD nanoparticle for the in vivo targeted silencing of CCR1, CCR2, CCR5, and/or CCR7 in the myeloid cells of tumor bearing mice to evaluate the effect of treatments on tumor growth, myeloid cell trafficking and polarization. We used flow and image cytometry and functional assays to monitor changes in the tumor microenvironment and depletion experiments and immune deficient mice to determine the role of Ly6G+cells during tumor progression. We further evaluated in vitro the impact of chemokine receptor inhibition and tumor derived factors on myeloid cell differentiation from mouse and human hematopoietic stem and precursors cells (HSPCs) using flow cytometry, transcriptome analysis, cytokines beads arrays, functional assays, and mice deficient for CCR1 or CCR5. Results 4PD-mediated in vivo silencing of CCR1 and CCR5 on myeloid cells and myeloid precursors was necessary and sufficient to inhibit tumor progression. Functional studies indicated that this antitumor effect was not mediated by alteration of myeloid cell chemotaxes but rather by the repolarization of polymorphonuclear myeloid-derived suppressor cells (MDSCs) into tumoricidal neutrophils. Transcriptome functional and cytokine analysis indicated that tumor derived factors induced CCL3 and CCL4 in HSPCs that, through the autocrine engagement of CCR1 and CCR5, induced HSPCs differentiation in MDSCs. These finding were confirmed across mice with different genetic backgrounds and using HSPCs from umbilical cord blood and peripheral blood of patients with cancer. Conclusions Our data support the notion that CCR1 and CCR5 and their ligands are a master immunological hub activated by several tumor derived factors. Activation of this pathway is necessary for the differentiation of MDSCs and protumoral macrophages.
Collapse
Affiliation(s)
- Serena Zilio
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Donald Weed
- Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Paolo Serafini
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
16
|
Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective. Cancers (Basel) 2022; 14:cancers14030510. [PMID: 35158779 PMCID: PMC8833347 DOI: 10.3390/cancers14030510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immunotherapy is achieving impressive results in the treatment of several cancers. While the main strategies aim to re-invigorate the specific lymphocyte anti-tumor response, many studies underline that altered myeloid cell frequency and functions can dramatically interfere with the responsiveness to cancer therapies. Therefore, many novel strategies targeting TAMs and MDSCs in combination with classical treatments are under continuous evolution at both pre-clinical and clinical levels, showing encouraging results. Herein, we depict a comprehensive overview of myeloid cell generation and function in a cancer setting, and the most relevant strategies for their targeting that are currently in clinical use or under pre-clinical development. Abstract In recent years, the immune system has emerged as a critical regulator of tumor development, progression and dissemination. Advanced therapeutic approaches targeting immune cells are currently under clinical use and improvement for the treatment of patients affected by advanced malignancies. Among these, anti-PD1/PD-L1 and anti-CTLA4 immune checkpoint inhibitors (ICIs) are the most effective immunotherapeutic drugs at present. In spite of these advances, great variability in responses to therapy exists among patients, probably due to the heterogeneity of both cancer cells and immune responses, which manifest in diverse forms in the tumor microenvironment (TME). The variability of the immune profile within TME and its prognostic significance largely depend on the frequency of the infiltrating myeloid cells, which often represent the predominant population, characterized by high phenotypic heterogeneity. The generation of heterogeneous myeloid populations endowed with tumor-promoting activities is typically promoted by growing tumors, indicating the sequential levels of myeloid reprogramming as possible antitumor targets. This work reviews the current knowledge on the events governing protumoral myelopoiesis, analyzing the mechanisms that drive the expansion of major myeloid subsets, as well as their functional properties, and highlighting recent translational strategies for clinical developments.
Collapse
|
17
|
Induri SNR, Kansara P, Thomas SC, Xu F, Saxena D, Li X. The Gut Microbiome, Metformin, and Aging. Annu Rev Pharmacol Toxicol 2021; 62:85-108. [PMID: 34449247 DOI: 10.1146/annurev-pharmtox-051920-093829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metformin has been extensively used for the treatment of type 2 diabetes, and it may also promote healthy aging. Despite its widespread use and versatility, metformin's mechanisms of action remain elusive. The gut typically harbors thousands of bacterial species, and as the concentration of metformin is much higher in the gut as compared to plasma, it is plausible that microbiome-drug-host interactions may influence the functions of metformin. Detrimental perturbations in the aging gut microbiome lead to the activation of the innate immune response concomitant with chronic low-grade inflammation. With the effectiveness of metformin in diabetes and antiaging varying among individuals, there is reason to believe that the gut microbiome plays a role in the efficacy of metformin. Metformin has been implicated in the promotion and maintenance of a healthy gut microbiome and reduces many age-related degenerative pathologies. Mechanistic understanding of metformin in the promotion of a healthy gut microbiome and aging will require a systems-level approach. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sri Nitya Reddy Induri
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Payalben Kansara
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Scott C Thomas
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Fangxi Xu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Deepak Saxena
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; .,Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Xin Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| |
Collapse
|
18
|
Mallick R, Duttaroy AK. Can interruption of innate immune recognition-mediated emergency myelopoiesis impede tumor progression? Med Hypotheses 2021; 155:110663. [PMID: 34403869 DOI: 10.1016/j.mehy.2021.110663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023]
Abstract
Cancer cells survive and grow despite various advanced anti-cancer therapy. To overcome this antineoplastic resistance, adjuvant therapy is often required to prevent cancer cells' immunoescape capacity. Established tumors build a stressful and hostile microenvironment in order to escape protective innate and adaptive immune responses. Specific conditions and factors within tumors, including hypoxia, nutrient starvation, acidic pH, and increased levels of free radicals, provoke a state of "endoplasmic reticulum stress" in both malignant cells and infiltrating myeloid cells. The stimulated endoplasmic reticulum stress can affect cancer progression via cross-talks with the innate immune system. Recently, the immunosuppressive activities of myeloid cells in the development of antineoplastic resistance are gaining more attention. Based on all these available data, we hypothesize that interruption of innate-immune recognition-mediated emergency myelopoiesis may be beneficial in halting cancer progression.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
19
|
Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021; 22:ijms22137239. [PMID: 34281293 PMCID: PMC8269174 DOI: 10.3390/ijms22137239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the most important cells of the innate immune system and are known for their ability to engulf and digest foreign substances, including cellular debris and tumor cells. They can convert into tumor-associated macrophages (TAMs) when mature macrophages are recruited into the tumor microenvironment. Their role in cancer progression, metastasis, and therapy failure is of special note. The aim of this review is to understand how the presence of TAMs are both advantageous and disadvantageous in the immune system.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, Shiraz University, Shiraz 71441-65186, Iran;
| | | |
Collapse
|
20
|
Cell Death in Coronavirus Infections: Uncovering Its Role during COVID-19. Cells 2021; 10:cells10071585. [PMID: 34201847 PMCID: PMC8306954 DOI: 10.3390/cells10071585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cell death mechanisms are crucial to maintain an appropriate environment for the functionality of healthy cells. However, during viral infections, dysregulation of these processes can be present and can participate in the pathogenetic mechanisms of the disease. In this review, we describe some features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and some immunopathogenic mechanisms characterizing the present coronavirus disease (COVID-19). Lymphopenia and monocytopenia are important contributors to COVID-19 immunopathogenesis. The fine mechanisms underlying these phenomena are still unknown, and several hypotheses have been raised, some of which assign a role to cell death as far as the reduction of specific types of immune cells is concerned. Thus, we discuss three major pathways such as apoptosis, necroptosis, and pyroptosis, and suggest that all of them likely occur simultaneously in COVID-19 patients. We describe that SARS-CoV-2 can have both a direct and an indirect role in inducing cell death. Indeed, on the one hand, cell death can be caused by the virus entry into cells, on the other, the excessive concentration of cytokines and chemokines, a process that is known as a COVID-19-related cytokine storm, exerts deleterious effects on circulating immune cells. However, the overall knowledge of these mechanisms is still scarce and further studies are needed to delineate new therapeutic strategies.
Collapse
|
21
|
Heme catabolism by tumor-associated macrophages controls metastasis formation. Nat Immunol 2021; 22:595-606. [PMID: 33903766 DOI: 10.1038/s41590-021-00921-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023]
Abstract
Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1-CSF1R-C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker.
Collapse
|
22
|
Mojsilovic S, Mojsilovic SS, Bjelica S, Santibanez JF. Transforming growth factor-beta1 and myeloid-derived suppressor cells: A cancerous partnership. Dev Dyn 2021; 251:105-124. [PMID: 33797140 DOI: 10.1002/dvdy.339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) plays a crucial role in tumor progression. It can inhibit early cancer stages but promotes tumor growth and development at the late stages of tumorigenesis. TGF-β1 has a potent immunosuppressive function within the tumor microenvironment that largely contributes to tumor cells' immune escape and reduction in cancer immunotherapy responses. Likewise, myeloid-derived suppressor cells (MDSCs) have been postulated as leading tumor promoters and a hallmark of cancer immune evasion mechanisms. This review attempts to analyze the prominent roles of both TGF-β1 and MDSCs and their interplay in cancer immunity. Furthermore, therapies against either TGF-β1 or MDSCs, and their potential synergistic combination with immunotherapies are discussed. Simultaneous TGF-β1 and MDSCs inhibition suggest a potential improvement in immunotherapy or subverted tumor immune resistance.
Collapse
Affiliation(s)
- Slavko Mojsilovic
- Laboratory of Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Sonja S Mojsilovic
- Laboratory for Immunochemistry, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Suncica Bjelica
- Department of Hematology, Clinical Hospital Centre Dragisa Misovic, Belgrade, Serbia
| | - Juan F Santibanez
- Molecular oncology group, Institute for Medical Research, University of Belgrade, Republic of Serbia.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
23
|
Biello F, Platini F, D’Avanzo F, Cattrini C, Mennitto A, Genestroni S, Martini V, Marzullo P, Aimaretti G, Gennari A. Insulin/IGF Axis in Breast Cancer: Clinical Evidence and Translational Insights. Biomolecules 2021; 11:biom11010125. [PMID: 33477996 PMCID: PMC7835955 DOI: 10.3390/biom11010125] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Breast cancer (BC) is the most common neoplasm in women. Many clinical and preclinical studies investigated the possible relationship between host metabolism and BC. Significant differences among BC subtypes have been reported for glucose metabolism. Insulin can promote tumorigenesis through a direct effect on epithelial tissues or indirectly by affecting the levels of other modulators, such as the insulin-like growth factor (IGF) family of receptors, sex hormones, and adipokines. The potential anti-cancer activity of metformin is based on two principal effects: first, its capacity for lowering circulating insulin levels with indirect endocrine effects that may impact on tumor cell proliferation; second, its direct influence on many pro-cancer signaling pathways that are key drivers of BC aggressiveness. Methods: In the present review, the interaction between BC, host metabolism, and patients’ prognosis has been reviewed across available literature evidence. Conclusions: Obesity, metabolic syndrome, and insulin resistance are all involved in BC growth and could have a relevant impact on prognosis. All these factors act through a pro-inflammatory state, mediated by cytokines originated in fat tissue, and seem to be related to a higher risk of BC development and worse prognosis.
Collapse
Affiliation(s)
- Federica Biello
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (P.M.); (G.A.); (A.G.)
- Correspondence:
| | - Francesca Platini
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
| | - Francesca D’Avanzo
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
| | - Carlo Cattrini
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
| | - Alessia Mennitto
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
| | - Silvia Genestroni
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
| | - Veronica Martini
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
- Lab of Immuno-Oncology, CAAD, Center of Autoimmune and Allergic Disease, University of Eastern Piedmont, 28100 Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (P.M.); (G.A.); (A.G.)
- Division of General Medicine, IRCCS Istituto Auxologico Italiano, Ospedale S. Giuseppe, 28921 Piancavallo-Verbania, Italy
| | - Gianluca Aimaretti
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (P.M.); (G.A.); (A.G.)
| | - Alessandra Gennari
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (P.M.); (G.A.); (A.G.)
| |
Collapse
|
24
|
Developmental pathways of myeloid-derived suppressor cells in neoplasia. Cell Immunol 2020; 360:104261. [PMID: 33373817 DOI: 10.1016/j.cellimm.2020.104261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Immunotherapy has become a major weapon against the war on cancer. This has culminated from decades of seminal work that led to the discovery of innovative approaches to drive adaptive immunity. Notably, was the discovery of immune checkpoint inhibitory receptors on T cells, and the subsequent development of monoclonal antibodies that target those receptors, known as immune checkpoint inhibitors (ICIs). Blocking those receptors using ICIs leads to sustained effector function, which has translated to enhanced antitumor responses across multiple human cancer types. However, these treatments are effective in subsets of patients, implicating significant barriers limiting therapeutic potential. While numerous mechanisms may hinder immunotherapy potency, one prominent mechanism is the production of myeloid-derived suppressor cells (MDSCs). MDSCs comprise monocytic and granulocytic cell types and mediate pro-tumorigenic and immune suppressive activities. Here, we summarize several pathways by which MDSCs arise in cancer, providing a conceptual framework for identifying unique combination therapeutic interventions.
Collapse
|
25
|
Zakiryanova GK, Kustova E, Urazalieva NT, Baimukhametov ET, Makarov VA, Turaly GM, Shurin GV, Biyasheva ZM, Nakisbekov NN, Shurin MR. Notch signaling defects in NK cells in patients with cancer. Cancer Immunol Immunother 2020; 70:981-988. [PMID: 33083905 DOI: 10.1007/s00262-020-02763-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Altered expressions of proto-oncogenes have been reported during normal lymphocytes mitogenesis and in T and B lymphocytes in patients with autoimmune diseases. We have recently demonstrated a significantly decreased expression of c-kit and c-Myc in NK cells isolated from patients with cancer, which might be related to the functional deficiency of NK cells in the tumor environment. Here, focusing on the regulatory mechanisms of this new clinical phenomenon, we determined expression of c-Myc, Notch1, Notch2, p-53, Cdk6, Rb and phosphorylated Rb in NK cells isolated from the healthy donors and cancer patients. The results of our study revealed a significant down-regulation of expression of Notch receptors and up-regulation of Cdk6 expression in NK cells in cancer, while no significant changes in the expression of p53 and Rb proteins were seen. These data revealed novel signaling pathways altered in NK cells in the tumor environment and support further investigation of the origin of deregulated expression of proto-oncogenes in NK cells patients with different types of cancer.
Collapse
Affiliation(s)
| | - Elena Kustova
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Nataliya T Urazalieva
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Emile T Baimukhametov
- Department of Oncology, Kazakh Medical University of Continuing Education, Almaty, Kazakhstan
| | - Valeriy A Makarov
- Department of Oncosurgery, Almaty Oncology Center, Almaty, Kazakhstan
| | - Gulmariya M Turaly
- Joint Use Center, Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Galina V Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Narymzhan N Nakisbekov
- Joint Use Center, Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Michael R Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Implications of metabolism-driven myeloid dysfunctions in cancer therapy. Cell Mol Immunol 2020; 18:829-841. [PMID: 33077904 PMCID: PMC7570408 DOI: 10.1038/s41423-020-00556-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Immune homeostasis is maintained by an adequate balance of myeloid and lymphoid responses. In chronic inflammatory states, including cancer, this balance is lost due to dramatic expansion of myeloid progenitors that fail to mature to functional inflammatory neutrophils, macrophages, and dendritic cells (DCs), thus giving rise to a decline in the antitumor effector lymphoid response. Cancer-related inflammation orchestrates the production of hematopoietic growth factors and cytokines that perpetuate recruitment and activation of myeloid precursors, resulting in unresolved and chronic inflammation. This pathologic inflammation creates profound alterations in the intrinsic cellular metabolism of the myeloid progenitor pool, which is amplified by competition for essential nutrients and by hypoxia-induced metabolic rewiring at the tumor site. Therefore, persistent myelopoiesis and metabolic dysfunctions contribute to the development of cancer, as well as to the severity of a broad range of diseases, including metabolic syndrome and autoimmune and infectious diseases. The aims of this review are to (1) define the metabolic networks implicated in aberrant myelopoiesis observed in cancer patients, (2) discuss the mechanisms underlying these clinical manifestations and the impact of metabolic perturbations on clinical outcomes, and (3) explore new biomarkers and therapeutic strategies to restore immunometabolism and differentiation of myeloid cells towards an effector phenotype to increase host antitumor immunity. We propose that the profound metabolic alterations and associated transcriptional changes triggered by chronic and overactivated immune responses in myeloid cells represent critical factors influencing the balance between therapeutic efficacy and immune-related adverse effects (irAEs) for current therapeutic strategies, including immune checkpoint inhibitor (ICI) therapy.
Collapse
|
27
|
Domnich M, Riedesel J, Pylaeva E, Kürten CHL, Buer J, Lang S, Jablonska J. Oral Neutrophils: Underestimated Players in Oral Cancer. Front Immunol 2020; 11:565683. [PMID: 33162980 PMCID: PMC7582090 DOI: 10.3389/fimmu.2020.565683] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023] Open
Abstract
The composition of the oral milieu reflects oral health. Saliva provides an environment for multiple microorganisms, and contains soluble factors and immune cells. Neutrophils, which rapidly react on the changes in the microenvironment, are a major immune cell population in saliva and thus may serve as a biomarker for oral pathologies. This review focuses on salivary neutrophils in the oral cavity, their phenotype changes in physiological and pathological conditions, as well as on factors regulating oral neutrophil amount, activation and functionality, with special emphasis on oral cancer and its risk factors.
Collapse
Affiliation(s)
- Maksim Domnich
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jana Riedesel
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cornelius H. L. Kürten
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
Targeting Tumor-Associated Macrophages in Anti-Cancer Therapies: Convincing the Traitors to Do the Right Thing. J Clin Med 2020; 9:jcm9103226. [PMID: 33050070 PMCID: PMC7600332 DOI: 10.3390/jcm9103226] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
In the last decade, it has been well-established that tumor-infiltrating myeloid cells fuel not only the process of carcinogenesis through cancer-related inflammation mechanisms, but also tumor progression, invasion, and metastasis. In particular, tumor-associated macrophages (TAMs) are the most abundant leucocyte subset in many cancers and play a major role in the creation of a protective niche for tumor cells. Their ability to generate an immune-suppressive environment is crucial to escape the immune system and to allow the tumor to proliferate and metastasize to distant sites. Conventional therapies, including chemotherapy and radiotherapy, are often not able to limit cancer growth due to the presence of pro-tumoral TAMs; these are also responsible for the failure of novel immunotherapies based on immune-checkpoint inhibition. Several novel therapeutic strategies have been implemented to deplete TAMs; however, more recent approaches aim to use TAMs themselves as weapons to fight cancer. Exploiting their functional plasticity, the reprogramming of TAMs aims to convert immunosuppressive and pro-tumoral macrophages into immunostimulatory and anti-tumor cytotoxic effector cells. This shift eventually leads to the reconstitution of a reactive immune landscape able to destroy the tumor. In this review, we summarize the current knowledge on strategies able to reprogram TAMs with single as well as combination therapies.
Collapse
|
29
|
Safarzadeh E, Asadzadeh Z, Safaei S, Hatefi A, Derakhshani A, Giovannelli F, Brunetti O, Silvestris N, Baradaran B. MicroRNAs and lncRNAs-A New Layer of Myeloid-Derived Suppressor Cells Regulation. Front Immunol 2020; 11:572323. [PMID: 33133086 PMCID: PMC7562789 DOI: 10.3389/fimmu.2020.572323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute an important component in regulating immune responses in several abnormal physiological conditions such as cancer. Recently, novel regulatory tumor MDSC biology modulating mechanisms, including differentiation, expansion and function, were defined. There is growing evidence that miRNAs and long non-coding RNAs (lncRNA) are involved in modulating transcriptional factors to become complex regulatory networks that regulate the MDSCs in the tumor microenvironment. It is possible that aberrant expression of miRNAs and lncRNA contributes to MDSC biological characteristics under pathophysiological conditions. This review provides an overview on miRNAs and lncRNAs epiregulation of MDSCs development and immunosuppressive functions in cancer.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Francesco Giovannelli
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Department of Internal Medicine and Oncology (DIMO)-University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Targeting Myeloid-Derived Suppressor Cells in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12092626. [PMID: 32942545 PMCID: PMC7564060 DOI: 10.3390/cancers12092626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Myeloid-Derived Suppressor Cells (MDSCs) have been regarded as the main promoters of cancer development in recent years. They can protect tumor cells from being eliminated by neutralizing the anti-tumor response mediated by T cells, macrophages and dendritic cells (DCs). Therefore, different treatment methods targeting MDSCs, including chemotherapy, radiotherapy and immunotherapy, have been developed and proven to effectively inhibit tumor expansion. Herein, we summarize the immunosuppressive role of MDSCs in the tumor microenvironment and some effective treatments targeting MDSCs, and discuss the differences between different therapies. Abstract Myeloid-derived suppressor cells (MDSCs), which are activated under pathological conditions, are a group of heterogeneous immature myeloid cells. MDSCs have potent capacities to support tumor growth via inhibition of the antitumoral immune response and/or the induction of immunosuppressive cells. In addition, multiple studies have demonstrated that MDSCs provide potential therapeutic targets for the elimination of immunosuppressive functions and the inhibition of tumor growth. The combination of targeting MDSCs and other therapeutic approaches has also demonstrated powerful antitumor effects. In this review, we summarize the characteristics of MDSCs in the tumor microenvironment (TME) and current strategies of cancer treatment by targeting MDSCs.
Collapse
|
31
|
Bleve A, Durante B, Sica A, Consonni FM. Lipid Metabolism and Cancer Immunotherapy: Immunosuppressive Myeloid Cells at the Crossroad. Int J Mol Sci 2020; 21:ijms21165845. [PMID: 32823961 PMCID: PMC7461616 DOI: 10.3390/ijms21165845] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer progression generates a chronic inflammatory state that dramatically influences hematopoiesis, originating different subsets of immune cells that can exert pro- or anti-tumor roles. Commitment towards one of these opposing phenotypes is driven by inflammatory and metabolic stimuli derived from the tumor-microenvironment (TME). Current immunotherapy protocols are based on the reprogramming of both specific and innate immune responses, in order to boost the intrinsic anti-tumoral activity of both compartments. Growing pre-clinical and clinical evidence highlights the key role of metabolism as a major influence on both immune and clinical responses of cancer patients. Indeed, nutrient competition (i.e., amino acids, glucose, fatty acids) between proliferating cancer cells and immune cells, together with inflammatory mediators, drastically affect the functionality of innate and adaptive immune cells, as well as their functional cross-talk. This review discusses new advances on the complex interplay between cancer-related inflammation, myeloid cell differentiation and lipid metabolism, highlighting the therapeutic potential of metabolic interventions as modulators of anticancer immune responses and catalysts of anticancer immunotherapy.
Collapse
Affiliation(s)
- Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| | - Barbara Durante
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
- Humanitas Clinical and Research Center–IRCCS–, via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: ; Tel.: +39-(0)-321-375881; Fax: +39-(0)-321-375821
| | - Francesca Maria Consonni
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| |
Collapse
|
32
|
Sica A, Colombo MP, Trama A, Horn L, Garassino MC, Torri V. Immunometabolic Status of COVID-19 Cancer Patients. Physiol Rev 2020; 100:1839-1850. [PMID: 32721181 PMCID: PMC7839651 DOI: 10.1152/physrev.00018.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cancer patients appear to be more likely to be diagnosed with coronavirus disease 2019 (COVID-19). This is supported by the understanding of immunometabolic pathways that intersect patients with infection and cancer. However, data derived by case series and retrospective studies do not offer a coherent interpretation, since data from China suggest an increased risk of COVID-19, while data from the United States and Italy show a prevalence of COVID-19 in cancer patients comparable with the general population. Noteworthy, cancer and COVID-19 exploit distinct patterns of macrophage activation that promote disease progression in the most severe forms. In particular, the alternative activation of M2-polarized macrophages plays a crucial role in cancer progression. In contrast, the macrophage-activation syndrome appears as the source of M1-related cytokine storm in severe COVID-19 disease, thus indicating macrophages as a source of distinct inflammatory states in the two diseases, nonetheless as a common therapeutic target. New evidence indicates that NAMPT/NAD metabolism can direct both innate immune cell effector functions and the homeostatic robustness, in both cancer and infection. Moreover, a bidirectional relationship exists between the metabolism of NAD and the protective role that angiotensin converting enzyme 2, the COVID-19 receptor, can play against hyperinflammation. Within this immunometabolic framework, the review considers possible interference mechanisms that viral infections and tumors elicit on therapies and provides an overview for the management of patients with cancer affected by COVID-19, particularly for the balance of risk and benefit when planning normally routine cancer treatments and follow-up appointments.
Collapse
Affiliation(s)
- A Sica
- Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro," Novara, Italy; Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Evaluative Epidemiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Thoracic Oncology Unit, Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy; and Clinical Research Lab, Oncology Department, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy
| | - M P Colombo
- Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro," Novara, Italy; Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Evaluative Epidemiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Thoracic Oncology Unit, Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy; and Clinical Research Lab, Oncology Department, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy
| | - A Trama
- Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro," Novara, Italy; Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Evaluative Epidemiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Thoracic Oncology Unit, Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy; and Clinical Research Lab, Oncology Department, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy
| | - L Horn
- Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro," Novara, Italy; Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Evaluative Epidemiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Thoracic Oncology Unit, Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy; and Clinical Research Lab, Oncology Department, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy
| | - M C Garassino
- Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro," Novara, Italy; Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Evaluative Epidemiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Thoracic Oncology Unit, Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy; and Clinical Research Lab, Oncology Department, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy
| | - V Torri
- Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro," Novara, Italy; Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Evaluative Epidemiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Thoracic Oncology Unit, Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy; and Clinical Research Lab, Oncology Department, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy
| |
Collapse
|
33
|
Imidazo[1,2- b]pyrazole-7-Carboxamide Derivative Induces Differentiation-Coupled Apoptosis of Immature Myeloid Cells Such as Acute Myeloid Leukemia and Myeloid-Derived Suppressor Cells. Int J Mol Sci 2020; 21:ijms21145135. [PMID: 32698503 PMCID: PMC7404197 DOI: 10.3390/ijms21145135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced differentiation of immature myeloid progenitors, such as acute myeloid leukemia (AML) cells or myeloid-derived suppressor cells (MDSCs), has remained a challenge for the clinicians. Testing our imidazo[1,2-b]pyrazole-7-carboxamide derivative on HL-60 cells, we obtained ERK phosphorylation as an early survival response to treatment followed by the increase of the percentage of the Bcl-xlbright and pAktbright cells. Following the induction of Vav1 and the AP-1 complex, a driver of cellular differentiation, FOS, JUN, JUNB, and JUND were elevated on a concentration and time-dependent manner. As a proof of granulocytic differentiation, the cells remained non-adherent, the expression of CD33 decreased; the granularity, CD11b expression, and MPO activity of HL-60 cells increased upon treatment. Finally, viability of HL-60 cells was hampered shown by the depolarization of mitochondria, activation of caspase-3, cleavage of Z-DEVD-aLUC, appearance of the sub-G1 population, and the leakage of the lactate-dehydrogenase into the supernatant. We confirmed the differentiating effect of our drug candidate on human patient-derived AML cells shown by the increase of CD11b and decrease of CD33+, CD7+, CD206+, and CD38bright cells followed apoptosis (IC50: 80 nM) after treatment ex vivo. Our compound reduced both CD11b+/Ly6C+ and CD11b+/Ly6G+ splenic MDSCs from the murine 4T1 breast cancer model ex vivo.
Collapse
|
34
|
Wu C, Hua Q, Zheng L. Generation of Myeloid Cells in Cancer: The Spleen Matters. Front Immunol 2020; 11:1126. [PMID: 32582203 PMCID: PMC7291604 DOI: 10.3389/fimmu.2020.01126] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells are key components of the tumor microenvironment and critical regulators of disease progression. These innate immune cells are usually short-lived and require constant replenishment. Emerging evidence indicates that tumors alter the host hematopoietic system and induce the biased differentiation of myeloid cells to tip the balance of the systemic immune activities toward tumor-promoting functions. Altered myelopoiesis is not restricted to the bone marrow and also occurs in extramedullary organs. In this review, we outline the recent advances in the field of cancer-associated myelopoiesis, with a focus on the spleen, the major site of extramedullary hematopoiesis in the cancer setting. We discuss the functional specialization, distinct mechanisms, and clinical relevance of cancer-associated myeloid cell generation from early progenitors in the spleen and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Chong Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaomin Hua
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Pastò A, Consonni FM, Sica A. Influence of Innate Immunity on Cancer Cell Stemness. Int J Mol Sci 2020; 21:ijms21093352. [PMID: 32397392 PMCID: PMC7247585 DOI: 10.3390/ijms21093352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Even if cancer stem cells (CSCs) represent only a small proportion of the tumor mass, they significantly account for tumor maintenance, resistance to therapies, relapse and metastatic spread, due to their increased capacity of self-renewal, multipotency, tumorigenicity and quiescence. Emerging evidence suggests that the immune contexture within the tumor microenvironment (TME) determines both the response to therapy and the clinical outcome. In this context, CSCs acquire immune evasion skills by editing immune cell functions and sculpting the immunosuppressive landscape of TME. Reciprocally, infiltrating immune cells influence CSCs self-renewal, tumorigenicity and metastasis. In this review, we summarize the immunomodulatory properties of CSCs, as well as the impact of innate immune cells on cancer cells stemness in the different phases of cancer immunoediting process and neoplastic progression.
Collapse
Affiliation(s)
- Anna Pastò
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center–IRCCS–, via Manzoni 56, 20089 Rozzano (MI), Italy;
| | - Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, via Bovio 6, 28100 Novara, Italy;
| | - Antonio Sica
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center–IRCCS–, via Manzoni 56, 20089 Rozzano (MI), Italy;
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, via Bovio 6, 28100 Novara, Italy;
- Correspondence: ; Tel.: +39-0321-375-881; Fax: +39-0321-375-621
| |
Collapse
|
36
|
Wang Y, Jia A, Bi Y, Wang Y, Liu G. Metabolic Regulation of Myeloid-Derived Suppressor Cell Function in Cancer. Cells 2020; 9:cells9041011. [PMID: 32325683 PMCID: PMC7226088 DOI: 10.3390/cells9041011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of immunosuppressive cells that play crucial roles in promoting tumor growth and protecting tumors from immune recognition in tumor-bearing mice and cancer patients. Recently, it has been shown that the metabolic activity of MDSCs plays an important role in the regulation of their inhibitory function, especially in the processes of tumor occurrence and development. The MDSC metabolism, such as glycolysis, fatty acid oxidation and amino acid metabolism, is rewired in the tumor microenvironment (TME), which enhances the immunosuppressive activity, resulting in effector T cell apoptosis and suppressive cell proliferation. Herein, we summarized the recent progress in the metabolic reprogramming and immunosuppressive function of MDSCs during tumorigenesis.
Collapse
Affiliation(s)
- Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.W.); (A.J.); (Y.W.)
- Correspondence: ; Tel./Fax: +86-10-58800026
| |
Collapse
|
37
|
Wu C, Tan X, Hu X, Zhou M, Yan J, Ding C. Tumor Microenvironment following Gemcitabine Treatment Favors Differentiation of Immunosuppressive Ly6C high Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2019; 204:212-223. [PMID: 31776206 DOI: 10.4049/jimmunol.1900930] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/27/2019] [Indexed: 12/14/2022]
Abstract
Regulation of myeloid-derived suppressor cells (MDSC) by ongoing inflammation following repeated chemotherapy remain elusive. In this study, we show that a multidose clinical regimen of gemcitabine (GEM) treatment enhances the immunosuppressive function of monocytic MDSC (M-MDSC), although tumor development is delayed in E0771 tumor-bearing mice. Accordingly, effector IFN-γ-producing CD4 and CD8 T cells are significantly decreased in the tumor microenvironment (TME) of GEM-treated mice. The conditioned medium of GEM-treated tumor cells enhances differentiation of mouse bone marrow cells and human PBMC into immunosuppressive M-MDSC. Cytokine profiling of GEM-treated tumor cells identifies GM-CSF as one of the most differentially expressed cytokines. Blockade or knockdown of GM-CSF can partially reduce immunosuppression of Ly6Chigh cells induced by GEM-conditioned medium. Knockdown of GM-CSF in tumor cells also delays tumor progression with decreased accumulation of M-MDSC in the TME. Mechanistically, enhanced production of reactive oxygen species and activation of NF-κB are observed in GEM-treated tumor cells. Treatment with the mitochondrial-targeted antioxidant and inhibitor of NF-κB signaling can abrogate GEM-induced hyperexpression of GM-CSF in E0771 cells. In addition, the phagocytic clearance of apoptotic tumor cells (efferocytosis) enhances the immunosuppressive function of bone marrow Ly6Chigh myeloid cells. Further, GEM treatment results in metabolic changes in residual tumor cells, leading to the resistance to T cell-mediated killing. Together, our results define an undesired effect of repeated GEM treatment promoting immunosuppression in TME via upregulation of GM-CSF and efferocytosis as well as deregulation of lipid metabolism in residual tumor cells.
Collapse
Affiliation(s)
- Caijun Wu
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Xiaobin Tan
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Xiaoling Hu
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Mingqian Zhou
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Jun Yan
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and .,Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202
| | - Chuanlin Ding
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| |
Collapse
|