1
|
Chowdhury M, Stansfeld PJ, Sargent F. A lysis less ordinary: The bacterial Type 10 Secretion System. Adv Microb Physiol 2025; 86:175-198. [PMID: 40404269 DOI: 10.1016/bs.ampbs.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Bacteria have evolved several different biochemical pathways to either export proteins of all shapes and sizes out of the cell cytoplasm, or to secrete those proteins into the extracellular environment. Many bacterial protein secretion systems have evolutionary links to systems used by bacteriophage to move macromolecules across membranes. The Type 10 Secretion System (T10SS) was identified in gram-negative bacteria and comprises genes that bear striking sequence similarities to those found within phage lysis cassettes. The minimum components of a T10SS are an integral membrane holin-like protein together with a peptidoglycan hydrolase. Here, we review recent research in Serratia spp., Salmonella spp, Yersinia spp, and gram-positive Clostridioides spp., and consider the evidence for different T10SS mechanisms ranging from a controlled release of proteins into the environment, to stochastic altruistic lysis of specialised populations of cells.
Collapse
Affiliation(s)
- Mechna Chowdhury
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne
| | - Phillip J Stansfeld
- Department of Chemistry, School of Life Sciences, University of Warwick, Coventry
| | - Frank Sargent
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne.
| |
Collapse
|
2
|
Liu H, Zhong Y, Zhang Z, Xu K, Mao C, Yang Q, Yang L, Yu B, Long Y, Qin X, Shi L, Chang S, Shen Y, Wang P. Characteristics of the smallest brucellaphage with strong lytic ability. Front Vet Sci 2025; 12:1530123. [PMID: 39974167 PMCID: PMC11836647 DOI: 10.3389/fvets.2025.1530123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Brucellosis is a globally prevalent zoonotic disease caused by Brucella spp. posing significant threats to animal and human health. In this study, a novel lytic brucellaphage designated Y17 was isolated from sheep fecal samples collected in Ludian County, Yunnan Province, China. Transmission electron microscopy revealed that Y17 was composed of an icosahedral head (48.1 ± 2 nm) and a short tail (10.8 ± 1 nm), making it the smallest brucellaphage described so far. The optimal multiplicity of infection (MOI) for phage Y17 is 0.001, with a burst size of ~187 PFU/cell, the largest value reported for any brucellaphage, and it has a relatively short latent period. It exhibits broad pH and temperature stability, retaining activity even after 1 h of exposure to ultraviolet radiation and various ethanol concentrations. Y17 shows strong lytic activity against Brucella abortus and can also infect some Brucella melitensis strains. The Y17 genome spans 38,025 bp with a GC content of 48.2%, making it the smallest genome among brucellaphages to date. It lacks virulence, antibiotic resistance, or lysogenic genes, indicating its potential as a safe biocontrol agent. Whole-genome average nucleotide identity (ANI) analysis reveals high homology across all lytic brucellaphages, but Y17 exhibits relatively lower genome coverage compared to other lytic brucellaphages. Genomic collinearity comparison revealed that Y17 lacks some terminal fragments present in the genomes of other lytic brucellaphages. Furthermore, compared to brucellaphages with genomes larger than 40 kb, Y17 also lacks segments corresponding to ORF21 (amidase), ORF28 (hypothetical protein), and ORF29 (carbohydrate-binding protein). Phylogenetic analysis indicates that Y17 is closely related to phages Iz, Bk2, S708, Wb, R/C, Pr, and Bk. Moreover, the capsid gene shows significantly higher conservation in comparison with the tail collar and amidase genes. This study significantly enriches the brucellaphage database and highlights the potential of Y17 as a biocontrol agent for managing brucellosis in endemic regions.
Collapse
Affiliation(s)
- Hongbaiyu Liu
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Youhong Zhong
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Zhihong Zhang
- Chuxiong Center for Disease Control and Prevention, Chuxiong, China
| | - Kehong Xu
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical, College of Pharmacy, Dali University, Dali, China
| | - Chunpeng Mao
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiuju Yang
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Lihua Yang
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Binbin Yu
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Ying Long
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Xinyu Qin
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
- School of Public Health, Dali University, Dali, China
| | - Liyuan Shi
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Sheng Chang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yuanying Shen
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, China
| | - Peng Wang
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| |
Collapse
|
3
|
Kamilari E, O'Connor PM, de Farias FM, Johnson CN, Buttimer C, Deliephan A, Hill D, Fursenko O, Wiese J, Stanton C, Hill C, Ross RP. Bacillus safensis APC 4099 has broad-spectrum antimicrobial activity against both bacteria and fungi and produces several antimicrobial peptides, including the novel circular bacteriocin safencin E. Appl Environ Microbiol 2025; 91:e0194224. [PMID: 39745440 PMCID: PMC7617318 DOI: 10.1128/aem.01942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025] Open
Abstract
Bacillus safensis APC 4099, isolated from bees' gut, has been identified as a promising candidate for food biopreservation. Antimicrobial activity screening revealed a broad-spectrum inhibition potential, ranging from gram-positive pathogenic bacteria to fungi responsible for food spoilage. Genomic analysis identified biosynthetic gene clusters coding for several antimicrobial peptides and secondary metabolites. Specifically, a novel, anionic, 6 kDa circular bacteriocin, named safencin E, was detected, showing 52.5% similarity to butyrivibriocin AR10. Additionally, gene clusters coding for the biosynthesis of bacteriocins such as pumilarin and plantazolicin and biosynthetic pathways for secondary metabolites, including pumilacidin A, bacilysin, and bacillibactin, were identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis detected molecular masses correlating to safencin E, plantazolicin, pumilarin, and pumilacidin A from the cell-free supernatant, cell extracts, or both. Overall, the broad-spectrum antimicrobial activity of B. safensis APC 4099 indicates that this strain is a promising candidate for the biological control of food ecosystems and thus has the potential to enhance food safety. IMPORTANCE The present article highlights the importance of the strain Bacillus safensis APC 4099 as a potential biocontrol agent. The strain possesses biosynthetic gene clusters coding for various antimicrobial peptides and secondary metabolites, including a novel circular bacteriocin, safencin E, and the bacteriocins pumilarin and plantazolicin. This diversity in the production of antimicrobial peptides renders the producer with broad-spectrum antimicrobial activity, ranging from gram-positive pathogenic and spoilage bacteria to spoilage molds. Considering that 1.3 billion tons of food appropriate for human consumption is lost or wasted annually, identifying strains or novel antimicrobial peptides capable of biopreservation is highly relevant. This strain and its bioactive compounds offer a solution to this global problem as biocontrol agents for food ecosystems against spoilage and pathogenic microbes.
Collapse
Affiliation(s)
- E. Kamilari
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - P. M. O'Connor
- APC Microbiome Ireland, Cork, Ireland
- Teagasc, Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
| | - F. Miceli de Farias
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - C. N. Johnson
- Department of Biochemistry & Microbiology, Center for Health Sciences, Oklahoma State University, Tulsa, Oklahoma, USA
| | - C. Buttimer
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - A. Deliephan
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - D. Hill
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - O. Fursenko
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - J. Wiese
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - C. Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc, Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
| | - C. Hill
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. P. Ross
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
4
|
Xu T, Ni Y, Li H, Wu S, Yan S, Chen L, Yu Y, Wang Y. Discovery and characterization of complete genomes of 38 head-tailed proviruses in four predominant phyla of archaea. Microbiol Spectr 2025; 13:e0049224. [PMID: 39545734 PMCID: PMC11705971 DOI: 10.1128/spectrum.00492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Archaea play a significant role in natural ecosystems and the human body. Archaeal viruses exert a considerable influence on the structure and composition of archaeal communities and their associated ecological environments. The present study revealed the complete genomes of 38 archaeal head-tailed proviruses through comprehensive data mining. The hosts of these proviruses were identified as belonging to the following four dominant phyla: Halobacteriota, Thermoplasmatota, Thermoproteota, and Nanoarchaeota. In addition to the 14 proviruses of halophilic archaea related to the Graaviviridae family, the remaining proviruses exhibited limited genetic similarities to known (pro)viruses, suggesting the existence of 14 potential novel families. Of the 38 archaeal proviruses, 30 have the potential to lyse host cells. Eleven proviruses contain genes linked to antiviral defense mechanisms, including those involved in restriction modification (RM), clustered regularly interspaced short palindromic repeat (CRISPR)-associated (CRISPR-Cas) nucleases, defense island system associated with restriction-modification (DISARM), and DNA degradation (Dnd). Moreover, auxiliary metabolic genes were identified in the proviruses of Bathyarchaeia and Halobacteriota archaea, including those involved in carbohydrate and amino acid metabolism. Our findings indicate the diversity of archaeal viruses, their interactions with archaeal hosts, and their roles in the adaptation of the host.IMPORTANCEThe field of archaeal virology has seen a rapid expansion through the use of metagenomics, yet the diversity of these viruses remains largely uncharted. In this study, the complete genomes of 38 novel archaeal proviruses were identified for the following four dominant phyla: Halobacteriota, Thermoplasmatota, Thermoproteota, and Nanoarchaeota. Two families and six genera of Archaea were the first to be identified as hosts for viruses. The proviruses were found to contain diverse genes that were involved in distinct adaptation strategies of viruses to hosts. Our findings contribute to the expansion of the lineages of archaeal viruses and highlight their intricate interactions and essential roles in enabling host survival and adaptation to diverse environmental conditions.
Collapse
Affiliation(s)
- Tianqi Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yimin Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hailing Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuling Yan
- Entwicklungsgenetik und Zellbiologie der Tiere, Philipps-Universität Marburg, Marburg, Germany
| | - Lanming Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
5
|
Tian Y, Xu X, Ijaz M, Shen Y, Shahid MS, Ahmed T, Ali HM, Yan C, Gu C, Lu J, Wang Y, Ondrasek G, Li B. Role of hypothetical protein PA1-LRP in antibacterial activity of endolysin from a new Pantoea phage PA1. Front Microbiol 2024; 15:1463192. [PMID: 39507333 PMCID: PMC11538084 DOI: 10.3389/fmicb.2024.1463192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Pantoea ananatis has emerged as a significant plant pathogen affecting various crops worldwide, causing substantial economic losses. Bacteriophages and their endolysins offer promising alternatives for controlling bacterial infections, addressing the growing concerns of antibiotic resistance. Methods This study isolated and characterized the Pantoea phage PA1 and investigated the role of PA1-LRP in directly damaging bacteria and assisting endolysin PA1-Lys in cell lysis, comparing its effect to exogenous transmembrane domains following the identification and analysis of the PA1-Lys and the PA1-LRP based on whole genome analysis of phage PA1. Additionally, this study also explored how hydrophobic region of PA1-LRP (HPP) contributes to bacterial killing when combined with PA1-Lys and examined the stability and lytic spectrum of PA1-Lys under various conditions. Results and discussion Phage PA1 belonging to the Chaseviridae family exhibited a broad host range against P. ananatis strains, with a latent period of 40 minutes and a burst size of 17.17 phages per infected cell. PA1-Lys remained stable at pH 6-10 and temperatures of 20-50°C and showed lytic activity against various Gram-negative bacteria, while PA1-Lys alone could not directly lyse bacteria, its lytic activity was enhanced in the presence of EDTA. Surprisingly, PA1-LRP inhibited bacterial growth when expressed alone. After 24 h of incubation, the OD600 value of pET28a-LRP decreased by 0.164 compared to pET28a. Furthermore, the lytic effect of co-expressed PA1-LRP and PA1-Lys was significantly stronger than each separately. After 24 h of incubation, compared to pET28a-LRP, the OD600 value of pET28a-Lys-LRP decreased by 0.444, while the OD420 value increased by 3.121. Live/dead cell staining, and flow cytometry experiments showed that the fusion expression of PA1-LRP and PA1-Lys resulted in 41.29% cell death, with bacterial morphology changing from rod-shaped to filamentous. Notably, PA1-LRP provided stronger support for endolysin-mediated cell lysis than exogenous transmembrane domains. Additionally, our results demonstrated that the HPP fused with PA1-Lys, led to 40.60% cell death, with bacteria changing from rod-shaped to spherical and exhibiting vacuolation. Taken together, this study provides insights into the lysis mechanisms of Pantoea phages and identifies a novel lysis-related protein, PA1-LRP, which could have potential applications in phage therapy and bacterial disease control.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat, Oman
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Chunyan Gu
- Institute of Plant Protection and Agricultural Product Quality and Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jianfei Lu
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta, Zagreb, Croatia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Awad MM, Suraweera CD, Vidor CJ, Ye-Lin AY, Williams GC, Mileto SJ, Barlow CK, McGowan S, Lyras D. A Clostridioides difficile endolysin modulates toxin secretion without cell lysis. Commun Biol 2024; 7:1044. [PMID: 39179651 PMCID: PMC11344133 DOI: 10.1038/s42003-024-06730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
The Clostridia produce and secrete Large Clostridial Glucosylating Toxins (LCGTs) responsible for disease symptoms, but the secretion mechanism is largely unknown. Recently, a holin-like protein was shown to be essential for toxin secretion. Holins, typically bacteriophage-specific proteins, are part of the holin-endo(lysin) system that releases phage progeny. To determine if the clostridia also use a lysin, we investigated two conserved putative lysins, M7404_01910 and M7404_02200, in the release of the LCGTs TcdA and TcdB from a Clostridioides difficile ribotype 027 strain, M7404. Sequence analysis and structural modelling indicates that both proteins are related to N-acetylmuramoyl-l-alanine amidases, similar to CD27L, a lysin from the C. difficile phage ΦCD27. Disruption of these genes reveal that only M7404_02200 contributes to toxin secretion and does so in a non-lytic fashion. Peptidoglycan hydrolysis assays show that recombinant M7404_02200 is an active peptidoglycan amidase, confirming its role in TcdA and TcdB secretion in C. difficile M7404.
Collapse
Affiliation(s)
- Milena M Awad
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Chathura D Suraweera
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Callum J Vidor
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Auberon Y Ye-Lin
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Galain C Williams
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Steven J Mileto
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Christopher K Barlow
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Monash Proteomics & Metabolomics Platform, Monash University, Clayton, 3800, Australia
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Dena Lyras
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
7
|
Schlüter L, Busche T, Bondzio L, Hütten A, Niehaus K, Schneiker-Bekel S, Pühler A, Kalinowski J. Sigma Factor Engineering in Actinoplanes sp. SE50/110: Expression of the Alternative Sigma Factor Gene ACSP50_0507 (σH As) Enhances Acarbose Yield and Alters Cell Morphology. Microorganisms 2024; 12:1241. [PMID: 38930623 PMCID: PMC11205660 DOI: 10.3390/microorganisms12061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Sigma factors are transcriptional regulators that are part of complex regulatory networks for major cellular processes, as well as for growth phase-dependent regulation and stress response. Actinoplanes sp. SE50/110 is the natural producer of acarbose, an α-glucosidase inhibitor that is used in diabetes type 2 treatment. Acarbose biosynthesis is dependent on growth, making sigma factor engineering a promising tool for metabolic engineering. ACSP50_0507 is a homolog of the developmental and osmotic-stress-regulating Streptomyces coelicolor σHSc. Therefore, the protein encoded by ACSP50_0507 was named σHAs. Here, an Actinoplanes sp. SE50/110 expression strain for the alternative sigma factor gene ACSP50_0507 (sigHAs) achieved a two-fold increased acarbose yield with acarbose production extending into the stationary growth phase. Transcriptome sequencing revealed upregulation of acarbose biosynthesis genes during growth and at the late stationary growth phase. Genes that are transcriptionally activated by σHAs frequently code for secreted or membrane-associated proteins. This is also mirrored by the severely affected cell morphology, with hyperbranching, deformed and compartmentalized hyphae. The dehydrated cell morphology and upregulation of further genes point to a putative involvement in osmotic stress response, similar to its S. coelicolor homolog. The DNA-binding motif of σHAs was determined based on transcriptome sequencing data and shows high motif similarity to that of its homolog. The motif was confirmed by in vitro binding of recombinantly expressed σHAs to the upstream sequence of a strongly upregulated gene. Autoregulation of σHAs was observed, and binding to its own gene promoter region was also confirmed.
Collapse
Affiliation(s)
- Laura Schlüter
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
- Medical School East Westphalia-Lippe, Bielefeld University, 33594 Bielefeld, Germany
| | - Laila Bondzio
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Andreas Hütten
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, 33594 Bielefeld, Germany;
| | - Susanne Schneiker-Bekel
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
| |
Collapse
|
8
|
Sitsel O, Wang Z, Janning P, Kroczek L, Wagner T, Raunser S. Yersinia entomophaga Tc toxin is released by T10SS-dependent lysis of specialized cell subpopulations. Nat Microbiol 2024; 9:390-404. [PMID: 38238469 PMCID: PMC10847048 DOI: 10.1038/s41564-023-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 02/04/2024]
Abstract
Disease-causing bacteria secrete numerous toxins to invade and subjugate their hosts. Unlike many smaller toxins, the secretion machinery of most large toxins remains enigmatic. By combining genomic editing, proteomic profiling and cryo-electron tomography of the insect pathogen Yersinia entomophaga, we demonstrate that a specialized subset of these cells produces a complex toxin cocktail, including the nearly ribosome-sized Tc toxin YenTc, which is subsequently exported by controlled cell lysis using a transcriptionally coupled, pH-dependent type 10 secretion system (T10SS). Our results dissect the Tc toxin export process by a T10SS, identifying that T10SSs operate via a previously unknown lytic mode of action and establishing them as crucial players in the size-insensitive release of cytoplasmically folded toxins. With T10SSs directly embedded in Tc toxin operons of major pathogens, we anticipate that our findings may model an important aspect of pathogenesis in bacteria with substantial impact on agriculture and healthcare.
Collapse
Affiliation(s)
- Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lara Kroczek
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
9
|
Hou C, Wang X, Guo J, Qi C, Zhang Y, Chen Y, Feng J, Zhao B, Li F. Isolation, characterization, and genomic analysis of BUCT627: a lytic bacteriophage targeting Stenotrophomonas maltophilia. FEMS Microbiol Lett 2024; 371:fnae076. [PMID: 39349986 DOI: 10.1093/femsle/fnae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/31/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024] Open
Abstract
Stenotrophomonas infections pose significant therapeutic challenges due to escalating resistance to antibiotics and chemotherapeutic agents. Phages offer a potential solution by virtue of their specific bacterial targeting capabilities. In this study, we isolated a new Stenotrophomonas bacteriophage, named BUCT627, from hospital sewage. Phage BUCT627 exhibited a 30-min latent period and demonstrated a burst size of 46 plaque forming unit (PFU)/cell. Remarkably, this phage displayed robust stability across a wide pH range (pH 3-13) and exhibited resilience under varying thermal conditions. The receptor of phage BUCT627 on Stenotrophomonas maltophilia No. 826 predominantly consist of surface proteins. The complete genome of phage BUCT627 is a 61 860-bp linear double-stranded DNA molecule with a GC content of 56.3%, and contained 99 open reading frames and two tRNAs. Notably, no antibiotic resistance, toxin, virulence-related genes, or lysogen-formation gene clusters was identified in BUCT627. Transmission electron microscopy and phylogeny analysis indicated that this phage was a new member within the Siphoviridae family. The results of this study will enhance our understanding of phage diversity and hold promise for the development of alternative therapeutic strategies against S. maltophilia infections.
Collapse
Affiliation(s)
- Chenrui Hou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xuexue Wang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Shanxi University, Taiyuan, 030006, China
| | - Jianguang Guo
- Office of Taian Central Blood Station of Shandong Province, Taian, 271000, China
| | - Chunling Qi
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Yun Chen
- Department of Minimally Invasive Cancer, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Jiao Feng
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Shanxi University, Taiyuan, 030006, China
| | - Bin Zhao
- Pediatric Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Fei Li
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
- Post-doctoral Programme, Shandong Runde Biotechnology Co. Ltd, Taian, 271000, China
| |
Collapse
|
10
|
Mokhtari S, Saris PEJ, Takala TM. Heterologous expression and purification of the phage lysin-like bacteriocin LysL from Lactococcus lactis LAC460. FEMS Microbiol Lett 2024; 371:fnae065. [PMID: 39153967 PMCID: PMC11370637 DOI: 10.1093/femsle/fnae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024] Open
Abstract
The wild-type Lactococcus lactis strain LAC460 produces two bacteriocin-like phage lysins, LysL and LysP. This study aimed to produce and secrete LysL in various heterologous hosts and an in vitro cell-free expression system for further functional studies. Initially, the lysL gene from L. lactis LAC460 was cloned into Lactococcus cremoris NZ9000 and L. lactis N8 strains, with and without the usp45 signal sequence (SSusp45), under a nisin-inducible promoter. Active LysL was primarily produced intracellularly in recombinant L. lactis N8, with some secretion into the supernatant. Recombinant L. cremoris NZ9000 lysed upon nisin induction, indicating successful lysL expression. However, fusion with Usp45 signal peptide (SPUsp45-LysL) weakened LysL activity, likely due to incomplete signal peptide cleavage during secretion. Active LysL was also produced in vitro, and analysed in SDS-PAGE, giving a 42-kDa band. However, the yield of LysL protein was still low when produced from recombinant lactococci or by in vitro expression system. Therefore, His-tagged LysL was produced in Escherichia coli BL21(DE3). Western blot confirmed the intracellular production of about 44-kDa His-tagged LysL in E. coli. His-tagged active LysL was then purified by Ni-NTA affinity chromatography yielding sufficient 4.34 mg of protein to be used in future functional studies.
Collapse
Affiliation(s)
- Samira Mokhtari
- Department of Microbiology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| | - Per E J Saris
- Department of Microbiology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| | - Timo M Takala
- Department of Microbiology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| |
Collapse
|
11
|
Mertaoja A, Mascher G, Nowakowska MB, Korkeala H, Henriques AO, Lindstrom M. Cellular and population strategies underpinning neurotoxin production and sporulation in Clostridium botulinum type E cultures. mBio 2023; 14:e0186623. [PMID: 37971252 PMCID: PMC10746260 DOI: 10.1128/mbio.01866-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Toxin production and sporulation are key determinants of pathogenesis in Clostridia. Toxins cause the clinical manifestation of clostridial diseases, including diarrhea and colitis, tissue damage, and systemic effects on the nervous system. Spores ensure long-term survival and persistence in the environment, act as infectious agents, and initiate the host tissue colonization leading to infection. Understanding the interplay between toxin production and sporulation and their coordination in bacterial cells and cultures provides novel intervention points for controlling the public health and food safety risks caused by clostridial diseases. We demonstrate environmentally driven cellular heterogeneity in botulinum neurotoxin and spore production in Clostridium botulinum type E populations and discuss the biological rationale of toxin and spore production in the pathogenicity and ecology of C. botulinum. The results invite to reassess the epidemiology of botulism and may have important implications in the risk assessment and risk management strategies in food processing and human and animal health.
Collapse
Affiliation(s)
- Anna Mertaoja
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gerald Mascher
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria B. Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Miia Lindstrom
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
DiBenedetto NV, Oberkampf M, Cersosimo L, Yeliseyev V, Bry L, Peltier J, Dupuy B. The TcdE holin drives toxin secretion and virulence in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558055. [PMID: 37745472 PMCID: PMC10516005 DOI: 10.1101/2023.09.16.558055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Clostridioides difficile is the leading cause of healthcare associated infections. The Pathogenicity Locus (PaLoc) toxins TcdA and TcdB promote host disease. These toxins lack canonical N-terminal signal sequences for translocation across the bacterial membrane, suggesting alternate mechanisms of release, which have included targeted secretion and passive release from cell lysis. While the holin TcdE has been implicated in TcdA and TcdB release, its role in vivo remains unknown. Here, we show profound reductions in toxin secretion in ΔtcdE mutants in the highly virulent strains UK1 (epidemic ribotype 027, Clade 3) and VPI10463 (ribotype 087, Clade 1). Notably, tcdE deletion in either strain rescued highly susceptible gnotobiotic mice from lethal infection by reducing acute extracellular toxin to undetectable levels, limiting mucosal damage, and enabling long-term survival, in spite of continued toxin gene expression in ΔtcdE mutants. Our findings confirm TcdE's critical functions in vivo for toxin secretion and C. difficile virulence.
Collapse
Affiliation(s)
- N V DiBenedetto
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Oberkampf
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - L Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V Yeliseyev
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Peltier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - B Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| |
Collapse
|