1
|
Zhou C, Li H, Zeng H, Wang P. Incidence trends, overall survival, and metastasis prediction using multiple machine learning and deep learning techniques in pediatric and adolescent population with osteosarcoma and Ewing's sarcoma: nomogram and webpage. Clin Transl Oncol 2025; 27:2327-2338. [PMID: 39333451 DOI: 10.1007/s12094-024-03717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVE The objective of this study was to analyze the incidence and overall survival (OS) of osteosarcoma (OSC) and Ewing's sarcoma (EWS) in a pediatric and adolescent population, employing machine learning (ML) and deep learning (DL) models to predict the likelihood of metastasis. METHODS Involving 2465 OSC and 1373 EWS patients aged 0-19 years, from 2004 to 2020. ML techniques-Lasso, Ridge Regression, Elastic Net, and Random Forest-were used alongside a deep learning model based on TensorFlow and Keras, to construct predictive models for metastasis. These models were optimized using grid search with cross-validation and evaluated on their performance metrics, including AUC, sensitivity, and accuracy. The variables' importance in metastasis prediction was determined using SHAP values. Statistical analysis was performed using R software, and an online nomogram was developed for clinical use. RESULTS The age-adjusted incidence of OSC and EWS from 2004 to 2020 showed a significant uptrend. The deep learning model, iterated 50 times, outperformed the Random Forest model in both loss and accuracy stabilization. The nomogram created demonstrated accurate survival predictions, as evidenced by its calibration curves and the distinction between high and low-risk groups. CONCLUSION The increasing trend in age-adjusted incidence of OSC and EWS highlights the need for continued research and improved therapeutic strategies in this domain. The study employed ML and DL models to predict distant metastasis in pediatric and adolescent patients with OSC and EWS, providing a valuable tool for prognosis. The online nomogram developed as a part of this research enhances the models' clinical utility, offering an accessible means for clinicians to predict survival outcomes effectively.
Collapse
Affiliation(s)
- Chengyuan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 TAIPING Street, Luzhou City, 646000, Sichuan Province, China
| | - Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 TAIPING Street, Luzhou City, 646000, Sichuan Province, China
| | - Hao Zeng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 TAIPING Street, Luzhou City, 646000, Sichuan Province, China
| | - Pan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 TAIPING Street, Luzhou City, 646000, Sichuan Province, China.
| |
Collapse
|
2
|
Kha ST, Sharma J, Kenney D, Daldrup-Link H, Steffner R. Assessment of the Interval to Diagnosis in Pediatric Bone Sarcoma. Pediatr Emerg Care 2023; 39:963-967. [PMID: 37567167 PMCID: PMC11805471 DOI: 10.1097/pec.0000000000003031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
OBJECTIVES The timely diagnosis of primary bone malignancies in pediatric patients is critical to clinical outcomes. The purpose of this study is to investigate the initial presentation of pediatric bone sarcoma patients to an academic health care system and assess the current interval to diagnosis. METHODS We conducted a retrospective review of pediatric patients (aged 1-18) with biopsy-proven diagnosis of osteosarcoma or Ewing sarcoma presenting between 2004 and 2020. All living patients had 1 year or more of follow-up. Primary outcomes were interval to diagnosis, clinical features on initial presentation, percent of patients with negative radiographic workup at initial presentation, and number of health care encounters before diagnosis. RESULTS Seventy-one patients (osteosarcoma, 51; Ewing sarcoma, 20) were included. Average age at presentation was 13.1 ± 3.3 years (range, 4.4-18.3). Average symptom duration was 5.4 ± 13.9 months (range, 0.1-84). Clinical features at initial presentation included limb/back pain (91.5% of patients), activity modification/pain medication use (78.9%), palpable mass (40.8%), night pain (35.2%), limp (25.4%), limb disuse (18.3%), and recent fever history (2.8%). Fourteen of 71 patients (19.7%) had negative radiographs at initial presentation. Average number of health care encounters before diagnosis was 1.9 ± 0.6 (range, 1.0-4.0), with most in the outpatient pediatrician clinics (81.2%) and emergency department (18.3%). Average time to diagnosis from initial presentation was 19.5 ± 65 days (range, 0-493); the 14 patients with initial negative radiographs had a statistically significant prolonged interval to diagnosis of 54 ± 134 days (range, 0-493; P = 0.018). CONCLUSIONS We found pediatric patients with primary bone sarcoma present with an average interval to diagnosis of 20 days. Twenty percent of patients had a significantly prolonged interval to diagnosis of 54 days. Clinical features suggest night pain is not a sensitive indicator. In patients of appropriate age with persistent unilateral pain in suspicious locations, early advanced imaging with magnetic resonance imaging should be considered.
Collapse
|
3
|
Wang J, Zhanghuang C, Tan X, Mi T, Liu J, Jin L, Li M, Zhang Z, He D. A Nomogram for Predicting Cancer-Specific Survival of Osteosarcoma and Ewing's Sarcoma in Children: A SEER Database Analysis. Front Public Health 2022; 10:837506. [PMID: 35178367 PMCID: PMC8843936 DOI: 10.3389/fpubh.2022.837506] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background Osteosarcoma (OSC) and Ewing's sarcoma (EWS) are children's most common primary bone tumors. The purpose of the study is to develop and validate a new nomogram to predict the cancer-specific survival (CSS) of childhood OSC and EWS. Methods The clinicopathological information of all children with OSC and EWS from 2004 to 2018 was downloaded from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate Cox regression analyses were used to screen children's independent risk factors for CSS. These risk factors were used to construct a nomogram to predict the CSS of children with OSC and EWS. A series of validation methods, including calibration plots, consistency index (C-index), and area under the receiver operating characteristic curve (AUC), were used to validate the accuracy and reliability of the prediction model. Decision curve analysis (DCA) was used to validate the clinical application efficacy of predictive models. All patients were divided into low- and high-risk groups based on the nomogram score. Kaplan-Meier curve and log-rank test were used to compare survival differences between the two groups. Results A total of 2059 children with OSC and EWS were included. All patients were randomly divided into training cohort 60% (N = 1215) and validation cohort 40% (N = 844). Univariate and multivariate analysis suggested that age, surgery, stage, primary site, tumor size, and histological type were independent risk factors. Nomograms were established based on these factors to predict 3-, 5-, and 8-years CSS of children with OSC and EWS. The calibration plots showed that the predicted value was highly consistent with the actual value. In the training cohort and validation cohort, the C-index was 0.729 (0.702–0.756) and 0.735 (0.702–0.768), respectively. The AUC of the training cohort and the validation cohort also showed similar results. The DCA showed that the nomogram had good clinical value. Conclusion We constructed a new nomogram to predict the CSS of OSC and EWS in children. This predictive model has good accuracy and reliability and can help doctors and patients develop clinical strategies.
Collapse
Affiliation(s)
- Jinkui Wang
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chenghao Zhanghuang
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, Kunming Children's Hospital (Children's Hospital Affiliated to Kunming Medical University), Yunnan Key Laboratory of Children's Major Disease Research, Kunming, China
| | - Xiaojun Tan
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical University, Nanchong, China
| | - Tao Mi
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayan Liu
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liming Jin
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mujie Li
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoxia Zhang
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei He
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Blay JY, Palmerini E, Bollard J, Aguiar S, Angel M, Araya B, Badilla R, Bernabeu D, Campos F, Chs CS, Carvajal Montoya A, Casavilca-Zambrano S, Castro-Oliden, Chacón M, Clara-Altamirano MA, Collini P, Correa Genoroso R, Costa FD, Cuellar M, Dei Tos AP, Dominguez Malagon HR, Donati DM, Dufresne A, Eriksson M, Farias-Loza M, Frezza AM, Frisoni T, Garcia-Ortega DY, Gerderblom H, Gouin F, Gómez-Mateo MC, Gronchi A, Haro J, Hindi N, Huanca L, Jimenez N, Karanian M, Kasper B, Lopes A, Lopes David BB, Lopez-Pousa A, Lutter G, Maki RG, Martinez-Said H, Martinez-Tlahuel JL, Mello CA, Morales Pérez JM, Moura DS, Nakagawa SA, Nascimento AG, Ortiz-Cruz EJ, Patel S, Pfluger Y, Provenzano S, Righi A, Rodriguez A, Santos TG, Scotlandi K, Mlg S, Soulé T, Stacchiotti S, Valverde CM, Waisberg F, Zamora Estrada E, Martin-Broto J. SELNET clinical practice guidelines for bone sarcoma. Crit Rev Oncol Hematol 2022; 174:103685. [PMID: 35460913 DOI: 10.1016/j.critrevonc.2022.103685] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Bone sarcoma are infrequent diseases, representing < 0.2% of all adult neoplasms. A multidisciplinary management within reference centers for sarcoma, with discussion of the diagnostic and therapeutic strategies within an expert multidisciplinary tumour board, is essential for these patients, given its heterogeneity and low frequency. This approach leads to an improvement in patient's outcome, as demonstrated in several studies. The Sarcoma European Latin-American Network (SELNET), aims to improve clinical outcome in sarcoma care, with a special focus in Latin-American countries. These Clinical Practice Guidelines (CPG) have been developed and agreed by a multidisciplinary expert group (including medical and radiation oncologist, surgical oncologist, orthopaedic surgeons, radiologist, pathologist, molecular biologist and representatives of patients advocacy groups) of the SELNET consortium, and are conceived to provide the standard approach to diagnosis, treatment and follow-up of bone sarcoma patients in the Latin-American context.
Collapse
Affiliation(s)
- J Y Blay
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France.
| | - E Palmerini
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - J Bollard
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - S Aguiar
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - M Angel
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - B Araya
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - R Badilla
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - D Bernabeu
- Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - F Campos
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - Caro-Sánchez Chs
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - A Carvajal Montoya
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - S Casavilca-Zambrano
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - Castro-Oliden
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - M Chacón
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - M A Clara-Altamirano
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - P Collini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - R Correa Genoroso
- Hospital Clínico Universitario Virgen de la Victoria, Campus Universitario de Teatinos s/n, 29010, Malaga, Spain
| | - F D Costa
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - M Cuellar
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - A P Dei Tos
- Treviso General Hospital Treviso, University of Padua, Padova, Italy
| | - H R Dominguez Malagon
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - D M Donati
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - A Dufresne
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - M Eriksson
- Skane University Hospital and Lund University, Lund, Sweden
| | - M Farias-Loza
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - A M Frezza
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - T Frisoni
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - D Y Garcia-Ortega
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - H Gerderblom
- Leiden University Medical Center, Leiden, The Netherlands
| | - F Gouin
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - M C Gómez-Mateo
- Hospital Universitario Miguel Servet, Paseo Isabel la Católica, 1-3, 50009 Zaragoza, Spain
| | - A Gronchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - J Haro
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - N Hindi
- Research Health Institute Fundacion Jimenez Diaz (IIS/FJD), 28015 Madrid, Spain; Hospital Fundación Jimenez Diaz University Hospital, 28040 Madrid, Spain; General de Villalba University Hospital, 28400 Madrid, Spain
| | - L Huanca
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - N Jimenez
- Hospital San Vicente de Paúl, Avenue 16, streets 10 and 14, Heredia, Costa Rica
| | - M Karanian
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - B Kasper
- University of Heidelberg, Mannheim Cancer Center, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - A Lopes
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - B B Lopes David
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - A Lopez-Pousa
- Hospital de la Santa Creu i Sant Pau, Carrer de Sant Quintí, 89, 08041 Barcelona, Spain
| | - G Lutter
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - R G Maki
- University of Pennsylvania, Abramson Cancer Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - H Martinez-Said
- Centro Oncologico Integral, Hospital Medica Sur, Planta Baja Torre III - Cons. 305, Col. Toriello Guerra, Deleg. Tlalpan. C.P., 14050, Mexico, D.F
| | - J L Martinez-Tlahuel
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - C A Mello
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - J M Morales Pérez
- Centro Oncologico Integral, Hospital Medica Sur, Planta Baja Torre III - Cons. 305, Col. Toriello Guerra, Deleg. Tlalpan. C.P., 14050, Mexico, D.F
| | - D S Moura
- Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain
| | - S A Nakagawa
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - A G Nascimento
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - E J Ortiz-Cruz
- Hospital Universitario La Paz, MD Anderson Cancer Center, Calle de Arturo Soria, 270, 28033 Madrid, Spain
| | - S Patel
- UT MD Anderson Cancer Center, Houston, TX, USA
| | - Y Pfluger
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - S Provenzano
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - A Righi
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - A Rodriguez
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - T G Santos
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - K Scotlandi
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - Silva Mlg
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - T Soulé
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - S Stacchiotti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - C M Valverde
- Vall d´Hebrón University Hospital, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain
| | - F Waisberg
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - E Zamora Estrada
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - J Martin-Broto
- Research Health Institute Fundacion Jimenez Diaz (IIS/FJD), 28015 Madrid, Spain; Hospital Fundación Jimenez Diaz University Hospital, 28040 Madrid, Spain; General de Villalba University Hospital, 28400 Madrid, Spain
| |
Collapse
|
5
|
Khoogar R, Li F, Chen Y, Ignatius M, Lawlor ER, Kitagawa K, Huang THM, Phelps DA, Houghton PJ. Single-cell RNA profiling identifies diverse cellular responses to EWSR1/FLI1 downregulation in Ewing sarcoma cells. Cell Oncol (Dordr) 2022; 45:19-40. [PMID: 34997546 PMCID: PMC10959445 DOI: 10.1007/s13402-021-00640-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The EWSR1/FLI1 gene fusion is the most common rearrangement leading to cell transformation in Ewing sarcoma (ES). Previous studies have indicated that expression at the cellular level is heterogeneous, and that levels of expression may oscillate, conferring different cellular characteristics. In ES the role of EWSR1/FLI1 in regulating subpopulation dynamics is currently unknown. METHODS We used siRNA to transiently suppress EWSR1/FLI1 expression and followed population dynamics using both single cell expression profiling, CyTOF and functional assays to define characteristics of exponentially growing ES cells and of ES cells in which EWSR1/FLI1 had been downregulated. Novel transcriptional states with distinct features were assigned using random forest feature selection in combination with machine learning. Cells isolated from ES xenografts in immune-deficient mice were interrogated to determine whether characteristics of specific subpopulations of cells in vitro could be identified. Stem-like characteristics were assessed by primary and secondary spheroid formation in vitro, and invasion/motility was determined for each identified subpopulation. Autophagy was determined by expression profiling, cell sorting and immunohistochemical staining. RESULTS We defined a workflow to study EWSR1/FLI1 driven transcriptional states and phenotypes. We tracked EWSR1/FLI1 dependent proliferative activity over time to discover sources of intra-tumoral diversity. Single-cell RNA profiling was used to compare expression profiles in exponentially growing populations (si-Control) or in two dormant populations (D1, D2) in which EWSR1/FLI1 had been suppressed. Three distinct transcriptional states were uncovered contributing to ES intra-heterogeneity. Our predictive model identified ~1% cells in a dormant-like state and ~ 2-4% cells with stem-like and neural stem-like features in an exponentially proliferating ES cell line and in ES xenografts. Following EWSR1/FLI1 knockdown, cells re-entering the proliferative cycle exhibited greater stem-like properties, whereas for those cells remaining quiescent, FAM134B-dependent dormancy may provide a survival mechanism. CONCLUSIONS We show that time-dependent changes induced by suppression of oncogenic EWSR1/FLI1 expression induces dormancy, with different subpopulation dynamics. Cells re-entering the proliferative cycle show enhanced stem-like characteristics, whereas those remaining dormant for prolonged periods appear to survive through autophagy. Cells with these characteristics identified in exponentially growing cell populations and in tumor xenografts may confer drug resistance and could potentially contribute to metastasis.
Collapse
Affiliation(s)
- Roxane Khoogar
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Fuyang Li
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Myron Ignatius
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Elizabeth R Lawlor
- Seattle Children's Research Institute, University of Washington Medical School, Washington, DC, USA
| | - Katsumi Kitagawa
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Doris A Phelps
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Peter J Houghton
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA.
| |
Collapse
|
6
|
Woltsche JN, Leithner A, Smolle MA, Szkandera J, Maier A, Liegl-Atzwanger B, Smolle-Jüttner FM. Late metastasis in Ewing sarcoma. Pediatr Blood Cancer 2021; 68:e28791. [PMID: 33155385 DOI: 10.1002/pbc.28791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 11/08/2022]
Affiliation(s)
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Maria Anna Smolle
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Joanna Szkandera
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alfred Maier
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | - Freyja-Maria Smolle-Jüttner
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Khan S, Abid Z, Haider G, Bukhari N, Zehra D, Hashmi M, Abid M, Ibrahim U. Incidence of Ewing's Sarcoma in Different Age Groups, Their Associated Features, and Its Correlation With Primary Care Interval. Cureus 2021; 13:e13986. [PMID: 33884237 PMCID: PMC8054948 DOI: 10.7759/cureus.13986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction Primary care interval is the time duration from a patient’s first presentation to the final diagnosis. Ewing’s sarcoma is a rare small round blue cell bone tumor originating from neuroectoderm and undifferentiated neuroepithelial cells, having an annual incidence of approximately one case per million in the United States. In this study, we analyzed the age pattern among patients diagnosed with Ewing’s sarcoma undergoing management, along with associated features including involved site, regional lymphadenopathy, and distant metastasis at the time of presentation and their correlation with the primary care interval. Methods This is a cross-sectional study carried out at the Oncology department of a Tertiary Care Government Hospital in Karachi, Pakistan. The duration of our study was from January 2020 to December 2020. During this period, all patients with proven diagnosis of Ewing’s sarcoma between ages 10 years and 65 years were included in the study. All the participants of the study were divided into groups, based on the age and site of the tumor. Results A total of 895 cases of bone cancer were reported. Among these, 147 cases (16.4%) had Ewing’s sarcoma. Of these patients, 88 were male (60%) while 59 (40%) were female. The mean age of patients was 18.9 ± 3.2 years. Ewing’s sarcoma most commonly occurred during 15 to 20 years of age. The most common region involved was lower limb (n=76, 52%) followed by upper limb (n=63, 43%) followed by pelvis (n=8, 5.4%). Conclusion The peak time for the occurrence of Ewing’s sarcoma is from 15 years to 20 years of age. Regional painful swelling is the most common presenting feature in our study population. Factors causing a prolonged primary care interval include early age of onset, non-specific clinical presentation, and insufficient knowledge of the primary care physician, which results in poor prognosis. Hence, it is important to consider Ewing’s sarcoma as a differential on the first presentation especially in the high-risk age group.
Collapse
Affiliation(s)
| | - Zain Abid
- Oncology, Jinnah Postgraduate Medical Center, Karachi, PAK
| | - Ghulam Haider
- Oncology, Jinnah Postgraduate Medical Center, Karachi, PAK
| | - Neelma Bukhari
- Oncology, Jinnah Postgraduate Medical Center, Karachi, PAK
| | - Desaar Zehra
- Oncology, Jinnah Postgraduate Medical Center, Karachi, PAK
| | - Madiha Hashmi
- Oncology, Jinnah Postgraduate Medical Center, Karachi, PAK
| | - Masooma Abid
- Oncology, Jinnah Postgraduate Medical Center, Karachi, PAK
| | - Umer Ibrahim
- Emergency Department, National Medical Center, Karachi, PAK
| |
Collapse
|
8
|
Perret R, Escuriol J, Velasco V, Mayeur L, Soubeyran I, Delfour C, Aubert S, Polivka M, Karanian M, Meurgey A, Le Guellec S, Weingertner N, Hoeller S, Coindre JM, Larousserie F, Pierron G, Tirode F, Le Loarer F. NFATc2-rearranged sarcomas: clinicopathologic, molecular, and cytogenetic study of 7 cases with evidence of AGGRECAN as a novel diagnostic marker. Mod Pathol 2020; 33:1930-1944. [PMID: 32327700 DOI: 10.1038/s41379-020-0542-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
NFATc2-rearranged sarcomas (NFATc2-Sarcomas) are infrequent round cell tumors characterized by EWSR1-NFATc2 fusions and FUS-NFATc2 fusions. Although our knowledge on these neoplasms has increased recently, novel diagnostic tools and more comprehensive series are still needed. Here, we describe the features of a series of seven molecularly confirmed NFATc2-Sarcomas (EWSR1-NFATc2, n = 4; FUS-NFATc2, n = 3) and demonstrate the utility of AGGRECAN immunohistochemistry for their identification. Patients were four males and three females, ranging in age from 19 to 66 years (median: 33). All were primary bone tumors (femur, n = 4; tibia, n = 2; ilium, n = 1), frequently infiltrating the surrounding soft tissues. Treatment often consisted of neoadjuvant chemotherapy and surgery. Follow-up was available for six patients (median 18 months, range 5-102 months), three patients died of disease and four patients are currently alive. Histologically, tumors consisted of monotonous round cells growing in lobules and sheets in variable amounts of fibrous to myxoid stroma. Other findings included spindle cells, corded and trabecular architecture, nuclear pleomorphism, cartilaginous differentiation, and osteoid-like matrix. Histological response to neoadjuvant chemotherapy was poor in all resection specimens available for review (n = 4). Tumors were diffusely positive for AGGRECAN and CD99 (7/7), and a subset expressed Pan-Keratin (AE1-AE3; 3/6), S100 (2/6), BCOR (2/6), ETV-4 (2/5), WT1 (2/6), and ERG (2/5). Desmin, NKX3-1, and SATB2 were negative (0/6). Diffuse AGGRECAN staining was also seen in 8/129 round cell sarcomas used for comparison, including mesenchymal chondrosarcoma (7/26) and CIC-sarcoma (1/26). Array-CGH showed complex karyotypes with recurrent deletions of tumor suppressor genes (CDKN2A/B, TUSC7, and DMD) in three FUS-NFATC2 cases and a simpler profile without homozygous losses in one EWSR1-NFATc2 case. Segmental chromosomal gains covering the loci of the fusion genes were detected in both variants. Overall, our study confirms and expands previous observations on NFATc2-sarcomas and supports that AGGRECAN is a useful biomarker of these tumors.
Collapse
Affiliation(s)
- Raul Perret
- Department of Biopathology, Bergonie Institute, Bordeaux, France.
| | - Julien Escuriol
- Department of Biopathology, Bergonie Institute, Bordeaux, France.,Bordeaux University, Talence, France
| | - Valérie Velasco
- Department of Biopathology, Bergonie Institute, Bordeaux, France
| | - Laetitia Mayeur
- Department of Biopathology, Bergonie Institute, Bordeaux, France
| | - Isabelle Soubeyran
- Department of Biopathology, Bergonie Institute, Bordeaux, France.,INSERM U1218, ACTION Unit, Bordeaux, France
| | - Christophe Delfour
- Department of Pathology, Montpellier University Hospital, Montpellier, France
| | - Sébastien Aubert
- Department of Pathology, Institut de Pathologie, Univ. Lille, CHU Lille, F-59000, Lille, France
| | - Marc Polivka
- Department of Pathology, APHP, Hôpital Cochin, DMU Imagina, Université de Paris, F-75014, Paris, France
| | - Marie Karanian
- Department of Pathology, Leon Berard Center, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | | | - Sophie Le Guellec
- Department of Pathology, Claudius Regaud Institute, Toulouse-Oncopole, Toulouse, France
| | - Noelle Weingertner
- Department of Pathology, Strasbourg Regional University Hospital (Hautepierre Hospital), Strasbourg, France
| | - Sylvia Hoeller
- Department of Pathology, Hospital of the University of Basel, Basel, Switzerland
| | - Jean-Michel Coindre
- Department of Biopathology, Bergonie Institute, Bordeaux, France.,Bordeaux University, Talence, France
| | | | - Gaëlle Pierron
- Department of Tumor Biology, Curie Institute, Paris, France
| | - Franck Tirode
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - François Le Loarer
- Department of Biopathology, Bergonie Institute, Bordeaux, France. .,Bordeaux University, Talence, France. .,INSERM U1218, ACTION Unit, Bordeaux, France.
| |
Collapse
|
9
|
Salfelder MEA, Kessel KA, Thiel U, Burdach S, Kampfer S, Combs SE. Prospective evaluation of multitarget treatment of pediatric patients with helical intensity-modulated radiotherapy. Strahlenther Onkol 2020; 196:1103-1115. [PMID: 32748147 PMCID: PMC7686189 DOI: 10.1007/s00066-020-01670-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Background and purpose Radiotherapy (RT) is persistently gaining significance in the treatment of pediatric tumors. However, individual features of a growing body and multifocal stages complicate this approach. Tomotherapy offers advantages in the treatment of anatomically complex tumors with low risks of side effects. Here we report on toxicity incidence and outcome of tomotherapy with a focus on multitarget RT (mtRT). Materials and methods From 2008 to 2017, 38 children diagnosed with sarcoma were treated with tomotherapy. The median age was 15 years (6–19 years). Toxicity was graded according to the Common Terminology Criteria for Adverse Events v.4.03 and classified into symptoms during RT, acutely (0–6 months) and late (>6 months) after RT, and long-term sideeffects (>24 months). Results The main histologies were Ewing sarcoma (n = 23 [61%]) and alveolar rhabdomyosarcoma (n = 5 [13%]). RT was performed with a median total dose of 54 Gy (40.5–66.0 Gy) and a single dose of 2 Gy (1.80–2.27 Gy). Twenty patients (53%) received mtRT. Median follow-up was 29.7 months (95% confidence interval 15.3–48.2 months) with a 5-year survival of 55.2% (±9.5%). The 5‑year survival rate of patients with mtRT (n = 20) was 37.1 ± 13.2%, while patients who received single-target RT (n = 18) had a 5-year survival rate of 75 ± 10.8%. Severe toxicities (grade 3 and 4) emerged in 14 patients (70%) with mtRT and 7 patients (39%) with single-target RT. Two non-hematological grade 4 toxicities occurred during RT: one mucositis and one radiodermatitis. After mtRT 5 patients had grade 3 toxicities acute and after single-target RT 4 patients. One patient had acute non-hematological grade 4 toxicities (gastritis, pericarditis, and pericardial effusion) after mtRT. Severe late effects of RT occurred in 2 patients after mtRT and in none of the single-target RT patients. No severe long-term side effects appeared. Conclusion Our results showed acceptable levels of acute and late toxicities, considering the highly advanced diseases and multimodal treatment. Hence, tomotherapy is a feasible treatment method for young patients with anatomically complex tumors or multiple targets. Especially mtRT is a promising and innovative treatment approach for pediatric sarcomas, delivering unexpectedly high survival rates for patients with multifocal Ewing sarcomas in this study, whereby the limited number of patients should invariably be considered in the interpretation. Electronic supplementary material The online version of this article (10.1007/s00066-020-01670-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria-Elena A. Salfelder
- Department of Radiation Oncology, Technical University Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Kerstin A. Kessel
- Department of Radiation Oncology, Technical University Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
- DKTK Partner Site Munich, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Uwe Thiel
- Department of Pediatrics and Children’s Cancer Research Center, Kinderklinik München Schwabing, Technical University of Munich School for Medicine, Munich, Germany
| | - Stefan Burdach
- Department of Pediatrics and Children’s Cancer Research Center, Kinderklinik München Schwabing, Technical University of Munich School for Medicine, Munich, Germany
| | - Severin Kampfer
- Department of Radiation Oncology, Technical University Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technical University Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
- DKTK Partner Site Munich, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany
| |
Collapse
|
10
|
Casali PG, Bielack S, Abecassis N, Aro HT, Bauer S, Biagini R, Bonvalot S, Boukovinas I, Bovee JVMG, Brennan B, Brodowicz T, Broto JM, Brugières L, Buonadonna A, De Álava E, Dei Tos AP, Del Muro XG, Dileo P, Dhooge C, Eriksson M, Fagioli F, Fedenko A, Ferraresi V, Ferrari A, Ferrari S, Frezza AM, Gaspar N, Gasperoni S, Gelderblom H, Gil T, Grignani G, Gronchi A, Haas RL, Hassan B, Hecker-Nolting S, Hohenberger P, Issels R, Joensuu H, Jones RL, Judson I, Jutte P, Kaal S, Kager L, Kasper B, Kopeckova K, Krákorová DA, Ladenstein R, Le Cesne A, Lugowska I, Merimsky O, Montemurro M, Morland B, Pantaleo MA, Piana R, Picci P, Piperno-Neumann S, Pousa AL, Reichardt P, Robinson MH, Rutkowski P, Safwat AA, Schöffski P, Sleijfer S, Stacchiotti S, Strauss SJ, Sundby Hall K, Unk M, Van Coevorden F, van der Graaf WTA, Whelan J, Wardelmann E, Zaikova O, Blay JY. Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018; 29:iv79-iv95. [PMID: 30285218 DOI: 10.1093/annonc/mdy310] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Affiliation(s)
- P G Casali
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan and University of Milan, Milan, Italy
| | - S Bielack
- Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - N Abecassis
- Instituto Portugues de Oncologia de Lisboa Francisco Gentil EPE, Lisbon, Portugal
| | - H T Aro
- Turku University Hospital (Turun Yliopistollinen Keskussairaala), Turlu, Finland
| | - S Bauer
- University Hospital Essen, Essen, Germany
| | - R Biagini
- Department of Oncological Orthopedics, Musculoskeletal Tissue Bank, IFO, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - J V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - B Brennan
- Royal Manchester Children's Hospital, Manchester, UK
| | - T Brodowicz
- Vienna General Hospital (AKH), Medizinische Universität Wien, Vienna, Austria
| | - J M Broto
- Hospital Universitario Virgen del Rocio-CIBERONC, Seville, Spain
| | - L Brugières
- Gustave Roussy Cancer Campus, Villejuif, France
| | - A Buonadonna
- Centro di Riferimento Oncologico di Aviano, Aviano
| | - E De Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - A P Dei Tos
- Ospedale Regionale di Treviso "S.Maria di Cà Foncello", Treviso, Italy
| | - X G Del Muro
- Integrated Unit ICO Hospitalet, HUB, Barcelona, Spain
| | - P Dileo
- Sarcoma Unit, University College London Hospitals NHS Trust, London, UK
| | - C Dhooge
- Ghent University Hospital (Pediatric Hematology-Oncology & Stem Cell Transplantation), Ghent, Belgium
| | - M Eriksson
- Skane University Hospital-Lund, Lund, Sweden
| | - F Fagioli
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - A Fedenko
- N. N. Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - V Ferraresi
- Department of Oncological Orthopedics, Musculoskeletal Tissue Bank, IFO, Regina Elena National Cancer Institute, Rome, Italy
| | - A Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - S Ferrari
- Istituto Ortopedico Rizzoli, Bologna
| | - A M Frezza
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milan, Italy
| | - N Gaspar
- Gustave Roussy Cancer Campus, Villejuif, France
| | - S Gasperoni
- Azienda Ospedaliera Universitaria Careggi Firenze, Florence, Italy
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - T Gil
- Institut Jules Bordet, Brussels, Belgium
| | - G Grignani
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy
| | - A Gronchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan and University of Milan, Milan, Italy
| | - R L Haas
- Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam and Department of Radiotherapy, Leiden University Medical Centre, Leiden, The Netherlands
| | - B Hassan
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | - R Issels
- Department of Medicine III, University Hospital Ludwig-Maximilians-University Munich, Munich, Germany
| | - H Joensuu
- Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | | | - I Judson
- The Institute of Cancer Research, London, UK
| | - P Jutte
- University Medical Center Groningen, Groningen
| | - S Kaal
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Kager
- St. Anna Children's Hospital & Children's Cancer Research Institute, Medical University Vienna, Vienna, Austria
| | - B Kasper
- Mannheim University Medical Center, Mannheim
| | | | - D A Krákorová
- Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - R Ladenstein
- St. Anna Children's Hospital & Children's Cancer Research Institute, Medical University Vienna, Vienna, Austria
| | - A Le Cesne
- Gustave Roussy Cancer Campus, Villejuif, France
| | - I Lugowska
- Maria Sklodowska Curie Institute-Oncology Centre, Warsaw, Poland
| | - O Merimsky
- Tel Aviv Sourasky Medical Center (Ichilov), Tel Aviv, Israel
| | - M Montemurro
- Medical Oncology University Hospital of Lausanne, Lausanne, Switzerland
| | - B Morland
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - M A Pantaleo
- Azienda Ospedaliera, Universitaria, Policlinico S Orsola-Malpighi Università di Bologna, Bologna, Italy
| | - R Piana
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - P Picci
- Istituto Ortopedico Rizzoli, Bologna
| | | | - A L Pousa
- Fundacio de Gestio Sanitaria de L'Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - P Reichardt
- Helios Klinikum Berlin Buch, Berlin, Germany
| | - M H Robinson
- YCRC Department of Clinical Oncology, Weston Park Hospital NHS Trust, Sheffield, UK
| | - P Rutkowski
- Maria Sklodowska Curie Institute-Oncology Centre, Warsaw, Poland
| | - A A Safwat
- Aarhus University Hospital, Aarhus, Finland
| | - P Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - S Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - S Stacchiotti
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milan, Italy
| | - S J Strauss
- Sarcoma Unit, University College London Hospitals NHS Trust, London, UK
| | - K Sundby Hall
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - M Unk
- Institute of Oncology of Ljubljana, Ljubljana, Slovenia
| | - F Van Coevorden
- Netherlands Cancer Institute Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - W T A van der Graaf
- Royal Marsden Hospital, London
- Radboud University Medical Center, Nijmegen, The Netherlands
- Netherlands Cancer Institute Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - J Whelan
- Sarcoma Unit, University College London Hospitals NHS Trust, London, UK
| | - E Wardelmann
- Gerhard-Domagk-Institut für Pathologie, Universitätsklinikum Münster, Münster, Germany
| | - O Zaikova
- Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - J Y Blay
- Centre Leon Bernard and UCBL1, Lyon, France
| |
Collapse
|
11
|
Büyükkapu Bay S, Kebudi R, Görgün O, Zülfikar B, Darendeliler E, Çakır FB. Vincristine, irinotecan, and temozolomide treatment for refractory/relapsed pediatric solid tumors: A single center experience. J Oncol Pharm Pract 2018; 25:1343-1348. [PMID: 30080131 DOI: 10.1177/1078155218790798] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Although the survival of pediatric cancer has increased dramatically in the last decades, the survival of refractory, relapsed, and metastatic cases is still dismal. The combination of irinotecan and temozolomide has shown activity against refractory/relapsed pediatric solid tumors. METHOD Thirty-four children with refractory/relapsed solid tumors who had previously been heavily pretreated and who were given vincristine, irinotecan, and temozolomide as third- or further line chemotherapy during 2004-2015 were evaluated. RESULTS Patients were diagnosed with Ewing sarcoma (n = 15), rhabdomyosarcoma (n = 8), neuroblastoma (n = 8), osteosarcoma (n = 2), and Wilms' tumor (n = 1). Thirty patients presented with disease progression on therapy and the other four presented with relapsing. A total of 141 cycles were administered. Radiotherapy was used in 17 patients and surgery in 4 as local therapy. Among all patients, 6 had complete response, 3 had partial response, 14 had stable disease, and 11 had progressive disease. The objective response was 26.4% (complete response + partial response) and median survival duration was six months. The first and second year overall survival rates were 22.3% and 16.8%. The objective response in Ewing sarcoma patients was 40%. Diarrhea was the most common toxicity and 14 (10%) courses were associated with grade 3-4 diarrhea. CONCLUSIONS In heavily pretreated patients with refractory/relapsed solid tumors, the vincristine, irinotecan, and temozolomide regimen seemed promising in Ewing sarcoma patients and was well tolerated.
Collapse
Affiliation(s)
- Sema Büyükkapu Bay
- 1 Division of Pediatric Hematology-Oncology, Istanbul University, Institute of Oncology, Istanbul, Turkey
| | - Rejin Kebudi
- 2 Division of Pediatric Hematology-Oncology, Istanbul University, Cerrahpasa Medical Faculty & Istanbul University Oncology Institute, Istanbul, Turkey
| | - Omer Görgün
- 2 Division of Pediatric Hematology-Oncology, Istanbul University, Cerrahpasa Medical Faculty & Istanbul University Oncology Institute, Istanbul, Turkey
| | - Bülent Zülfikar
- 2 Division of Pediatric Hematology-Oncology, Istanbul University, Cerrahpasa Medical Faculty & Istanbul University Oncology Institute, Istanbul, Turkey
| | - Emin Darendeliler
- 3 Department of Radiation Oncology, Istanbul University, Institute of Oncology, Istanbul, Turkey
| | - Fatma B Çakır
- 4 Division of Pediatric Hematology-Oncology, Department of Pediatrics, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
12
|
Bong C, Thomson I, Lampe G. Case report and literature review of Ewing's sarcoma in the gastrointestinal tract. SURGICAL PRACTICE 2018; 22:84-92. [DOI: 10.1111/1744-1633.12292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Christopher Bong
- Department of Upper Gastrointestinal Surgery and Soft Tissue; Princess Alexandra Hospital; Woolloongabba Queensland Australia
| | - Iain Thomson
- Department of Upper Gastrointestinal Surgery and Soft Tissue; Princess Alexandra Hospital; Woolloongabba Queensland Australia
| | - Guy Lampe
- Department of Anatomical Pathology; Princess Alexandra Hospital; Woolloongabba Queensland Australia
| |
Collapse
|
13
|
Insulin-like Growth Factor Receptor Inhibition as Maintenance Therapy for Metastatic Ewing Sarcoma. J Pediatr Hematol Oncol 2016; 38:563-9. [PMID: 27322713 DOI: 10.1097/mph.0000000000000616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite the advances in oncology, the survival of children with Ewing Sarcoma metastatic at diagnosis continues to be 27% 3-year event-free survival and 34% 3-year overall survival. In other words, 7 of 10 children die within 3 years of their initial diagnosis despite intense chemotherapy, local treatment (radiation/surgery), and/or high dose busulfan-melphalan and autologous stem-cell transplantation. A chief contributor to this morbidity and mortality is the difficulty eradicating the tumor using present therapeutic modalities. Despite the extensive surgery, intensive chemotherapy and radiation, those left with a significant bulk of residual tumor relapse within a year of completing treatment. This case report suggests that in children left with a significant tumor burden after completing chemotherapy, a prolonged period of stability can be achieved with biological agents targeting the underlying molecular drivers. In this particular case we used figitumumab, an antibody targeting the insulin-like growth factor type 1 receptor pathway, a documented target in Ewing Sarcoma. Although not curative, these agents provide a better quality of life.
Collapse
|
14
|
Khuri S, Gilshtein H, Sayidaa S, Bishara B, Kluger Y. Primary Ewing Sarcoma/Primitive Neuroectodermal Tumor of the Stomach. Case Rep Oncol 2016; 9:666-671. [PMID: 27920700 PMCID: PMC5118824 DOI: 10.1159/000449126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/04/2023] Open
Abstract
Ewing sarcoma/primitive neuroectodermal tumor (ES/PNET) is a tumor of small round cells arising in skeletal tissues. These tumors rarely arise in the stomach. We present a 31-year-old healthy female patient who was admitted to our surgical ward due to upper gastrointestinal hemorrhage. Upper endoscopy revealed a large ulcerated bleeding mass originating from the lesser curvature. Biopsy revealed tumor cell immunoreactivity positive for CD99, vimentin, and Ki67 (an index of proliferation). These findings were compatible with gastric ES/PNET. The fluorescence in situ hybridization analysis result for the EWSR1 gene rearrangement (11: 22 translocation) was positive. The patient refused neoadjuvant treatment and thus underwent an operation during which a mass at the lesser curvature of the stomach was found. The mass was adhering to the pancreatic tail and to the mesentery of the transverse and descending colon. Total gastrectomy, distal pancreatectomy, splenectomy, and left adrenalectomy were done. The patient refused adjuvant treatment. She is free of disease 3 years after surgery.
Collapse
Affiliation(s)
- Safi Khuri
- Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | |
Collapse
|
15
|
Preclinical Justification of pbi-shRNA EWS/FLI1 Lipoplex (LPX) Treatment for Ewing's Sarcoma. Mol Ther 2016; 24:1412-22. [PMID: 27166877 PMCID: PMC5023384 DOI: 10.1038/mt.2016.93] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
The EWS/FLI1 fusion gene is well characterized as a driver of Ewing's sarcoma. Bi-shRNA EWS/FLI1 is a functional plasmid DNA construct that transcribes both siRNA and miRNA-like effectors each of which targets the identical type 1 translocation junction region of the EWS/FLI1 transcribed mRNA sequence. Previous preclinical and clinical studies confirm the safety of this RNA interference platform technology and consistently demonstrate designated mRNA and protein target knockdown at greater than 90% efficiency. We initiated development of pbi-shRNA EWS/FLI1 lipoplex (LPX) for the treatment of type 1 Ewing's sarcoma. Clinical-grade plasmid was manufactured and both sequence and activity verified. Target protein and RNA knockdown of 85-92% was demonstrated in vitro in type 1 human Ewing's sarcoma tumor cell lines with the optimal bi-shRNA EWS/FLI1 plasmid. This functional plasmid was placed in a clinically tested, liposomal (LP) delivery vehicle followed by in vivo verification of activity. Type 1 Ewing's sarcoma xenograft modeling confirmed dose related safety and tumor response to pbi-shRNA EWS/FLI1 LPX. Toxicology studies in mini-pigs with doses comparable to the demonstrated in vivo efficacy dose resulted in transient fever, occasional limited hypertension at low- and high-dose assessment and transient liver enzyme elevation at high dose. These results provide the justification to initiate clinical testing.
Collapse
|
16
|
Gerrand C, Athanasou N, Brennan B, Grimer R, Judson I, Morland B, Peake D, Seddon B, Whelan J. UK guidelines for the management of bone sarcomas. Clin Sarcoma Res 2016; 6:7. [PMID: 27148438 PMCID: PMC4855334 DOI: 10.1186/s13569-016-0047-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/09/2016] [Indexed: 01/02/2023] Open
Abstract
This document is an update of the British Sarcoma Group guidelines published in 2010. The aim is to provide a reference standard for the clinical care of patients in the UK with bone sarcomas. Recent recommendations by the European Society of Medical Oncology, The National Comprehensive Cancer Network and The National Institute for Health and Care Excellence have been incorporated, and the literature since 2010 reviewed. The standards represent a consensus amongst British Sarcoma Group members in 2015. It is acknowledged that these guidelines will need further updates as care evolves. The key recommendations are that bone pain or a palpable mass should always lead to further investigation and that patients with clinico-radiological findings suggestive of a primary bone tumour at any site in the skeleton should be referred to a specialist centre and managed by a fully accredited bone sarcoma multidisciplinary team. Treatment recommendations are provided for the major tumour types and for localised, metastatic and recurrent disease. Follow up schedules are suggested.
Collapse
Affiliation(s)
- Craig Gerrand
- />Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, NE7 7DN UK
| | | | | | - Robert Grimer
- />Royal Orthopaedic Hospital, Birmingham, B31 2AP UK
| | | | - Bruce Morland
- />Birmingham Children’s Hospital, Birmingham, B4 6NH UK
| | - David Peake
- />Queen Elizabeth Hospital, Birmingham, B15 2TH UK
| | | | | | - On behalf of the British Sarcoma Group
- />Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, NE7 7DN UK
- />Nuffield Orthopaedic Centre, Oxford, OX3 7LD UK
- />Royal Manchester Children’s Hospital, Manchester, M13 9WL UK
- />Royal Orthopaedic Hospital, Birmingham, B31 2AP UK
- />The Royal Marsden, Sutton, SM2 5PT UK
- />Birmingham Children’s Hospital, Birmingham, B4 6NH UK
- />Queen Elizabeth Hospital, Birmingham, B15 2TH UK
- />University College Hospital, London, NW1 2PG UK
| |
Collapse
|
17
|
Lee CY, Yen CC, Yen HJ, Shiau CY, Chao TC, Wu PK, Chen CF, Chen PCH, Wu HTH, Chiou HJ, Chen CC, Hung GY, Chen WM. Outcomes of 50 Patients With Ewing Sarcoma Family of Tumors Treated at a Single Institution in Taiwan. Medicine (Baltimore) 2016; 95:e3830. [PMID: 27258529 PMCID: PMC4900737 DOI: 10.1097/md.0000000000003830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
To identify the prognostic factors and long-term outcome of the Ewing sarcoma family of tumors (ESFT), data on 50 patients with ESFT treated at Taipei Veterans General Hospital between February 1991 and March 2014 were retrospectively considered. The influence of patient demographics, tumor features, and clinical and therapeutic parameters on overall survival (OS) and progression-free survival (PFS) rates were assessed. The results revealed that 21 of the 50 patients (42%) were metastatic at diagnosis. The median follow-up time was 1.8 years. The 5-year OS and PFS for patients who were nonmetastatic were 61.6% and 55.5%, respectively, and 18.8% and 15.4% for patients who were metastatic, respectively. The key adverse prognostic factor was metastasis at diagnosis. Radiotherapy for local control was associated with improved PFS. The high rate of primary metastasis and poorer outcomes of nonmetastatic ESFT compared with results from Western studies, along with previously reported low rates of ESFT in Taiwanese people, suggest that genetic factors play a role in the pathogenesis of ESFT and chemotherapy pharmacokinetics and pharmacodynamics. Radiotherapy in local treatment should be considered more aggressively in Taiwanese patients with ESFT.
Collapse
Affiliation(s)
- Chih-Ying Lee
- From the Division of Pediatric Hematology and Oncology (C-YL, H-JY, C-CC, G-YH), Department of Pediatrics, Taipei Veterans General Hospital; School of Medicine (C-YL, C-CY, H-JY, C-YS, T-CC, P-KW, C-FC, PC-HC, H-THW, H-JC, C-CC, G-YH, W-MC), National Yang-Ming University; Therapeutical and Research Center of Musculoskeletal Tumor (C-YL, C-CY, H-JY, C-YS, T-CC, P-KW, C-FC, PC-HC, H-THW, H-JC, G-YH, W-MC), Department of Orthopedics; Division of Medical Oncology (C-CY, T-CC), Department of Oncology, Taipei Veterans General Hospital; Department of Life Science (H-JY, G-YH), National Taiwan Normal University; Division of Radiation Oncology (C-YS), Department of Oncology; Department of Orthopedics (P-KW, C-FC); Department of Pathology (PC-HC); Department of Radiology (H-THW, H-JC), Taipei Veterans General Hospital; National Defense Medical Center (H-JC), Taipei; Department of Pediatrics (C-CC), Taipei Veterans General Hospital Hsinchu Branch, Hsinchu; and Rehabilitation and Technical Aid Center (W-MC), Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ghisoli M, Barve M, Mennel R, Lenarsky C, Horvath S, Wallraven G, Pappen BO, Whiting S, Rao D, Senzer N, Nemunaitis J. Three-year Follow up of GMCSF/bi-shRNA(furin) DNA-transfected Autologous Tumor Immunotherapy (Vigil) in Metastatic Advanced Ewing's Sarcoma. Mol Ther 2016; 24:1478-83. [PMID: 27109631 DOI: 10.1038/mt.2016.86] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 02/08/2023] Open
Abstract
Ewing's sarcoma is a devastating rare pediatric cancer of the bone. Intense chemotherapy temporarily controls disease in most patients at presentation but has limited effect in patients with progressive or recurrent disease. We previously described preliminary results of a novel immunotherapy, FANG (Vigil) vaccine, in which 12 advanced stage Ewing's patients were safely treated and went on to achieve a predicted immune response (IFNγ ELISPOT). We describe follow-up through year 3 of a prospective, nonrandomized study comparing an expanded group of Vigil-treated advanced disease Ewing's sarcoma patients (n = 16) with a contemporaneous group of Ewing's sarcoma patients (n = 14) not treated with Vigil. Long-term follow-up results show a survival benefit without evidence of significant toxicity (no ≥ grade 3) to Vigil when administered once monthly by intradermal injection (1 × 10e(6) cells/injection to 1 × 10e(7) cells/injection). Specifically, we report a 1-year actual survival of 73% for Vigil-treated patients compared to 23% in those not treated with Vigil. In addition, there was a 17.2-month difference in overall survival (OS; Kaplan-Meier) between the Vigil (median OS 731 days) and no Vigil patient groups (median OS 207 days). In conclusion, these results supply the rational for further testing of Vigil in advanced stage Ewing's sarcoma.
Collapse
Affiliation(s)
- Maurizio Ghisoli
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA.,Texas Oncology, P.A., Dallas, Texas, USA.,Medical City Dallas Hospital, Dallas, Texas, USA
| | - Minal Barve
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA.,Texas Oncology, P.A., Dallas, Texas, USA
| | - Robert Mennel
- Texas Oncology, P.A., Dallas, Texas, USA.,Baylor University Medical Center, Dallas, Texas, USA
| | - Carl Lenarsky
- Texas Oncology, P.A., Dallas, Texas, USA.,Medical City Dallas Hospital, Dallas, Texas, USA
| | - Staci Horvath
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA
| | | | | | | | | | - Neil Senzer
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA.,Gradalis, Inc., Dallas, Texas, USA
| | - John Nemunaitis
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA.,Texas Oncology, P.A., Dallas, Texas, USA.,Gradalis, Inc., Dallas, Texas, USA.,Medical City Dallas Hospital, Dallas, Texas, USA.,Strike Bio, Dallas, Texas, USA
| |
Collapse
|
19
|
Kawano M, Tanaka K, Itonaga I, Iwasaki T, Tsumura H. MicroRNA-301a promotes cell proliferation via PTEN targeting in Ewing's sarcoma cells. Int J Oncol 2016; 48:1531-40. [PMID: 26846737 DOI: 10.3892/ijo.2016.3379] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/13/2016] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) regulate cell proliferation and differentiation by affecting gene expression at the post-transcriptional level by binding to complementary sequences within mRNAs in cancer cells, indicating that miRNAs can function as tumor suppressors or oncogenes. Recent studies showed that dysregulation of miRNA expression was associated with increased tumorigenicity and poor prognosis in several types of cancers, including Ewing's sarcoma (ES). To explore possible oncogenic factors in ES, we conducted microarray-based investigation and profiled the changes in miRNA expression and their effects on downstream mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs). miR-301a was significantly upregulated, while the phosphatase and tensin homolog (PTEN) expression was significantly downregulated in all tested ES cells as compared to hMSCs. When anti-miR-301a was transfected into ES cell lines, PTEN expression was significantly enhanced, suggesting that PTEN might be a target of miR-301a in ES cells. The expression of protein kinase B (Akt), which is inversely correlated with PTEN expression, was significantly downregulated in anti-miR-301a-transfected cells. Additionally, the transfection of anti-miR-301a inhibited ES cell proliferation and cell cycle progression. Furthermore, downregulation of miR-301a in ES cells significantly suppressed tumor growth in vivo. Our results demonstrated the novel mechanism controlling PTEN expression via miR-301a in ES cells. Given that PTEN is a pivotal phosphatase factor that regulates cell cycle progression, apoptosis, and proliferation, these results might lead to development of new ES-related therapeutic targets.
Collapse
Affiliation(s)
- Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Tatsuya Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| |
Collapse
|
20
|
Pilot Trial of FANG Immunotherapy in Ewing's Sarcoma. Mol Ther 2015; 23:1103-1109. [PMID: 25917459 PMCID: PMC4817748 DOI: 10.1038/mt.2015.43] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/06/2015] [Indexed: 12/18/2022] Open
Abstract
We report on 12 consecutive patients with advanced/metastatic Ewing's sarcoma who were treated as a separate cohort of a phase 1 trial of FANG autologous immunotherapy (1 × 10(6)-2.5 × 10(7) cells/intradermal injection each month for minimum 4 months). Safety and clinical response were monitored. Patient immune response to unmodified autologous tumor cells was assessed by gamma interferon-enzyme-linked immunospot (γIFN-ELISPOT) assay using peripheral blood mononuclear cells from baseline (pretreatment) and multiple postvaccination time points. None of the 12 patients (47 vaccinations) developed grade 2/3/4 drug-related toxicity. Median product release granulocyte-macrophage colony-stimulating factor expression was 1,941 pg/10(6) cells, and TGFβ1and TGFβ2 knockdown were 99 and 100%, respectively. Eight patients were assessed for ELISPOT response to autologous tumor cells at baseline and all (100%) were negative. In contrast, follow-up ELISPOT response at month 1 or month 4 (one patient) after FANG was positive in all eight patients. One patient achieved a partial tumor response (38% tumor reduction, RECIST 1.1). The Kaplan-Meier estimated survival of these 12 patients at 1 year was 75%. In this phase 1 study in patients with Ewing's sarcoma, FANG immunotherapy was well tolerated, elicited a tumor-specific systemic immune response in all patients, and was associated with favorable 1-year survival. Further clinical testing is indicated.
Collapse
|
21
|
Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2015; 25 Suppl 3:iii113-23. [PMID: 25210081 DOI: 10.1093/annonc/mdu256] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Teixeira SR, Martinez-Rios C, Hu L, Bangert BA. Clinical applications of pediatric positron emission tomography-magnetic resonance imaging. Semin Roentgenol 2014; 49:353-66. [PMID: 25498232 DOI: 10.1053/j.ro.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sara R Teixeira
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Division of Radiology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Claudia Martinez-Rios
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH
| | | | - Barbara A Bangert
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
23
|
Rasper M, Jabar S, Ranft A, Jürgens H, Amler S, Dirksen U. The value of high-dose chemotherapy in patients with first relapsed Ewing sarcoma. Pediatr Blood Cancer 2014; 61:1382-6. [PMID: 24729428 DOI: 10.1002/pbc.25042] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/27/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prognosis of patients with relapsed Ewing sarcoma (ES) is poor. The 5-year overall survival (OS) is 13%. We analyzed high-dose chemotherapy (HDtx) versus conventional chemotherapy (CHtx) in patients with relapsed ES. PROCEDURE Data from 239 patients with first relapse, registered during 2000-2011 in the ES relapse registry of the Cooperative Ewing Sarcoma Study Group (CESS) were analyzed. RESULTS Of 239 patients, 200 received various non-HDtx second-line CHtx regimens. Seventy-three patients had additional HDtx followed by autologous stem cell rescue. The 2-year event-free survival (EFS) was 10% (SE = 0.02) in patients treated without HDtx and 45% (SE = 0.09) in patients treated with HDtx. In a second step, we focused on those patients who achieved complete remission (CR) or partial remission (PR) after four to six cycles of conventional second-line CHtx. Here, the 2-year EFS was 31% (SE = 0.08) without additional HDtx and 44% (SE = 0.09) with additional HDtx. In addition, multivariate regression analysis indicates absence of HDtx treatment, with a Hazard ratio (HR) of 2.90 (95% CI 1.41-6.0), and early relapse, with a HR of 4.76 (95% CI 2.31-9.78), as independent prognostic factors for EFS. CONCLUSION Additional HDtx may contribute to further reduce the risk of further events in patients who respond to conventional second-line CHtx.
Collapse
Affiliation(s)
- Meybrit Rasper
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Westfalian Wilhelms University Münster, Munster, Germany
| | | | | | | | | | | |
Collapse
|
24
|
The ets transcription factor Fli-1 in development, cancer and disease. Oncogene 2014; 34:2022-31. [PMID: 24909161 PMCID: PMC5028196 DOI: 10.1038/onc.2014.162] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/03/2014] [Accepted: 05/04/2014] [Indexed: 12/13/2022]
Abstract
Friend Leukemia Virus Induced erythroleukemia-1 (Fli-1), an ETS transcription factor, was isolated a quarter century ago through a retrovirus mutagenesis screen. Fli-1 has since been recognized to play critical roles in normal development and homeostasis. For example, it transcriptionally regulates genes that drive normal hematopoiesis and vasculogenesis. Indeed, Fli-1 is one of 10 key regulators of hematopoietic stem/progenitor cell maintenance and differentiation. Aberrant expression of Fli-1 also underlies a number of virally induced leukemias, including Friend virus-induced erythroleukemia and various types of human cancers, and it is the target of chromosomal translocations in childhood Ewing’s sarcoma. Abnormal expression of Fli-1 is important in the aetiology of auto-immune diseases such as Systemic Lupus Erythematosus (SLE) and Systemic Sclerosis (SSc). These studies establish Fli-1 as a strong candidate for drug development. Despite difficulties in targeting transcription factors, recent studies identified small molecule inhibitors for Fli-1. Here we review past and ongoing research on Fli-1 with emphasis on its mechanistic function in autoimmune disease and malignant transformation. The significance of identifying Fli-1 inhibitors and their clinical applications for treatment of disease and cancer with deregulated Fli-1 expression are discussed.
Collapse
|
25
|
|
26
|
State-of-the-art approach for bone sarcomas. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2014; 25:5-15. [DOI: 10.1007/s00590-014-1468-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/15/2014] [Indexed: 11/26/2022]
|
27
|
A Phase II multicenter, open-label, clinical and pharmokinetic trial of PM00104 in patients with advanced Ewing Family of Tumors. Invest New Drugs 2013; 32:171-7. [PMID: 24173965 DOI: 10.1007/s10637-013-0037-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/03/2013] [Indexed: 01/12/2023]
Abstract
Ewing sarcoma is a rare connective tissue tumor characterized by the translocation of the EWS gene, mainly between chromosome 11 and 22, giving rise to gene re-arrangements between the EWS gene and various members of the ETS gene family. Multi-agent chemotherapy has improved the outcome for patients with localized Ewing sarcoma, but survival of patients with recurrent/metastatic disease remains poor. An exploratory two-stage, single-arm Phase II multicenter trial of the synthetic alkaloid, PM00104, was conducted in patients with recurrent Ewing sarcoma. The primary end point of the trial was objective response rate. PM00104 was administered at a dose of 2 mg/m(2) on Days 1, 8 and 15 of a 4 week cycle. Seventeen patients were recruited. No objective responses were reported in the 16 patients evaluable for efficacy. Recruitment was closed without proceeding to the second stage of the trial. Four patients achieved stable disease as best response, and in two of these patients the stabilization was longer than 4 months. The median progression-free survival was 1.8 months (95 % CI, 0.9-3.5 months) and median overall survival was not reached (95%CI, 56.2 % at censored data). Pharmacokinetics in patients with Ewing sarcoma was similar to that previously reported in other patient populations. PM00104 showed modest activity in Ewing sarcoma at 2 mg/m(2) on a weekly schedule. There remains an unmet need for effective therapies for patients with advanced/metastatic Ewing sarcoma.
Collapse
|
28
|
Yan S, Li Z, Thiele CJ. Inhibition of STAT3 with orally active JAK inhibitor, AZD1480, decreases tumor growth in Neuroblastoma and Pediatric Sarcomas In vitro and In vivo. Oncotarget 2013; 4:433-45. [PMID: 23531921 PMCID: PMC3717306 DOI: 10.18632/oncotarget.930] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The IL-6/JAK/STAT pathway is a key signal transduction pathway implicated in the pathogenesis of many human cancers, suggesting that kinase inhibitors targeting JAK/STAT3 may have a broad spectrum of antitumor activity. AZD1480, a pharmacological JAK1/2 inhibitor, exhibits anti-tumor potency in multiple adult malignancies. To evaluate the efficacy of inhibition of JAK/STAT3 signal transduction pathway we assessed the activity of AZD1480 in pediatric malignancies using preclinical models of three highly malignant pediatric solid tumors: neuroblastoma (NB), rhabdomyosarcoma (RMS) and the Ewing Sarcoma Family Tumors (ESFT). In this study, we employed panels of biomedical and biological experiments to evaluate the in vitro and in vivo activity of AZD1480 in NB, RMS and ESFT. Our data indicate that AZD1480 blocks endogenous as well as IL-6 induced STAT3 activation. AZD1480 decreases cell viability in 7/7NB, 7/7RMS and 2/2 ESFT cell lines (median EC50 is 1.5 μM, ranging from 0.36-5.37μM). AZD1480 induces cell growth inhibition and caspase-dependent apoptosis in vitro and decreases expression of STAT3 target genes, including cell cycle regulators CyclinD1, 3 and CDC25A, anti-apoptotic genes Bcl-2 and survivin, the metastasis-related factor TIMP-1 and c-Myc. In vivo studies showed AZD1480 significantly decreased tumor growth and prolonged overall survival in tumor-bearing mice. Tumors from AZD1480-treated mice showed inhibition of activated STAT3 as well as decreased expression of STAT3 downstream targets. Our study provides strong evidence of the anti-tumor growth potency of JAK inhibitor AZD1480 in pediatric solid tumors, providing proof-of principle that inhibition of the JAK/STAT3 signal transduction could be a promising therapeutic target for high-risk pediatric solid tumors.
Collapse
Affiliation(s)
- Shuang Yan
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, USA
| | | | | |
Collapse
|
29
|
Chen C, Wonsey DR, Lemieux ME, Kung AL. Differential disruption of EWS-FLI1 binding by DNA-binding agents. PLoS One 2013; 8:e69714. [PMID: 23894528 PMCID: PMC3718762 DOI: 10.1371/journal.pone.0069714] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/11/2013] [Indexed: 12/04/2022] Open
Abstract
Fusion of the EWS gene to FLI1 produces a fusion oncoprotein that drives an aberrant gene expression program responsible for the development of Ewing sarcoma. We used a homogenous proximity assay to screen for compounds that disrupt the binding of EWS-FLI1 to its cognate DNA targets. A number of DNA-binding chemotherapeutic agents were found to non-specifically disrupt protein binding to DNA. In contrast, actinomycin D was found to preferentially disrupt EWS-FLI1 binding by comparison to p53 binding to their respective cognate DNA targets in vitro. In cell-based assays, low concentrations of actinomycin D preferentially blocked EWS-FLI1 binding to chromatin, and disrupted EWS-FLI1-mediated gene expression. Higher concentrations of actinomycin D globally repressed transcription. These results demonstrate that actinomycin D preferentially disrupts EWS-FLI1 binding to DNA at selected concentrations. Although the window between this preferential effect and global suppression is too narrow to exploit in a therapeutic manner, these results suggest that base-preferences may be exploited to find DNA-binding compounds that preferentially disrupt subclasses of transcription factors.
Collapse
Affiliation(s)
- Changmin Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane R. Wonsey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Madeleine E. Lemieux
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew L. Kung
- Department of Pediatrics, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Nakamura T, Grimer RJ, Gaston CL, Watanuki M, Sudo A, Jeys L. The prognostic value of the serum level of C-reactive protein for the survival of patients with a primary sarcoma of bone. Bone Joint J 2013; 95-B:411-8. [PMID: 23450030 DOI: 10.1302/0301-620x.95b3.30344] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this study was to determine whether the level of circulating C-reactive protein (CRP) before treatment predicted overall disease-specific survival and local tumour control in patients with a sarcoma of bone. We retrospectively reviewed 318 patients who presented with a primary sarcoma of bone between 2003 and 2010. Those who presented with metastases and/or local recurrence were excluded. Elevated CRP levels were seen in 84 patients before treatment; these patients had a poorer disease-specific survival (57% at five years) than patients with a normal CRP (79% at five years) (p < 0.0001). They were also less likely to be free of recurrence (71% at five years) than patients with a normal CRP (79% at five years) (p = 0.04). Multivariate analysis showed the pre-operative CRP level to be an independent predictor of survival and local control. Patients with a Ewing's sarcoma or chondrosarcoma who had an elevated CRP before their treatment started had a significantly poorer disease-specific survival than patients with a normal CRP (p = 0.02 and p < 0.0001, respectively). Patients with a conventional osteosarcoma and a raised CRP were at an increased risk of poorer local control. We recommend that CRP levels are measured routinely in patients with a suspected sarcoma of bone as a further prognostic indicator of survival.
Collapse
Affiliation(s)
- T Nakamura
- The Royal Orthopaedic Hospital, Oncology Service, Bristol Road South, Northfield, Birmingham B31 2AP, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Chen C, Shanmugasundaram K, Rigby AC, Kung AL. Shikonin, a natural product from the root of Lithospermum erythrorhizon, is a cytotoxic DNA-binding agent. Eur J Pharm Sci 2013; 49:18-26. [PMID: 23422689 DOI: 10.1016/j.ejps.2013.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/10/2013] [Accepted: 02/02/2013] [Indexed: 01/05/2023]
Abstract
To search for compounds that disrupt binding of the EWS-FLI1 fusion protein to its cognate targets, we developed a homogeneous high-throughput proximity assay and screened 5200 small molecule compounds. Many well-known DNA-binding chemotherapeutic agents, such as actinomycin D, cisplatin, doxorubicin, daunorubicin, and epirubicin scored in the assay and not surprising also disrupted the binding of other transcription factors. Unexpectedly, we found that Shikonin, a natural product from the root of Lithospermum erythrorhizon, similarly disrupted protein-DNA interactions. Mechanistic studies demonstrated that Shikonin displaces SYBR green from binding to the minor groove of DNA and is able to inhibit topoisomerase mediated DNA relaxation. In cells, Shikonin blocked the binding of EWS-FLI1 to the NR0B1 promoter, and attenuated gene expression. Shikonin rapidly induced G2/M arrest and apoptosis in Ewing sarcoma cells. These results demonstrate that contrary to other purported mechanisms of action, Shikonin is a DNA-binding cytotoxic agent.
Collapse
Affiliation(s)
- Changmin Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kumaran Shanmugasundaram
- Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alan C Rigby
- Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew L Kung
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
32
|
Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013; 23 Suppl 7:vii100-9. [PMID: 22997441 DOI: 10.1093/annonc/mds254] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Arpaci E, Yetisyigit T, Seker M, Uncu D, Uyeturk U, Oksuzoglu B, Demirci U, Coskun U, Kucukoner M, Isıkdogan A, Inanc M, Alkis N, Ozkan M. Prognostic factors and clinical outcome of patients with Ewing’s sarcoma family of tumors in adults: multicentric study of the Anatolian Society of Medical Oncology. Med Oncol 2013; 30:469. [DOI: 10.1007/s12032-013-0469-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 02/03/2023]
|
34
|
Potential role of FDG PET imaging in predicting metastatic potential and assessment of therapeutic response to neoadjuvant chemotherapy in Ewing sarcoma family of tumors. Clin Nucl Med 2012; 36:973-7. [PMID: 21975382 DOI: 10.1097/rlu.0b013e31822f684b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS AND OBJECTIVES The aim of this study was to retrospectively correlate FDG uptake in primary Ewing sarcoma family of tumors (ESFT) with tumor behavior, and to evaluate whether FDG PET can be used to predict response to neoadjuvant chemotherapy (NACT) in this patient group. METHODS Out of the total 54 patients of recently diagnosed ESFT who underwent pretreatment FDG PET imaging, group I included patients without metastasis at presentation (n = 34) and group II included those with metastasis at presentation (n = 20). Fourteen of these patients had undergone FDG PET after 4 cycles of induction chemotherapy and surgical resection of primary tumor. In this subgroup of 14 patients, maximum standardized uptake value (SUVmax) of primary tumor was estimated before and after 4 cycles of induction chemotherapy and was correlated with the histopathological response in terms of necrosis in the tumor specimen. RESULTS Mean SUVmax in the primary tumor in group I patients was 6.84 and in group II patients, it was 11.31. The difference between mean SUVmax of these 2 groups was significant by Wilcoxon test analysis, with P < 0.01. In group II patients, SUVmax in metastasis with maximum FDG uptake was consistently lower as compared with that of primary tumor. In subgroup of 14 patients, Pearson correlation analysis showed that percentage change in SUVmax of primary tumor correlated well with percentage necrosis on histopathological examination (P < 0.01). CONCLUSION FDG uptake in primary ESFT reflected its metastatic potential and hence the aggressive behavior. The significant correlation between change in metabolic activity of the primary tumor and histopathological response after neoadjuvant chemotherapy suggests that FDG PET may be an ideal noninvasive method to assess tumor behavior and response to therapy in ESFT.
Collapse
|
35
|
Shafat I, Ben-Arush MW, Issakov J, Meller I, Naroditsky I, Tortoreto M, Cassinelli G, Lanzi C, Pisano C, Ilan N, Vlodavsky I, Zunino F. Pre-clinical and clinical significance of heparanase in Ewing's sarcoma. J Cell Mol Med 2012; 15:1857-64. [PMID: 21029368 PMCID: PMC3056168 DOI: 10.1111/j.1582-4934.2010.01190.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heparanase is an endoglycosidase that specifically cleaves heparan sulphate side chains of heparan sulphate proteoglycans, activity that is strongly implicated in cell migration and invasion associated with tumour metastasis, angiogenesis and inflammation. Heparanase up-regulation was documented in an increasing number of human carcinomas, correlating with reduced post-operative survival rate and enhanced tumour angiogenesis. Expression and significance of heparanase in human sarcomas has not been so far reported. Here, we applied the Ewing's sarcoma cell line TC71 and demonstrated a potent inhibition of cell invasion in vitro and tumour xenograft growth in vivo upon treatment with a specific inhibitor of heparanase enzymatic activity (compound SST0001, non-anticoagulant N-acetylated, glycol split heparin). Next, we examined heparanase expression and cellular localization by immunostaining of a cohort of 69 patients diagnosed with Ewing's sarcoma. Heparanase staining was noted in all patients. Notably, heparanase staining intensity correlated with increased tumour size (P = 0.04) and with patients' age (P = 0.03), two prognostic factors associated with a worse outcome. Our study indicates that heparanase expression is induced in Ewing's sarcoma and associates with poor prognosis. Moreover, it encourages the inclusion of heparanase inhibitors (i.e. SST0001) in newly developed therapeutic modalities directed against Ewing's sarcoma and likely other malignancies.
Collapse
Affiliation(s)
- Itay Shafat
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cutaneous Ewing sarcoma: report of 2 cases and literature review of presentation, treatment, and outcome of 76 other reported cases. J Pediatr Hematol Oncol 2011; 33:631-4. [PMID: 22042282 DOI: 10.1097/mph.0b013e31821b234d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cutaneous Ewing sarcoma is a rare variant that has been poorly characterized and has no standard therapy. We report 2 patients with cutaneous Ewing sarcoma and review 76 other cases reported in the literature for demographics, presentation, treatment, and outcome. Only 2 patients presented with metastatic disease, and only 8 patients developed metastatic disease. Ninety-one percent of all patients are alive despite wide variations in treatment regimens. On the basis of this summary, treatment consisting of local control with surgery and/or radiation and abbreviated chemotherapy is proposed as a treatment option for this less aggressive Ewing sarcoma.
Collapse
|
37
|
Stahl M, Ranft A, Paulussen M, Bölling T, Vieth V, Bielack S, Görtitz I, Braun-Munzinger G, Hardes J, Jürgens H, Dirksen U. Risk of recurrence and survival after relapse in patients with Ewing sarcoma. Pediatr Blood Cancer 2011; 57:549-53. [PMID: 21442722 DOI: 10.1002/pbc.23040] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/27/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND The prognosis in patients with relapsed Ewing sarcoma is unfavorable. Our investigation identifies factors predicting for the outcome following relapse. PROCEDURE We analyzed type of relapse, time to relapse and overall survival after relapse (OSr) in 714 patients with first recurrence. All patients had been treated within the Cooperative Ewing Sarcoma Studies (CESS) 81 or 86, or the European Intergroup CESS (EICESS 92). OSr time was calculated from diagnosis of first relapse to last follow-up or death. RESULTS Median follow-up time from diagnosis of primary disease was 2.2 years (mean = 4.0; range: 0.2-24.9). Relapse sites were local in 15%, combined local and systemic in 12%, and systemic in 73%. Among patients with a localized primary tumor, 20% relapsed locally, while 12% showed combined and 68% systemic relapse. When the primary disease was disseminated, 82% developed systemic, 13% combined, and 5% local relapse. Five-year OSr was 0.13 (SE = 0.01). Outcome following local relapse, with a 5-year survival rate of 0.24 (P < 0.001), was superior to outcome after systemic or combined recurrence. Five-year OSr was 0.07 (SE = 0.01) in patients who relapsed 0-2 years after the diagnosis of primary disease, as compared to a 5-year OSr of 0.29 (SE = 0.03) when relapse occurred later. CONCLUSIONS 5-year OSr in Ewing sarcoma is poor (<0.2). Prognostically favorable factors are: late onset (>2 years) and strictly localized relapse.
Collapse
Affiliation(s)
- Martin Stahl
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Primary malignant bone tumors are rare and account for about 6% of all new pediatric cancer cases per year in the United States. Identification of the lesion not uncommonly occurs as a result of imaging performed for trauma. Clinical and standard imaging characteristics of the various tumor types are evolving in concert with treatment advancements and clinical trial regimens. This article reviews the 3 most common pediatric bone sarcomas-osteosarcoma, Ewing sarcoma, and chondrosarcoma-and their imaging as applicable to contemporary disease staging and monitoring, and explores the roles of evolving imaging techniques.
Collapse
Affiliation(s)
- Sue C Kaste
- Department of Radiological Sciences, St. Jude Children's Research Hospital, MSN #220, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
39
|
Inoue M, Wakai T, Korita PV, Sakata J, Kurosaki R, Ogose A, Kawashima H, Shirai Y, Ajioka Y, Hatakeyama K. Gastric Ewing sarcoma/primitive neuroectodermal tumor: A case report. Oncol Lett 2011; 2:207-210. [PMID: 22866065 DOI: 10.3892/ol.2011.246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/13/2011] [Indexed: 01/04/2023] Open
Abstract
Ewing sarcoma/primitive neuroectodermal tumors (ES/PNETs) may arise in bone or soft tissue; however, these tumors rarely originate in the stomach. To the best of our knowledge, only four cases have previously been reported in the English-language literature. A 41-year-old Japanese woman was admitted with abdominal pain and underwent gastrectomy to remove the primary tumor. Immunohistochemistry, chromosomal karyotype and molecular analysis using reverse transcription-polymerase chain reaction were performed in the tumor specimens obtained. Tumor cells showed positive immunoreactivity for CD99, vimentin, CD117 (c-kit), S100, chromogranin A and synaptophysin. The tumor was a gastric ES/PNET with the EWS-FLI1 fusion gene translocation t(11;22)(q24;q12). Multiple repeat metastasectomies, as well as multi-agent chemotherapy and radiotherapy were performed for recurrent disease. Despite treatment, the patient succumbed due to progressive disease 110 months after the initial surgery for gastric ES/PNET. A review of the reported cases suggests that patients with gastric ES/PNETs have an unfavorable prognosis following resection due to the high propensity of these tumors to metastasize. Thus, multimodal treatment approaches including surgery, as well as multi-agent chemotherapy and radiotherapy may provide a survival benefit for patients with gastric ES/PNETs.
Collapse
Affiliation(s)
- Makoto Inoue
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Grimer R, Athanasou N, Gerrand C, Judson I, Lewis I, Morland B, Peake D, Seddon B, Whelan J. UK Guidelines for the Management of Bone Sarcomas. Sarcoma 2010; 2010:317462. [PMID: 21253474 PMCID: PMC3022187 DOI: 10.1155/2010/317462] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/20/2010] [Indexed: 12/29/2022] Open
Abstract
These guidelines have been developed in order to provide an overview and a set of broad-based key recommendations for the management of patients with bone sarcomas in the UK. They have taken into consideration the most up-to-date scientific literature along with the recent recommendations by the European Society of Medical Oncology. The principles of the NICE guidance on both "improving outcomes for patients with sarcomas" and "improving outcomes with children and young people with cancer" have been incorporated. As care evolves, it is acknowledged that these guidelines will need updating. The key recommendations are that bone pain or a palpable mass should always lead to further investigation and patients with clinicoradiological findings suggestive of a primary bone tumour should be sent to a reference centre. Patients should then have their care managed at such a specialist centre by a fully accredited multidisciplinary team.
Collapse
|
41
|
Hogendoorn PCW, Athanasou N, Bielack S, De Alava E, Dei Tos AP, Ferrari S, Gelderblom H, Grimer R, Hall KS, Hassan B, Hogendoorn PCW, Jurgens H, Paulussen M, Rozeman L, Taminiau AHM, Whelan J, Vanel D. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21 Suppl 5:v204-13. [PMID: 20555083 DOI: 10.1093/annonc/mdq223] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- P C W Hogendoorn
- Department of Pathology, University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Abstract
Since the 1950s, the overall survival of children with cancer has gone from almost zero to approaching 80%. Although there have been notable successes in treating solid tumors such as Wilms tumor, some childhood solid tumors have continued to elude effective therapy. With the use of megatherapy techniques such as tandem transplantation, dose escalation has been pushed to the edge of dose-limiting toxicities, and any further improvements in event-free survival will have to be achieved through novel therapeutic approaches. This article reviews the status of autologous and allogeneic hematopoietic stem cell transplantation (HSCT) for many pediatric solid tumor types. Most of the clinical experience in transplant for pediatric solid tumors is in the autologous setting, so some general principles of autologous HSCT are reviewed. The article then examines HSCT for diseases such as Hodgkin disease, Ewing sarcoma, and neuroblastoma, and the future of cell-based therapies by considering some experimental approaches to cell therapies.
Collapse
|
44
|
Abstract
Bone tumors are fortunately rare, but small cell tumors of bone are a relatively common subset of these lesions. They comprise of a diverse group of primary and metastatic neoplasms in both children and adults. The most common small cell tumors of bone include Ewing sarcoma/primitive neuroectodermal tumor, small cell osteosarcoma, multiple myeloma, lymphoma, leukemia, neuroblastoma, rhabdomyosarcoma, and Langerhans cell histiocytosis. Although each entity has its distinctive features, the differential diagnosis of this group of tumors is still challenging because they are all "small, blue, and round cell tumors", histologically. The correct diagnosis of small cell tumors of bone depends on an evaluation of clinical, radiologic, pathologic, and genetic features. Patients' age and sex are very important, as are the signs and symptoms at presentation. Radiologically, which bone is involved, the specific portion of the bone (epiphysis, metaphysis, or diaphysis; cortex vs. medulla) involved, and the radiographic manifestations (lytic, blastic, or mixed lytic and blastic) are also often critical parameters for the diagnosis. In recent years, with a better understanding of the molecular and cytogenetic background of several small cell tumors, more accurate diagnoses have been supported by the clinicopathologic criteria and by a panel of immunohistochemical studies. In this review we will provide an overview of the clinical, radiologic, pathologic, and genetic characteristics of these tumors.
Collapse
|
45
|
Sabbatini P, Korenchuk S, Rowand JL, Groy A, Liu Q, Leperi D, Atkins C, Dumble M, Yang J, Anderson K, Kruger RG, Gontarek RR, Maksimchuk KR, Suravajjala S, Lapierre RR, Shotwell JB, Wilson JW, Chamberlain SD, Rabindran SK, Kumar R. GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol Cancer Ther 2009; 8:2811-20. [DOI: 10.1158/1535-7163.mct-09-0423] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Subbiah V, Anderson P, Lazar AJ, Burdett E, Raymond K, Ludwig JA. Ewing’s Sarcoma: Standard and Experimental Treatment Options. Curr Treat Options Oncol 2009; 10:126-40. [PMID: 19533369 DOI: 10.1007/s11864-009-0104-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/21/2009] [Indexed: 12/21/2022]
MESH Headings
- Adolescent
- Adult
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bone Neoplasms/drug therapy
- Bone Neoplasms/radiotherapy
- Bone Neoplasms/surgery
- Child
- Clinical Trials as Topic
- Combined Modality Therapy
- Drug Delivery Systems
- Drug Screening Assays, Antitumor
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/mortality
- Lung Neoplasms/secondary
- Lung Neoplasms/surgery
- Multicenter Studies as Topic
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Protein c-fli-1
- RNA-Binding Protein EWS
- Receptor, IGF Type 1/antagonists & inhibitors
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/radiotherapy
- Sarcoma, Ewing/secondary
- Sarcoma, Ewing/surgery
- Survival Rate
- Therapies, Investigational
- Transcription Factors/antagonists & inhibitors
- Translocation, Genetic
- Young Adult
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, Labortory of Sarcoma Molecular Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
47
|
Sabbatini P, Rowand JL, Groy A, Korenchuk S, Liu Q, Atkins C, Dumble M, Yang J, Anderson K, Wilson BJ, Emmitte KA, Rabindran SK, Kumar R. Antitumor activity of GSK1904529A, a small-molecule inhibitor of the insulin-like growth factor-I receptor tyrosine kinase. Clin Cancer Res 2009; 15:3058-67. [PMID: 19383820 DOI: 10.1158/1078-0432.ccr-08-2530] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Dysregulation of the insulin-like growth factor-I receptor (IGF-IR) signaling pathway has been implicated in the development of many types of tumors, including prostate, colon, breast, pancreatic, ovarian, and sarcomas. Agents that inhibit IGF-IR activity may be useful in treatment of patients with various cancers. EXPERIMENTAL DESIGN Kinase assays were used to identify a selective small-molecule inhibitor of IGF-IR activity. The effects of this compound on IGF-IR signaling, cell proliferation, and the cell cycle were determined using a panel of cell lines. Antitumor activity was evaluated in human tumor xenografts growing in athymic mice. Inhibition of IGF-IR and the closely related insulin receptor (IR) was measured in vivo, and the effect on glucose metabolism was evaluated. RESULTS GSK1904529A selectively inhibits IGF-IR and IR with IC(50)s of 27 and 25 nmol/L, respectively. GSK1904529A blocks receptor autophosphorylation and downstream signaling, leading to cell cycle arrest. It inhibits the proliferation of cell lines derived from solid and hematologic malignancies, with multiple myeloma and Ewing's sarcoma cell lines being most sensitive. Oral administration of GSK1904529A decreases the growth of human tumor xenografts in mice, consistent with a reduction of IGF-IR phosphorylation in tumors. Despite the potent inhibitory activity of GSK1904529A on IR in vitro and in vivo, minimal effects on blood glucose levels are observed in animals at doses that show significant antitumor activity. CONCLUSION GSK1904529A is a promising candidate for therapeutic use in IGF-IR-dependent tumors.
Collapse
|
48
|
Doern A, Cao X, Sereno A, Reyes CL, Altshuler A, Huang F, Hession C, Flavier A, Favis M, Tran H, Ailor E, Levesque M, Murphy T, Berquist L, Tamraz S, Snipas T, Garber E, Shestowsky WS, Rennard R, Graff CP, Wu X, Snyder W, Cole L, Gregson D, Shields M, Ho SN, Reff ME, Glaser SM, Dong J, Demarest SJ, Hariharan K. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo. J Biol Chem 2009; 284:10254-67. [PMID: 19211557 PMCID: PMC2665079 DOI: 10.1074/jbc.m809709200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 01/30/2009] [Indexed: 12/28/2022] Open
Abstract
Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism leads to optimal clinical efficacy.
Collapse
Affiliation(s)
- Adam Doern
- Biogen Idec, San Diego, California 92130 and Applied Photophysics Limited, Leatherhead, Surrey KT22 7PB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Anderson P, Kopp L, Anderson N, Cornelius K, Herzog C, Hughes D, Huh W. Novel bone cancer drugs: investigational agents and control paradigms for primary bone sarcomas (Ewing's sarcoma and osteosarcoma). Expert Opin Investig Drugs 2008; 17:1703-15. [DOI: 10.1517/13543784.17.11.1703] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|