1
|
Salazar JG, Marsillach J, Reverte I, Mackness B, Mackness M, Joven J, Camps J, Colomina MT. Paraoxonase-1 and -3 Protein Expression in the Brain of the Tg2576 Mouse Model of Alzheimer's Disease. Antioxidants (Basel) 2021; 10:339. [PMID: 33668379 PMCID: PMC7996151 DOI: 10.3390/antiox10030339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/31/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Brain oxidative lipid damage and inflammation are common in neurodegenerative diseases such as Alzheimer's disease (AD). Paraoxonase-1 and -3 (PON1 and PON3) protein expression was demonstrated in tissue with no PON1 or PON3 gene expression. In the present study, we examine differences in PON1 and PON3 protein expression in the brain of a mouse model of AD. METHODS we used peroxidase- and fluorescence-based immunohistochemistry in five brain regions (olfactory bulb, forebrain, posterior midbrain, hindbrain and cerebellum) of transgenic (Tg2576) mice with the Swedish mutation (KM670/671NL) responsible for a familial form of AD and corresponding wild-type mice. RESULTS We found intense PON1 and PON3-positive staining in star-shaped cells surrounding Aβ plaques in all the studied Tg2576 mouse-brain regions. Although we could not colocalize PON1 and PON3 with astrocytes (star-shaped cells in the brain), we found some PON3 colocalization with microglia. CONCLUSIONS These results suggest that (1) PON1 and PON3 cross the blood-brain barrier in discoidal high-density lipoproteins (HDLs) and are transferred to specific brain-cell types; and (2) PON1 and PON3 play an important role in preventing oxidative stress and lipid peroxidation in particular brain-cell types (likely to be glial cells) in AD pathology and potentially in other neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Jose Gregorio Salazar
- Department of Psychology and Research Center for Behavioral Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.G.S.); (I.R.)
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43201 Reus, Spain
- Departamento de Toxicología y Farmacología, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Judit Marsillach
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (J.M.); (J.J.)
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Ingrid Reverte
- Department of Psychology and Research Center for Behavioral Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.G.S.); (I.R.)
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43201 Reus, Spain
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00179 Rome, Italy
| | | | | | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (J.M.); (J.J.)
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (J.M.); (J.J.)
| | - Maria Teresa Colomina
- Department of Psychology and Research Center for Behavioral Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.G.S.); (I.R.)
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43201 Reus, Spain
| |
Collapse
|
2
|
Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies. Front Physiol 2020; 11:598. [PMID: 32581851 PMCID: PMC7296164 DOI: 10.3389/fphys.2020.00598] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lipids constitute the bulk of the dry mass of the brain and have been associated with healthy function as well as the most common pathological conditions of the brain. Demographic factors, genetics, and lifestyles are the major factors that influence lipid metabolism and are also the key components of lipid disruption in Alzheimer's disease (AD). Additionally, the most common genetic risk factor of AD, APOE ϵ4 genotype, is involved in lipid transport and metabolism. We propose that lipids are at the center of Alzheimer's disease pathology based on their involvement in the blood-brain barrier function, amyloid precursor protein (APP) processing, myelination, membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance. Under healthy conditions, lipid homeostasis bestows a balanced cellular environment that enables the proper functioning of brain cells. However, under pathological conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB, abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis, altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced inflammation. These lipid disturbances may contribute to abnormalities in brain function that are the hallmark of AD. The wide variance of lipid disturbances associated with brain function suggest that AD pathology may present as a complex interaction between several metabolic pathways that are augmented by risk factors such as age, genetics, and lifestyles. Herewith, we examine factors that influence brain lipid composition, review the association of lipids with all known facets of AD pathology, and offer pointers for potential therapies that target lipid pathways.
Collapse
Affiliation(s)
- Hannah Chew
- Huntington Medical Research Institutes, Pasadena, CA, United States
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
3
|
Rey M, Kruse MS, Magrini-Huamán RN, Coirini H. High-Fat Diets and LXRs Expression in Rat Liver and Hypothalamus. Cell Mol Neurobiol 2019; 39:963-974. [PMID: 31161476 PMCID: PMC11457829 DOI: 10.1007/s10571-019-00692-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/25/2019] [Indexed: 12/25/2022]
Abstract
Disturbances on lipid metabolism are associated with health disorders. High-fat diets (HFDs) consumption promotes cardiovascular and neurodegenerative diseases where cholesterol plays an important role. Among regulators of this steroid homeostasis, the liver X receptors (LXRs) induce genes that protect cells from cholesterol overload. We previously described how both hypothalamic LXRα and LXRβ are sensitive to a high-fructose diet, suggesting that these receptors trigger responses related to control of energy and food intake. The present work's main objective was to study the effect of different HFDs on LXRs expression (in hypothalamus and liver), and lipid profile. Male rats received control diet (CD), HFD1 (CD + bovine fat (BF)), HFD2 (CD + BF + cholic acid (CA)), HFD3 (CD + BF + cholesterol), or HFD4 (CD + BF + CA + cholesterol) for different time periods. Hypothalamic LXRβ, both hepatic LXRs subtypes, and total cholesterol (TC) raised after 2 weeks of HFDs. Four and 8 weeks of HFD3 and HFD4 increased the LXRs subtypes in both tissues and TC levels. Only HFD4 reduced triglycerides (TG) levels after 2 and 8 weeks. The TC and TG values correlated significantly with LXRs expression only in rats fed with HFD4. These data add relevant information about how diet composition can produce different scales of hypercholesterolemia states accompanied with central and peripheral changes in the LXRs expression.
Collapse
Affiliation(s)
- Mariana Rey
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - María Sol Kruse
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Rocío Nahimé Magrini-Huamán
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ingenieria, Instituto de Biotecnologia, Universidad Nacional de San Juan, Av. Libertador Gral. San Martín 1109, J5400ARL, San Juan, Argentina
- Facultad de Ciencias Medicas, Universidad Catolica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, J5400, San Juan, Argentina
| | - Héctor Coirini
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina.
- Facultad de Ciencias Medicas, Universidad Catolica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, J5400, San Juan, Argentina.
- Departamento de Bioquimica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 5to Piso, C1121ABG, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Santos CY, Snyder PJ, Wu WC, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer's disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2017; 7:69-87. [PMID: 28275702 PMCID: PMC5328683 DOI: 10.1016/j.dadm.2017.01.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As the population ages due to demographic trends and gains in life expectancy, the incidence and prevalence of dementia increases, and the need to understand the etiology and pathogenesis of dementia becomes ever more urgent. Alzheimer's disease (AD), the most common form of dementia, is a complex disease, the mechanisms of which are poorly understood. The more we learn about AD, the more questions are raised about our current conceptual models of disease. In the absence of a cure or the means by which to slow disease progress, it may be prudent to apply our current knowledge of the intersection between AD, cardiovascular disease, and cerebrovascular disease to foster efforts to delay or slow the onset of AD. This review discusses our current understanding of the epidemiology, genetics, and pathophysiology of AD, the intersection between AD and vascular causes of dementia, and proposes future directions for research and prevention.
Collapse
Affiliation(s)
- Cláudia Y. Santos
- Lifespan Clinical Research Center, Rhode Island Hospital, Providence, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Peter J. Snyder
- Lifespan Clinical Research Center, Rhode Island Hospital, Providence, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Wen-Chih Wu
- Division of Cardiology, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mia Zhang
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
| | - Ana Echeverria
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jessica Alber
- Lifespan Clinical Research Center, Rhode Island Hospital, Providence, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Vuorinen M, Damangir S, Niskanen E, Miralbell J, Rusanen M, Spulber G, Soininen H, Kivipelto M, Solomon A. Coronary heart disease and cortical thickness, gray matter and white matter lesion volumes on MRI. PLoS One 2014; 9:e109250. [PMID: 25302686 PMCID: PMC4193798 DOI: 10.1371/journal.pone.0109250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022] Open
Abstract
Coronary heart disease (CHD) has been linked with cognitive decline and dementia in several studies. CHD is strongly associated with blood pressure, but it is not clear how blood pressure levels or changes in blood pressure over time affect the relation between CHD and dementia-related pathology. The aim of this study was to investigate relations between CHD and cortical thickness, gray matter volume and white matter lesion (WML) volume on MRI, considering CHD duration and blood pressure levels from midlife to three decades later. The study population included 69 elderly at risk of dementia who participated in the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) study. CAIDE participants were examined in midlife, re-examined 21 years later, and then after additionally 7 years (in total up to 30 years follow-up). MRIs from the second re-examination were used to calculate cortical thickness, gray matter and WML volume. CHD diagnoses were obtained from the Finnish Hospital Discharge Register. Linear regression analyses were adjusted for age, sex, follow-up time and scanner type, and additionally total intracranial volume in GM volume analyses. Adding diabetes, cholesterol or smoking to the models did not influence the results. CHD was associated with lower thickness in multiple regions, and lower total gray matter volume, particularly in people with longer disease duration (>10 years). Associations between CHD, cortical thickness and gray matter volume were strongest in people with CHD and hypertension in midlife, and those with CHD and declining blood pressure after midlife. No association was found between CHD and WML volumes. Based on these results, long-term CHD seems to have detrimental effects on brain gray matter tissue, and these effects are influenced by blood pressure levels and their changes over time.
Collapse
Affiliation(s)
- Miika Vuorinen
- Department of Neurology, School of Medicine, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| | - Soheil Damangir
- Division of Clinical Geriatrics, NVS, Karolinska Institute, Novum, Stockholm, Sweden
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Julia Miralbell
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | - Minna Rusanen
- Department of Neurology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Gabriela Spulber
- Division of Clinical Geriatrics, NVS, Karolinska Institute, Novum, Stockholm, Sweden
| | - Hilkka Soininen
- Department of Neurology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Miia Kivipelto
- Department of Neurology, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurobiology, Care Sciences and Society, KI- Alzheimer Disease Research Center (KI-ADRC), Karolinska Institute, Stockholm, Sweden
| | - Alina Solomon
- Department of Neurology, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurobiology, Care Sciences and Society, KI- Alzheimer Disease Research Center (KI-ADRC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Solomon A, Kivipelto M. Cholesterol-modifying strategies for Alzheimer’s disease. Expert Rev Neurother 2014; 9:695-709. [DOI: 10.1586/ern.09.25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Chen J, Zhang X, Kusumo H, Costa LG, Guizzetti M. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:263-75. [PMID: 23010475 DOI: 10.1016/j.bbalip.2012.09.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/05/2012] [Accepted: 09/14/2012] [Indexed: 11/15/2022]
Abstract
Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS.
Collapse
Affiliation(s)
- Jing Chen
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt way NE, Seattle, WA 98105, USA
| | | | | | | | | |
Collapse
|
8
|
Expression, phosphorylation, and glycosylation of CNS proteins in aversive operant conditioning associated memory in Lymnaea stagnalis. Neuroscience 2011; 186:94-109. [DOI: 10.1016/j.neuroscience.2011.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 11/18/2022]
|
9
|
Regulated expression of pancreatic triglyceride lipase after rat traumatic brain injury. Mol Cell Biochem 2009; 335:127-36. [DOI: 10.1007/s11010-009-0249-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 09/02/2009] [Indexed: 02/02/2023]
|
10
|
Igbavboa U, Sun GY, Weisman GA, He Y, Wood WG. Amyloid beta-protein stimulates trafficking of cholesterol and caveolin-1 from the plasma membrane to the Golgi complex in mouse primary astrocytes. Neuroscience 2009; 162:328-38. [PMID: 19401218 DOI: 10.1016/j.neuroscience.2009.04.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/03/2009] [Accepted: 04/20/2009] [Indexed: 11/19/2022]
Abstract
The Golgi complex plays a key role in cholesterol trafficking in cells. Our earlier study demonstrated amyloid beta-protein (Abeta) alters cholesterol distribution and abundance in the Golgi complex of astrocytes. We now test the hypothesis that the Abeta-induced increase in Golgi complex cholesterol is due to retrograde movement of the cholesterol carrier protein caveolin-1 from the cell plasma membrane to the Golgi complex in astrocytes. Results with mouse primary astrocytes indicated that Abeta(1-42)-induced increase in cholesterol and caveolin abundance in the Golgi complex was accompanied by a reduction in cholesterol and caveolin levels in the plasma membrane. Transfected rat astrocytes (DITNC1) with siRNA directed at caveolin-1 mRNA inhibited the Abeta(1-42)-induced redistribution of both cholesterol and caveolin from the plasma membrane to the Golgi complex. In astrocytes not treated with Abeta(1-42), suppression of caveolin-1 expression also significantly reduced cholesterol abundance in the Golgi complex, further demonstrating the role for caveolin in retrograde transport of cholesterol from the plasma membrane to the Golgi complex. Perturbation of this process by Abeta(1-42) could have consequences on membrane structure and cellular functions requiring optimal levels of cholesterol.
Collapse
Affiliation(s)
- U Igbavboa
- Department of Pharmacology, University of Minnesota School of Medicine and Geriatric Research, Education and Clinical Center, VA Medical Center, 6-120 Jackson Hall, 321 Church Street Southeast, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
11
|
Shenk JC, Liu J, Fischbach K, Xu K, Puchowicz M, Obrenovich ME, Gasimov E, Alvarez LM, Ames BN, Lamanna JC, Aliev G. The effect of acetyl-L-carnitine and R-alpha-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer's disease. J Neurol Sci 2009; 283:199-206. [PMID: 19342064 DOI: 10.1016/j.jns.2009.03.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We measured age-dependent effects of human ApoE4 on cerebral blood flow (CBF) using ApoE4 transgenic mice compared to age-matched wild-type (WT) mice by use of [(14)C] iodoantipyrene autoradiography. ApoE4 associated factors reduce CBF gradually to create brain hypoperfusion when compared to WT, and the differences in CBF are greatest as animals age from 6-weeks to 12-months. Transmission electron microscopy with colloidal gold immunocytochemistry showed structural damage in young and aged microvessel endothelium of ApoE4 animals extended to the cytoplasm of perivascular cells, perivascular nerve terminals and hippocampal neurons and glial cells. These abnormalities coexist with mitochondrial structural alteration and mitochondrial DNA overproliferation and/or deletion in all brain cellular compartments. Spatial memory and temporal memory tests showed a trend in improving cognitive function in ApoE4 mice fed selective mitochondrial antioxidants acetyl-l-carnitine and R-alpha-lipoic acid. Our findings indicate that ApoE4 genotype-induced mitochondrial changes and associated structural damage may explain age-dependent pathology seen in AD, indicating potential for novel treatment strategies in the near future.
Collapse
Affiliation(s)
- Justin C Shenk
- Department of Biology and Electron Microscopy Research Center, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mamo JCL, Jian L, James AP, Flicker L, Esselmann H, Wiltfang J. Plasma lipoprotein beta-amyloid in subjects with Alzheimer's disease or mild cognitive impairment. Ann Clin Biochem 2008; 45:395-403. [PMID: 18583625 DOI: 10.1258/acb.2008.007214] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Plasma amyloid beta-peptide (Abeta) can compromise the blood-brain barrier, contributing to cerebrovascular alterations and amyloid angiopathy in Alzheimer's disease (AD). The objectives of this study were to investigate the distribution of lipoprotein-bound plasma-Abeta isoforms. METHODS This involved a case-control study of subjects with AD or amnestic mild cognitive impairment (MCI) versus controls. Lipoprotein Abeta distribution was determined in fasted plasma. For assessment of chylomicron homeostasis in the postabsorptive state, subjects were bled 4 h after a low-fat meal. The main outcome measures were plasma lipoprotein Abeta isoform distribution and lipid homeostasis. RESULTS We found the majority of plasma Abeta to be associated with triglyceride-rich lipoproteins (TRLs) encompassing chylomicrons, VLDL and IDL. For all lipoprotein groups, Abeta1-40 was the predominant isoform, accounting for approximately 50% of the total. Thereafter, equivalent amounts of the isoforms 1-42, 2-40, 1-38, 1-37 and 1-39 were found. Abeta1-37, Abeta1-38 and Abeta2-40 isoforms were significantly enriched within the TRL fraction of AD/MCI subjects and similar trends were observed for isoforms Abeta1-39, Abeta1-40 and Abeta1-42. Lipoprotein-Abeta was inversely associated with plasma total- and LDL cholesterol. AD/MCI subjects were not dyslipidaemic, however, there was evidence of accumulation of chylomicrons in the postabsorptive state. CONCLUSIONS Our data show that Abeta was found to be associated with plasma lipoproteins, especially those enriched with triglyceride. We find that Abeta may be increased in normolipidaemic AD subjects, commensurate with possible disturbances in postprandial lipoprotein homeostasis.
Collapse
Affiliation(s)
- J C L Mamo
- Division of Health Sciences, Curtin University of Technology and ATN Centre for Metabolic Health and Fitness.
| | | | | | | | | | | |
Collapse
|
13
|
Vasto S, Candore G, Listì F, Balistreri CR, Colonna-Romano G, Malavolta M, Lio D, Nuzzo D, Mocchegiani E, Di Bona D, Caruso C. Inflammation, genes and zinc in Alzheimer's disease. ACTA ACUST UNITED AC 2007; 58:96-105. [PMID: 18190968 DOI: 10.1016/j.brainresrev.2007.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/30/2007] [Accepted: 12/01/2007] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) is a heterogeneous and progressive neurodegenerative disease which in Western society mainly accounts for clinical dementia. AD has been linked to inflammation and metal biological pathway. Neuro-pathological hallmarks are senile plaques, resulting from the accumulation of several proteins and an inflammatory reaction around deposits of amyloid, a fibrillar protein, Abeta, product of cleavage of a much larger protein, the beta-amyloid precursor protein (APP) and neurofibrillary tangles. Amyloid deposition, due to the accumulation of Abeta peptide, is the main pathogenetic mechanism. Inflammation clearly occurs in pathologically vulnerable regions of AD and several inflammatory factors influencing AD development, i.e. environmental factors (pro-inflammatory phenotype) and/or genetic factors (pro-inflammatory genotype) have been described. At the biochemical level metals such as zinc are known to accelerate the aggregation of the amyloid peptide and play a role in the control of inflammatory responses. In particular, zinc availability may regulate mRNA cytokine expression, so influencing inflammatory network phenotypic expression.
Collapse
Affiliation(s)
- Sonya Vasto
- Department of Pathobiology and Biomedical Methodology, University of Palermo, Corso Tukory, 211, 90134 Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Helena C Chui
- Department of Neurology, University of Southern California Los Angeles, California, USA.
| | | |
Collapse
|