1
|
Alkadhi KA. Neuroprotective Effects of Nicotine on Hippocampal Long-Term Potentiation in Brain Disorders. J Pharmacol Exp Ther 2018; 366:498-508. [PMID: 29914875 DOI: 10.1124/jpet.118.247841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/23/2018] [Indexed: 08/30/2023] Open
Abstract
Long-term potentiation (LTP) is commonly considered the cellular correlate of learning and memory. In learning and memory impairments, LTP is invariably diminished in the hippocampus, the brain region responsible for memory formation. LTP is measured electrophysiologically in various areas of the hippocampus. Two mechanistically distinct phases of LTP have been identified: early phase LTP, related to short-term memory; and late-phase LTP, related to long-term memory. These two forms can be severely reduced in a variety of conditions but can be rescued by treatment with nicotine. This report reviews the literature on the beneficial effect of nicotine on LTP in conditions that compromise learning and memory.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Professor of Pharmacology, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
2
|
Habtemariam S. Molecular Pharmacology of Rosmarinic and Salvianolic Acids: Potential Seeds for Alzheimer's and Vascular Dementia Drugs. Int J Mol Sci 2018; 19:E458. [PMID: 29401682 PMCID: PMC5855680 DOI: 10.3390/ijms19020458] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022] Open
Abstract
Both caffeic acid and 3,4-dihydroxyphenyllactic acid (danshensu) are synthesized through two distinct routs of the shikimic acid biosynthesis pathway. In many plants, especially the rosemary and sage family of Lamiaceae, these two compounds are joined through an ester linkage to form rosmarinic acid (RA). A further structural diversity of RA derivatives in some plants such as Salvia miltiorrhiza Bunge is a form of RA dimer, salvianolic acid-B (SA-B), that further give rise to diverse salvianolic acid derivatives. This review provides a comprehensive perspective on the chemistry and pharmacology of these compounds related to their potential therapeutic applications to dementia. The two common causes of dementia, Alzheimer's disease (AD) and stroke, are employed to scrutinize the effects of these compounds in vitro and in animal models of dementia. Key pharmacological mechanisms beyond the common antioxidant and anti-inflammatory effects of polyphenols are highlighted with emphasis given to amyloid beta (Aβ) pathologies among others and neuronal regeneration from stem cells.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
3
|
Habtemariam S. Iridoids and Other Monoterpenes in the Alzheimer's Brain: Recent Development and Future Prospects. Molecules 2018; 23:molecules23010117. [PMID: 29316661 PMCID: PMC6017424 DOI: 10.3390/molecules23010117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Iridoids are a class of monoterpenoid compounds constructed from 10-carbon skeleton of isoprene building units. These compounds in their aglycones and glycosylated forms exist in nature to contribute to mechanisms related to plant defenses and diverse plant-animal interactions. Recent studies have also shown that iridoids and other structurally related monoterpenes display a vast array of pharmacological effects that make them potential modulators of the Alzheimer’s disease (AD). This review critically evaluates the therapeutic potential of these natural products by assessing key in vitro and in vivo data published in the scientific literature. Mechanistic approach of scrutiny addressing their effects in the Alzheimer’s brain including the τ-protein phosphorylation signaling, amyloid beta (Aβ) formation, aggregation, toxicity and clearance along with various effects from antioxidant to antiinflammatory mechanisms are discussed. The drug likeness of these compounds and future prospects to consider in their development as potential leads are addressed.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
4
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters' agonists/antagonists in AD.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P. Hemachandra Reddy
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
5
|
Zhang XG, Wang X, Zhou TT, Wu XF, Peng Y, Zhang WQ, Li S, Zhao J. Scorpion Venom Heat-Resistant Peptide Protects Transgenic Caenorhabditis elegans from β-Amyloid Toxicity. Front Pharmacol 2016; 7:227. [PMID: 27507947 PMCID: PMC4960250 DOI: 10.3389/fphar.2016.00227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022] Open
Abstract
Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies found SVHRP could enhance neurogenesis and inhibit microglia-mediated neuroinflammation in vivo. Here, we use the transgenic CL4176, CL2006, and CL2355 strains of Caenorhabditis elegans which express the human Aβ1-42 to investigate the effects and the possible mechanisms of SVHRP mediated protection against Aβ toxicity in vivo. The results showed that SVHRP-fed worms displayed remarkably decreased paralysis, less abundant toxic Aβ oligomers, reduced Aβ plaque deposition with respect to untreated animals. SVHRP also suppressed neuronal Aβ expression-induced defects in chemotaxis behavior and attenuated levels of ROS in the transgenic C. elegans. Taken together, these results suggest SVHRP could protect against Aβ-induced toxicity in C. elegans. Further studies need to be conducted in murine models and humans to analyze the effectiveness of the peptide.
Collapse
Affiliation(s)
- Xiao-Gang Zhang
- Department of Physiology, Dalian Medical University Dalian, China
| | - Xi Wang
- Department of Physiology, Dalian Medical University Dalian, China
| | - Ting-Ting Zhou
- Department of Neurology, the First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Xue-Fei Wu
- Department of Physiology, Dalian Medical University Dalian, China
| | - Yan Peng
- Department of Physiology, Dalian Medical University Dalian, China
| | - Wan-Qin Zhang
- Department of Physiology, Dalian Medical University Dalian, China
| | - Shao Li
- Department of Physiology, Dalian Medical University Dalian, China
| | - Jie Zhao
- Department of Physiology, Dalian Medical UniversityDalian, China; Liaoning Engineering Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related NeurodegenerationDalian, China
| |
Collapse
|
6
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
7
|
Jamalidoust M, Ravanshad M, Namayandeh M, Zare M, Asaei S, Ziyaeyan M. Construction of AAV-rat-IL4 and Evaluation of its Modulating Effect on Aβ (1-42)-Induced Proinflammatory Cytokines in Primary Microglia and the B92 Cell Line by Quantitative PCR Assay. Jundishapur J Microbiol 2016; 9:e30444. [PMID: 27217922 PMCID: PMC4870549 DOI: 10.5812/jjm.30444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Interleukin-4 (IL-4), as the most prominent anti-inflammatory cytokine, plays an important role in modulating microglial activation and inflammatory responses in Alzheimer's disease (AD), a chronic inflammatory disorder. OBJECTIVES The current study aimed to develop a new recombinant Adeno-associated viral (rAAV) vector that delivers IL-4 and then assess the counterbalancing effect of the new construct along with recombinant IL-4 (rIL-4) protein in in-vitro models of AD. MATERIALS AND METHODS The rAAV-IL4 was originally prepared and then employed along with rIL-4 protein to counter Amyloid β (1-42)-induced proinflammatory cytokines in a primary microglia cell culture and the B92 rat microglia continuous cell line, using relative Real-Time PCR assay. RESULTS Aβ (1-42) stimulated the production of the proinflammatory cytokines IL6, IL1β, TNFα, and IL18 in both the primary microglia cell culture and the B92 cell line. Both the rAAV-IL4 construct and the rIL-4 protein were found to inhibit production of the most important Aβ (1-42)-induced proinflammatory cytokine mRNAs in the two types of cells with different patterns. CONCLUSIONS It seems that the new construct can serve as an appropriate option in the modulation of Aβ-induced proinflammatory cytokine gene expression and microglia activation in patients affected by AD.
Collapse
Affiliation(s)
- Marzieh Jamalidoust
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mehrdad Ravanshad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Corresponding author: Mehrdad Ravanshad, Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran. Tel: +98-2182883836, Fax: +98-2188013030, E-mail:
| | - Mandana Namayandeh
- Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Maryam Zare
- Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Sadaf Asaei
- Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mazyar Ziyaeyan
- Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
8
|
Sobow T. Combination treatments in Alzheimer’s disease: risks and benefits. Expert Rev Neurother 2014; 10:693-702. [DOI: 10.1586/ern.10.43] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Abstract
AbstractAlzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by normal memory loss and cognitive impairment in humans. Many drug targets and disease-modulating therapies are available for treatment of AD, but none of these are effective enough in reducing problems associated with recognition and memory. Potential drug targets so far reported for AD are β-secretase, Γ-secretase, amyloid beta (Aβ) and Aβ fibrils, glycogen synthase kinase-3 (GSK-3), acyl-coenzyme A: cholesterol acyl-transferase (ACAT) and acetylcholinesterase (AChE). Herbal remedies (antioxidants) and natural metal-chelators have shown a very significant role in reducing the risk of AD, as well as lowering the effect of Aβ in AD patients. Researchers are working in the direction of antisense and stem cell-based therapies for a cure for AD, which mainly depends on the clearance of misfolded protein deposits — including Aβ, tau, and alpha-synuclein. Computational approaches for inhibitor designing, interaction analysis, principal descriptors and an absorption, distribution, metabolism, excretion and toxicity (ADMET) study could speed up the process of drug development with higher efficacy and less chance of failure. This paper reviews the known drugs, drug targets, and existing and future therapies for the treatment of AD.
Collapse
|
10
|
Chen Z, Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013; 108:21-43. [PMID: 23850509 DOI: 10.1016/j.pneurobio.2013.06.004] [Citation(s) in RCA: 483] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding ideal diagnostic biomarker and disease-modifying therapy.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
11
|
Sangha JS, Sun X, Wally OSD, Zhang K, Ji X, Wang Z, Wang Y, Zidichouski J, Prithiviraj B, Zhang J. Liuwei Dihuang (LWDH), a traditional Chinese medicinal formula, protects against β-amyloid toxicity in transgenic Caenorhabditis elegans. PLoS One 2012; 7:e43990. [PMID: 22952840 PMCID: PMC3431378 DOI: 10.1371/journal.pone.0043990] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/27/2012] [Indexed: 12/12/2022] Open
Abstract
Liuwei Dihuang (LWDH), a classic Chinese medicinal formula, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. Here, we report on the effect and possible mechanisms of LWDH mediated protection of β-amyloid (Aβ) induced paralysis in Caenorhabditis elegans using ethanol extract (LWDH-EE) and water extract (LWDH-WE). Chemical profiling and quantitative analysis revealed the presence of different levels of bioactive components in these extracts. LWDH-WE was rich in polar components such as monosaccharide dimers and trimers, whereas LWDH-EE was enriched in terms of phenolic compounds such as gallic acid and paeonol. In vitro studies revealed higher DPPH radical scavenging activity for LWDH-EE as compared to that found for LWDH-WE. Neither LWDH-EE nor LWDH-WE were effective in inhibiting aggregation of Aβ in vitro. By contrast, LWDH-EE effectively delayed Aβ induced paralysis in the transgenic C. elegans (CL4176) model which expresses human Aβ1–42. Western blot revealed no treatment induced reduction in Aβ accumulation in CL4176 although a significant reduction was observed at an early stage with respect to β-amyloid deposition in C. elegans strain CL2006 which constitutively expresses human Aβ1–42. In addition, LWDH-EE reduced in vivo reactive oxygen species (ROS) in C. elegans (CL4176) that correlated with increased survival of LWDH-EE treated N2 worms under juglone-induced oxidative stress. Analysis with GFP reporter strain TJ375 revealed increased expression of hsp16.2::GFP after thermal stress whereas a minute induction was observed for sod3::GFP. Quantitative gene expression analysis revealed that LWDH-EE repressed the expression of amy1 in CL4176 while up-regulating hsp16.2 induced by elevating temperature. Taken together, these results suggest that LWDH extracts, particularly LWDH-EE, alleviated β-amyloid induced toxicity, in part, through up-regulation of heat shock protein, antioxidant activity and reduced ROS in C. elegans.
Collapse
Affiliation(s)
- Jatinder S. Sangha
- Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, Nova Scotia, Canada
| | - Xiaoli Sun
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Owen S. D. Wally
- Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, Nova Scotia, Canada
| | - Kaibin Zhang
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xiuhong Ji
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
| | - Zhimin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yanwen Wang
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Jeffrey Zidichouski
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, Nova Scotia, Canada
- * E-mail: (BP); (JZ)
| | - Junzeng Zhang
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- * E-mail: (BP); (JZ)
| |
Collapse
|
12
|
Oxidative Damage to RNA in Aging and Neurodegenerative Disorders. Neurotox Res 2012; 22:231-48. [DOI: 10.1007/s12640-012-9331-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 05/13/2012] [Accepted: 05/17/2012] [Indexed: 12/14/2022]
|
13
|
Chang L, Jiang H, Fu J, Liu B, Li CC, Yang Z. Synthesizing the Tetracyclic Core of Nanolobatolide. J Org Chem 2012; 77:3609-14. [PMID: 22414060 DOI: 10.1021/jo300039q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Le Chang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055,
China
| | - Hao Jiang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055,
China
| | - Junkai Fu
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055,
China
| | - Bin Liu
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055,
China
| | - Chuang-chuang Li
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055,
China
| | - Zhen Yang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055,
China
- Key Laboratory of
Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua
Center for Life Sciences at College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Stone JG, Casadesus G, Gustaw-Rothenberg K, Siedlak SL, Wang X, Zhu X, Perry G, Castellani RJ, Smith MA. Frontiers in Alzheimer's disease therapeutics. Ther Adv Chronic Dis 2011; 2:9-23. [PMID: 21743833 DOI: 10.1177/2040622310382817] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease which begins with insidious deterioration of higher cognition and progresses to severe dementia. Clinical symptoms typically involve impairment of memory and at least one other cognitive domain. Because of the exponential increase in the incidence of AD with age, the aging population across the world has seen a congruous increase AD, emphasizing the importance of disease altering therapy. Current therapeutics on the market, including cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, provide symptomatic relief but do not alter progression of the disease. Therefore, progress in the areas of prevention and disease modification may be of critical interest. In this review, we summarize novel AD therapeutics that are currently being explored, and also mechanisms of action of specific drugs within the context of current knowledge of AD pathologic pathways.
Collapse
Affiliation(s)
- Jeremy G Stone
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mannu P, Rinaldi S, Fontani V, Castagna A. Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease. Clin Interv Aging 2011; 6:207-11. [PMID: 21822377 PMCID: PMC3147052 DOI: 10.2147/cia.s23394] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Behavioral and psychiatric symptoms of dementia (BPSD) are common in Alzheimer's disease (AD) and disrupt the effective management of AD patients. The present study explores the use of radio electric asymmetric brain stimulation (REAC) in patients who have had a poor response to pharmacological treatment. PATIENTS AND METHODS Eight patients (five females and three males; mean [±standard deviation] age at study baseline: 69.9 ± 3.0 years) diagnosed with AD according to the DSM-IV-TR criteria (mean onset age of AD: 65.4 ± 3.5 years) were cognitively and psychometrically assessed with the Mini-Mental State Examination (MMSE), the Activity of Daily Living (ADL), the Instrumental Activity of Daily Living (IADL), and the Neuropsychiatric Inventory (NPI), prior to and after each of 2 REAC treatment cycles. RESULTS Scores on the MMSE and all subscales of the NPI (frequency, severity, and distress), the ADL, and the IADL were significantly improved following the initial REAC treatment. There was further significant improvement in all measurements (with a tendency for improvement in the IADL) after the second REAC treatment cycle. CONCLUSION The improvement of cognitive and behavioral/psychiatric functioning following REAC treatment suggests that this innovative approach may be an effective, safe, and tolerable alternative to pharmacological treatment of AD patients, especially in the area of BPSD. Elderly patients suffering from other types of dementia may also benefit from REAC treatment.
Collapse
Affiliation(s)
- Piero Mannu
- Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, Florence, Italy
| | | | | | | |
Collapse
|
16
|
Bak AM, Egefjord L, Gejl M, Steffensen C, Stecher CW, Smidt K, Brock B, Rungby J. Targeting amyloid-beta by glucagon-like peptide -1 (GLP-1) in Alzheimer's disease and diabetes. Expert Opin Ther Targets 2011; 15:1153-62. [PMID: 21749267 DOI: 10.1517/14728222.2011.600691] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Epidemiological evidence suggests an association between type 2 diabetes (T2DM) and Alzheimer's disease (AD), in that one disease increases the risk of the other. T2DM and AD share several molecular processes which underlie the tissue degeneration in either disease. Disturbances in insulin signaling may be the link between the two conditions. Drugs originally developed for T2DM are currently being considered as possible novel agents in the treatment of AD. AREAS COVERED This review discusses the potential role of glucagon-like peptide -1 (GLP-1) treatment in AD. GLP-1 receptors are expressed in areas of the brain important to memory and learning, and GLP-1 has growth-factor-like properties similar to insulin. A key neuropathological feature of AD is the accumulation of amyloid-beta (Aβ). In preclinical studies, GLP-1 and longer lasting analogues have been shown to have both neuroprotective and neurotrophic effects, and to protect synaptic activity in the brain from Aβ toxicity. EXPERT OPINION A convincing amount of evidence has shown a beneficial effect of GLP-1 agonist treatment on cognitive function, memory and learning in experimental models of AD. GLP-1 analogues may therefore be the new therapeutic agent of choice for intervention in AD.
Collapse
Affiliation(s)
- Ann Mosegaard Bak
- University Hospital of Aarhus , Department of Medical Endocrinology, MEA, Nørrebrogade, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dalla Y, Singh N, Jaggi AS, Singh D. Memory restorative role of statins in experimental dementia: an evidence of their cholesterol dependent and independent actions. Pharmacol Rep 2011; 62:784-96. [PMID: 21098862 DOI: 10.1016/s1734-1140(10)70339-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 03/09/2010] [Indexed: 12/30/2022]
Abstract
The study was aimed at investigating the effects of pitavastatin, simvastatin (lipophilic statins) and fluvastatin (hydrophilic statin) on memory deficits associated with Alzheimer's type dementia in mice. Dementia was induced with chronic administration of a high fat diet (HFD) or intracebroventricular streptozotocin (icv STZ, two doses of 3 mg/kg) in separate groups of animals. Memory of the animals was assessed by the Morris water maze (MWM) test. Brain thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH) levels were measured to assess total oxidative stress. Brain acetylcholinesterase (AChE) activity and total serum cholesterol levels were also measured. Icv STZ or HFD produced a significant impairment of learning and memory. Higher levels of brain AChE activity and TBARS and lower levels of GSH were observed in icv STZ- as well as HFD-treated animals. HFD-treated mice also showed a significant increase in total serum cholesterol levels. Pitavastatin and simvastatin each significantly attenuated STZ-induced memory deficits and biochemical changes; however, fluvastatin produced no significant effect on icv STZ-induced dementia or biochemical levels. Administration of any one of the three statins not only lowered HFD-induced rise in total serum cholesterol level but also attenuated HFD-induced memory deficits. Further pitavastatin and simvastatin administration also reversed HFD-induced changes in biochemicals level, while fluvastatin failed to produce any significant effect. This study demonstrates the potential of statins in memory dysfunctions associated with experimental dementia and provides evidence of their cholesterol-dependent and -independent actions.
Collapse
Affiliation(s)
- Yogita Dalla
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala (Punjab), PIN-147002, India
| | | | | | | |
Collapse
|
18
|
Cheng HM, Tian W, Peixoto PA, Dhudshia B, Chen DYK. Synthesis of ent-Nanolobatolide. Angew Chem Int Ed Engl 2011; 50:4165-8. [DOI: 10.1002/anie.201100926] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/03/2011] [Indexed: 11/06/2022]
|
19
|
Cheng HM, Tian W, Peixoto PA, Dhudshia B, Chen DYK. Synthesis of ent-Nanolobatolide. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Mills JD, Hadley K, Bailes JE. Dietary Supplementation With the Omega-3 Fatty Acid Docosahexaenoic Acid in Traumatic Brain Injury. Neurosurgery 2011; 68:474-81; discussion 481. [DOI: 10.1227/neu.0b013e3181ff692b] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- James D. Mills
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | - Julian E. Bailes
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
21
|
Combining NMR and X-ray Crystallography in Fragment-Based Drug Discovery: Discovery of Highly Potent and Selective BACE-1 Inhibitors. Top Curr Chem (Cham) 2011; 317:83-114. [DOI: 10.1007/128_2011_183] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Randall AD, Witton J, Booth C, Hynes-Allen A, Brown JT. The functional neurophysiology of the amyloid precursor protein (APP) processing pathway. Neuropharmacology 2010; 59:243-67. [PMID: 20167227 DOI: 10.1016/j.neuropharm.2010.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 01/12/2023]
Abstract
Amyloid beta (Abeta) peptides derived from proteolytic cleavage of amyloid precursor protein (APP) are thought to be a pivotal toxic species in the pathogenesis of Alzheimer's disease (AD). Furthermore, evidence has been accumulating that components of APP processing pathway are involved in non-pathological normal function of the CNS. In this review we aim to cover the extensive body of research aimed at understanding how components of this pathway contribute to neurophysiological function of the CNS in health and disease. We briefly outline changes to clinical neurophysiology seen in AD patients before discussing functional changes in mouse models of AD which range from changes to basal synaptic transmission and synaptic plasticity through to abnormal synchronous network activity. We then describe the various neurophysiological actions that are produced by application of exogenous Abeta in various forms, and finally discuss a number or other neurophysiological aspects of the APP pathway, including functional activities of components of secretase complexes other than Abeta production.
Collapse
Affiliation(s)
- A D Randall
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol School of Medical Sciences, Bristol, UK.
| | | | | | | | | |
Collapse
|
23
|
Zhu Z, Sun ZY, Ye Y, Voigt J, Strickland C, Smith EM, Cumming J, Wang L, Wong J, Wang YS, Wyss DF, Chen X, Kuvelkar R, Kennedy ME, Favreau L, Parker E, McKittrick BA, Stamford A, Czarniecki M, Greenlee W, Hunter JC. Discovery of Cyclic Acylguanidines as Highly Potent and Selective β-Site Amyloid Cleaving Enzyme (BACE) Inhibitors: Part I—Inhibitor Design and Validation. J Med Chem 2009; 53:951-65. [DOI: 10.1021/jm901408p] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol 2009; 118:151-66. [PMID: 19271225 DOI: 10.1007/s00401-009-0508-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
RNA oxidation and its biological effects are less well studied compared to DNA oxidation. However, RNA may be more susceptible to oxidative insults than DNA, for RNA is largely single-stranded and its bases are not protected by hydrogen bonding and less protected by specific proteins. Also, cellular RNA locates in the vicinity of mitochondria, the primary source of reactive oxygen species. Oxidative modification can occur not only in protein-coding RNAs, but also in non-coding RNAs that have been recently revealed to contribute towards the complexity of the mammalian brain. Damage to coding and non-coding RNAs will cause errors in proteins and disturbances in the regulation of gene expression. While less lethal than mutations in the genome and not inheritable, such sublethal damage to cells might be associated with underlying mechanisms of degeneration, especially age-associated neurodegeneration that is commonly found in the elderly population. Indeed, oxidative RNA damage has been described recently in most of the common neurodegenerative disorders including Alzheimer disease, Parkinson disease, dementia with Lewy bodies and amyotrophic lateral sclerosis. Of particular interest, the accumulating evidence obtained from studies on either human samples or experimental models coincidentally suggests that oxidative RNA damage is a feature in vulnerable neurons at early-stage of these neurodegenerative disorders, indicating that RNA oxidation actively contributes to the onset or the development of the disorders. Further investigations aimed at understanding of the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative disorders and lead to better therapeutic strategies.
Collapse
|
25
|
Peripheral blood mononuclear cells from mild cognitive impairment patients show deregulation of Bax and Sod1 mRNAs. Neurosci Lett 2009; 453:36-40. [DOI: 10.1016/j.neulet.2009.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/28/2009] [Accepted: 02/02/2009] [Indexed: 12/14/2022]
|
26
|
Laskaj R, Dodig S, Cepelak I, Kuzman I. Superoxide dismutase, copper and zinc concentrations in platelet-rich plasma of pneumonia patients. Ann Clin Biochem 2009; 46:123-8. [PMID: 19151168 DOI: 10.1258/acb.2008.008178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The aim of this study was to analyse platelet superoxide dismutase (SOD) activities (total SOD, manganese SOD and copper zinc SOD) and copper (Cu) and zinc (Zn) concentrations during the course of community-acquired pneumonia (CAP), and to compare them between patients with normal platelet count and those who have developed reactive thrombocytosis (RT). METHODS Platelet count, SOD activities and Cu and Zn concentrations in platelet-rich plasma were measured in patients with CAP on admission and at discharge. RESULTS Post-therapeutic platelet count increased significantly from the value recorded on admission. By the end of treatment, 42% of patients developed RT. All platelet SOD activities as well as Cu concentration were significantly lower in CAP patients than in control subjects. The initial Zn concentration was greater in CAP patients compared with controls and showed a decrease at discharge. On admission, there was no difference in all SOD activities between either subgroup with normal platelet count or subgroup with RT. At discharge all SOD activities were significantly lower in patients with RT. Also, catalytic activities of those enzymes were significantly lower in both subgroups in comparison with the initial values. Post-therapeutic Cu value was lower in patients with RT in comparison with patients having normal platelet count. Zn concentration decreased significantly at discharge when compared with the initial values only in patients with RT. CONCLUSION The pattern of changes might be indicative of a certain role of platelets in antioxidant response during treatment in CAP patients.
Collapse
Affiliation(s)
- R Laskaj
- Univeristy Hospital for Infectious Diseases, Zagreb, Croatia.
| | | | | | | |
Collapse
|
27
|
Mondragón-Rodríguez S, Basurto-Islas G, Binder LI, García-Sierra F. Conformational changes and cleavage; are these responsible for the tau aggregation in Alzheimer’s disease? FUTURE NEUROLOGY 2009. [DOI: 10.2217/14796708.4.1.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past, post-translational modifications of tau protein, such as phosphorylation, cleavage and conformational changes, have long been implicated in the pathogenesis of Alzheimer’s disease. Unfortunately, the accurate role and relationship between these pathological modifications during tau aggregation remains under extensive study. We had proposed a chronological model of tau pathological processing during Alzheimer´s disease, in which phosphorylation and cleavage could lead to conformational changes causing aggregation and therefore, cell toxicity. We discuss this issue and review in vitro and in situ evidence that supports the relevance of tau modifications that cause its pathological conformations and toxic aggregation. Thus, we offer a brief discussion regarding conformational change and cleavage as future clinical targets.
Collapse
Affiliation(s)
- Siddhartha Mondragón-Rodríguez
- Department of Cell Biology, Center of Research & Advanced Studies of the National Politechnical Institute Av., Instituto Politecnico Nacional 2508, CP 07360, Mexico City, Mexico
| | - Gustavo Basurto-Islas
- Department of Cell Biology, Center of Research & Advanced Studies of the National Politechnical Institute Av., Instituto Politecnico Nacional 2508, CP 07360, Mexico City, Mexico
| | - Lester I Binder
- Department of Cell & Molecular Biology, Northwestern University Medical School, W129, Tarry 8-754, 303 E Chicago Av., Chicago, IL 60611, USA
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research & Advanced Studies of the National Politechnical Institute, Av. Instituto Politecnico Nacional 2508, CP 07360, Mexico City, Mexico
| |
Collapse
|
28
|
Sublethal RNA oxidation as a mechanism for neurodegenerative disease. Int J Mol Sci 2008; 9:789-806. [PMID: 19325784 PMCID: PMC2635712 DOI: 10.3390/ijms9050789] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 12/27/2022] Open
Abstract
Although cellular RNA is subjected to the same oxidative insults as DNA and other cellular macromolecules, oxidative damage to RNA has not been a major focus in investigations of the biological consequences of free radical damage. In fact, because it is largely single-stranded and its bases lack the protection of hydrogen bonding and binding by specific proteins, RNA may be more susceptible to oxidative insults than is DNA. Oxidative damage to protein-coding RNA or non-coding RNA will, in turn, potentially cause errors in proteins and/or dysregulation of gene expression. While less lethal than mutations in the genome, such sublethal insults to cells might be associated with underlying mechanisms of several chronic diseases, including neurodegenerative disease. Recently, oxidative RNA damage has been described in several neurodegenerative diseases including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and prion diseases. Of particular interest, oxidative RNA damage can be demonstrated in vulnerable neurons early in disease, suggesting that RNA oxidation may actively contribute to the onset of the disease. An increasing body of evidence suggests that, mechanistically speaking, the detrimental effects of oxidative RNA damage to protein synthesis are attenuated, at least in part, by the existence of protective mechanisms that prevent the incorporation of the damaged ribonucleotides into the translational machinery. Further investigations aimed at understanding the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative and other degenerative diseases and lead to better therapeutic strategies.
Collapse
|
29
|
Stampfer M. Toward optimal health: Meir Stampfer, M.D., DR.P.H., discusses multivitamin and mineral supplementation for women. J Womens Health (Larchmt) 2007; 16:959-62. [PMID: 17903072 DOI: 10.1089/jwh.2007.c077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Abstract
Neurodegenerative and infectious disorders including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke are rapidly increasing as population's age. Alzheimer's disease alone currently affects 4.5 million Americans, and more than $100 billion is spent per year on medical and institutional care for affected people. Such numbers will double in the ensuing decades. Currently disease diagnosis for all disorders is made, in large measure, on clinical grounds as laboratory and neuroimaging tests confirm what is seen by more routine examination. Achieving early diagnosis would enable improved disease outcomes. Drugs, vaccines or regenerative proteins present "real" possibilities for positively affecting disease outcomes, but are limited in that their entry into the brain is commonly restricted across the blood-brain barrier. This review highlights how these obstacles can be overcome by polymer science and nanotechnology. Such approaches may improve diagnostic and therapeutic outcomes. New developments in polymer science coupled with cell-based delivery strategies support the notion that diseases that now have limited therapeutic options can show improved outcomes by advances in nanomedicine.
Collapse
|
31
|
Musilek K, Holas O, Kuca K, Jun D, Dohnal V, Opletalova V, Dolezal M. Novel series of bispyridinium compounds bearing a (Z)-but-2-ene linker—Synthesis and evaluation of their reactivation activity against tabun and paraoxon-inhibited acetylcholinesterase. Bioorg Med Chem Lett 2007; 17:3172-6. [PMID: 17383875 DOI: 10.1016/j.bmcl.2007.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 03/07/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Six novel AChE reactivators with a (Z)-but-2-ene linker were synthesized using the known synthetic pathways. Their ability to reactivate AChE, which had been previously inhibited by nerve agent tabun or pesticide paraoxon, was tested in vitro and compared to pralidoxime, HI-6, obidoxime, and K075. The novel synthesized compounds were found to be ineffective against GA-inhibited AChE but the ability of (Z)-1,4-bis(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide to reactivate paraoxon-inhibited AChE was comparable with that of oxime K075. Notably, the oxime group in position four substantially increased the ability of the novel compounds to reactivate paraoxon-inhibited AChE.
Collapse
Affiliation(s)
- Kamil Musilek
- Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
32
|
Laskaj R, Dodig S, Slavica D, Cepelak I, Kuzman I. Gamma-Glutamyltransferase Activity and Total Antioxidant Status in Serum and Platelets of Patients with Community-acquired Pneumonia. Arch Med Res 2007; 38:424-31. [PMID: 17416290 DOI: 10.1016/j.arcmed.2007.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 01/08/2007] [Indexed: 11/29/2022]
Abstract
BACKGROUND We undertook this study to analyze serum and platelet gamma-glutamyltransferase (GGT) activity and total antioxidant status (TAS) concentration during the course of pneumonia and to compare them between patients with normal platelet count and those who developed reactive thrombocytosis. METHODS Platelet count, GGT activity and TAS concentration in serum (S) and platelet (Plt) isolates were measured in 60 patients with community-acquired pneumonia (CAP) on admission and at discharge. RESULTS At the end of treatment, platelet count increased significantly from the value recorded on admission. By the end of treatment, 42% of patients developed reactive thrombocytosis. Serum and platelet GGT activity was higher, whereas (S)TAS was significantly lower in CAP patients than in control subjects. On admission, (Plt)TAS was significantly higher in CAP patients as compared with control subjects; at discharge, (Plt)TAS was lower in comparison with either patient admission and control subjects. GGT activity and TAS concentration in serum and platelet isolate on admission did not differ significantly between patients with and without thrombocytosis. At discharge, (S)GGT activity showed no significant changes, whereas (Plt)GGT decreased significantly in patients with thrombocytosis as compared with those without thrombocytosis. In patients with thrombocytosis, (S)TAS concentration showed no significant difference, whereas (Plt)TAS concentration measured at discharge was significantly lower in patients with thrombocytosis as compared to those with normal platelet count. CONCLUSIONS The pattern of changes in (Plt)GGT catalytic activity and TAS concentration might be indicative of a certain role of thrombocytosis during treatment in patients with CAP. Further investigations are necessary to clarify these changes.
Collapse
Affiliation(s)
- Renata Laskaj
- University Hospital for Infectious Diseases, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
33
|
Koechlin-Ramonatxo C. Oxygène, stress oxydant et supplémentations antioxydantes ou un aspect différent de la nutrition dans les maladies respiratoires. NUTR CLIN METAB 2006. [DOI: 10.1016/j.nupar.2006.10.178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|