1
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Chaudhari A, Wang X, Wu A, Liu H. Repeated Transcranial Photobiomodulation with Light-Emitting Diodes Improves Psychomotor Vigilance and EEG Networks of the Human Brain. Bioengineering (Basel) 2023; 10:1043. [PMID: 37760145 PMCID: PMC10525861 DOI: 10.3390/bioengineering10091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Transcranial photobiomodulation (tPBM) has been suggested as a non-invasive neuromodulation tool. The repetitive administration of light-emitting diode (LED)-based tPBM for several weeks significantly improves human cognition. To understand the electrophysiological effects of LED-tPBM on the human brain, we investigated alterations by repeated tPBM in vigilance performance and brain networks using electroencephalography (EEG) in healthy participants. Active and sham LED-based tPBM were administered to the right forehead of young participants twice a week for four weeks. The participants performed a psychomotor vigilance task (PVT) during each tPBM/sham experiment. A 64-electrode EEG system recorded electrophysiological signals from each participant during the first and last visits in a 4-week study. Topographical maps of the EEG power enhanced by tPBM were statistically compared for the repeated tPBM effect. A new data processing framework combining the group's singular value decomposition (gSVD) with eLORETA was implemented to identify EEG brain networks. The reaction time of the PVT in the tPBM-treated group was significantly improved over four weeks compared to that in the sham group. We observed acute increases in EEG delta and alpha powers during a 10 min LED-tPBM while the participants performed the PVT task. We also found that the theta, beta, and gamma EEG powers significantly increased overall after four weeks of LED-tPBM. Combining gSVD with eLORETA enabled us to identify EEG brain networks and the corresponding network power changes by repeated 4-week tPBM. This study clearly demonstrated that a 4-week prefrontal LED-tPBM can neuromodulate several key EEG networks, implying a possible causal effect between modulated brain networks and improved psychomotor vigilance outcomes.
Collapse
Affiliation(s)
| | | | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, USA; (A.C.); (X.W.); (A.W.)
| |
Collapse
|
3
|
Abijo A, Lee CY, Huang CY, Ho PC, Tsai KJ. The Beneficial Role of Photobiomodulation in Neurodegenerative Diseases. Biomedicines 2023; 11:1828. [PMID: 37509468 PMCID: PMC10377111 DOI: 10.3390/biomedicines11071828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Photobiomodulation (PBM), also known as Low-level Laser Therapy (LLLT), involves the use of light from a laser or light-emitting diode (LED) in the treatment of various disorders and it has recently gained increasing interest. Progressive neuronal loss with attendant consequences such as cognitive and/or motor decline characterize neurodegenerative diseases. The available therapeutic drugs have only been able to provide symptomatic relief and may also present with some side effects, thus precluding their use in treatment. Recently, there has been an exponential increase in interest and attention in the use of PBM as a therapy in various neurodegenerative diseases in animal studies. Because of the financial and social burden of neurodegenerative diseases on the sufferers and the need for the discovery of potential therapeutic inventions in their management, it is pertinent to examine the beneficial effects of PBM and the various cellular mechanisms by which it modulates neural activity. Here, we highlight the various ways by which PBM may possess beneficial effects on neural activity and has been reported in various neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, epilepsy, TBI, stroke) with the hope that it may serve as an alternative therapy in the management of neurodegenerative diseases because of the biological side effects associated with drugs currently used in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ayodeji Abijo
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Neurobiology Unit, Department of Anatomy, Ben S. Carson School of Medicine, Babcock University, Ilishan-Remo 121003, Nigeria
| | - Chun-Yuan Lee
- Aether Services, Taiwan, Ltd., Hsinchu 30078, Taiwan
| | | | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuen-Jer Tsai
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
4
|
Zomorrodi R, Loheswaran G, Pushparaj A, Lim L. Pulsed Near Infrared Transcranial and Intranasal Photobiomodulation Significantly Modulates Neural Oscillations: a pilot exploratory study. Sci Rep 2019; 9:6309. [PMID: 31004126 PMCID: PMC6474892 DOI: 10.1038/s41598-019-42693-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/05/2019] [Indexed: 01/12/2023] Open
Abstract
Transcranial photobiomodulation (tPBM) is the application of low levels of red or near-infrared (NIR) light to stimulate neural tissues. Here, we administer tPBM in the form of NIR light (810 nm wavelength) pulsed at 40 Hz to the default mode network (DMN), and examine its effects on human neural oscillations, in a randomized, sham-controlled, double-blinded trial. Using electroencephalography (EEG), we found that a single session of tPBM significantly increases the power of the higher oscillatory frequencies of alpha, beta and gamma and reduces the power of the slower frequencies of delta and theta in subjects in resting state. Furthermore, the analysis of network properties using inter-regional synchrony via weighted phase lag index (wPLI) and graph theory measures, indicate the effect of tPBM on the integration and segregation of brain networks. These changes were significantly different when compared to sham stimulation. Our preliminary findings demonstrate for the first time that tPBM can be used to non-invasively modulate neural oscillations, and encourage further confirmatory clinical investigations.
Collapse
Affiliation(s)
- Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
- Vielight Inc., Toronto, Ontario, Canada.
| | | | - Abhiram Pushparaj
- Ironstone Product Development Inc. & Qunuba Sciences Inc., Toronto, Ontario, Canada
| | - Lew Lim
- Vielight Inc., Toronto, Ontario, Canada
| |
Collapse
|
5
|
Wang X, Dmochowski JP, Zeng L, Kallioniemi E, Husain M, Gonzalez-Lima F, Liu H. Transcranial photobiomodulation with 1064-nm laser modulates brain electroencephalogram rhythms. NEUROPHOTONICS 2019; 6:025013. [PMID: 31259198 PMCID: PMC6563945 DOI: 10.1117/1.nph.6.2.025013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Noninvasive transcranial photobiomodulation (tPBM) with a 1064-nm laser has been reported to improve human performance on cognitive tasks as well as locally upregulate cerebral oxygen metabolism and hemodynamics. However, it is unknown whether 1064-nm tPBM also modulates electrophysiology, and specifically neural oscillations, in the human brain. The hypothesis guiding our study is that applying 1064-nm tPBM of the right prefrontal cortex enhances neurophysiological rhythms at specific frequency bands in the human brain under resting conditions. To test this hypothesis, we recorded the 64-channel scalp electroencephalogram (EEG) before, during, and after the application of 11 min of 4-cm-diameter tPBM (CW 1064-nm laser with 162 mW / cm 2 and 107 J / cm 2 ) to the right forehead of human subjects ( n = 20 ) using a within-subject, sham-controlled design. Time-resolved scalp topographies of EEG power at five frequency bands were computed to examine the tPBM-induced EEG power changes across the scalp. The results show time-dependent, significant increases of EEG spectral powers at the alpha (8 to 13 Hz) and beta (13 to 30 Hz) bands at broad scalp regions, exhibiting a front-to-back pattern. The findings provide the first sham-controlled topographic mapping that tPBM increases the strength of electrophysiological oscillations (alpha and beta bands) while also shedding light on the mechanisms of tPBM in the human brain.
Collapse
Affiliation(s)
- Xinlong Wang
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Jacek P. Dmochowski
- City College of New York, Department of Biomedical Engineering, New York, United States
| | - Li Zeng
- Texas A&M University, Department of Industrial and Systems Engineering, College Station, Texas, United States
| | - Elisa Kallioniemi
- University of Texas Southwestern Medical Center at Dallas, Department of Psychiatry, Dallas, Texas, United States
| | - Mustafa Husain
- University of Texas Southwestern Medical Center at Dallas, Department of Psychiatry, Dallas, Texas, United States
| | - F. Gonzalez-Lima
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas, United States
| | - Hanli Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| |
Collapse
|
6
|
Wu MX, Hamblin MR. Photobiomodulation and mitochondria for traumatic brain injury in mouse models. PHOTOBIOMODULATION IN THE BRAIN 2019:169-187. [DOI: 10.1016/b978-0-12-815305-5.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Neuroprotective effect of a new photobiomodulation technique against Aβ 25-35 peptide-induced toxicity in mice: Novel hypothesis for therapeutic approach of Alzheimer's disease suggested. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:54-63. [PMID: 29955652 PMCID: PMC6021268 DOI: 10.1016/j.trci.2017.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction Photobiomodulation was assessed as a novel treatment of Alzheimer’s disease (AD) by the use of a new device RGn500 combining photonic and magnetic emissions in a mouse model of AD. Methods Following the injection of amyloid β 25-35 peptide in male Swiss mice, RGn500 was applied once a day for 7 days either on the top of the head or the center of abdomen or both. Results RGn500 daily application for 10 min produced a neuroprotective effect on the neurotoxic effects of amyloid β 25-35 peptide injection when this type of photobiomodulation was applied both on the head and on the abdomen. Protection was demonstrated by memory restoration and on the normalization of key markers of AD (amyloid β 1-42, pTau), oxidative stress (lipid peroxidation), apoptosis (Bax/Bcl2) and neuroinflammation. Discussion RGn500 displays therapeutic efficacy similar to other pharmacological approaches evaluated in this model of AD.
Collapse
|
8
|
Hamblin MR. Photobiomodulation for traumatic brain injury and stroke. J Neurosci Res 2017; 96:731-743. [PMID: 29131369 DOI: 10.1002/jnr.24190] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
There is a notable lack of therapeutic alternatives for what is fast becoming a global epidemic of traumatic brain injury (TBI). Photobiomodulation (PBM) employs red or near-infrared (NIR) light (600-1100nm) to stimulate healing, protect tissue from dying, increase mitochondrial function, improve blood flow, and tissue oxygenation. PBM can also act to reduce swelling, increase antioxidants, decrease inflammation, protect against apoptosis, and modulate microglial activation state. All these mechanisms of action strongly suggest that PBM delivered to the head should be beneficial in cases of both acute and chronic TBI. Most reports have used NIR light either from lasers or from light-emitting diodes (LEDs). Many studies in small animal models of acute TBI have found positive effects on neurological function, learning and memory, and reduced inflammation and cell death in the brain. There is evidence that PBM can help the brain repair itself by stimulating neurogenesis, upregulating BDNF synthesis, and encouraging synaptogenesis. In healthy human volunteers (including students and healthy elderly women), PBM has been shown to increase regional cerebral blood flow, tissue oxygenation, and improve memory, mood, and cognitive function. Clinical studies have been conducted in patients suffering from the chronic effects of TBI. There have been reports showing improvement in executive function, working memory, and sleep. Functional magnetic resonance imaging has shown modulation of activation in intrinsic brain networks likely to be damaged in TBI (default mode network and salience network).
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
9
|
Belykh E, Yagmurlu K, Martirosyan NL, Lei T, Izadyyazdanabadi M, Malik KM, Byvaltsev VA, Nakaji P, Preul MC. Laser application in neurosurgery. Surg Neurol Int 2017; 8:274. [PMID: 29204309 PMCID: PMC5691557 DOI: 10.4103/sni.sni_489_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/18/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Technological innovations based on light amplification created by stimulated emission of radiation (LASER) have been used extensively in the field of neurosurgery. METHODS We reviewed the medical literature to identify current laser-based technological applications for surgical, diagnostic, and therapeutic uses in neurosurgery. RESULTS Surgical applications of laser technology reported in the literature include percutaneous laser ablation of brain tissue, the use of surgical lasers in open and endoscopic cranial surgeries, laser-assisted microanastomosis, and photodynamic therapy for brain tumors. Laser systems are also used for intervertebral disk degeneration treatment, therapeutic applications of laser energy for transcranial laser therapy and nerve regeneration, and novel diagnostic laser-based technologies (e.g., laser scanning endomicroscopy and Raman spectroscopy) that are used for interrogation of pathological tissue. CONCLUSION Despite controversy over the use of lasers for treatment, the surgical application of lasers for minimally invasive procedures shows promising results and merits further investigation. Laser-based microscopy imaging devices have been developed and miniaturized to be used intraoperatively for rapid pathological diagnosis. The multitude of ways that lasers are used in neurosurgery and in related neuroclinical situations is a testament to the technological advancements and practicality of laser science.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ting Lei
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kashif M. Malik
- University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
10
|
Cassano P, Petrie SR, Hamblin MR, Henderson TA, Iosifescu DV. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. NEUROPHOTONICS 2016; 3:031404. [PMID: 26989758 PMCID: PMC4777909 DOI: 10.1117/1.nph.3.3.031404] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/02/2016] [Indexed: 05/02/2023]
Abstract
We examined the use of near-infrared and red radiation (photobiomodulation, PBM) for treating major depressive disorder (MDD). While still experimental, preliminary data on the use of PBM for brain disorders are promising. PBM is low-cost with potential for wide dissemination; further research on PBM is sorely needed. We found clinical and preclinical studies via PubMed search (2015), using the following keywords: "near-infrared radiation," "NIR," "low-level light therapy," "low-level laser therapy," or "LLLT" plus "depression." We chose clinically focused studies and excluded studies involving near-infrared spectroscopy. In addition, we used PubMed to find articles that examine the link between PBM and relevant biological processes including metabolism, inflammation, oxidative stress, and neurogenesis. Studies suggest the processes aforementioned are potentially effective targets for PBM to treat depression. There is also clinical preliminary evidence suggesting the efficacy of PBM in treating MDD, and comorbid anxiety disorders, suicidal ideation, and traumatic brain injury. Based on the data collected to date, PBM appears to be a promising treatment for depression that is safe and well-tolerated. However, large randomized controlled trials are still needed to establish the safety and effectiveness of this new treatment for MDD.
Collapse
Affiliation(s)
- Paolo Cassano
- Massachusetts General Hospital, Depression Clinical and Research Program, One Bowdoin Square, 6th Floor, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Psychiatry, 401 Park Drive, Boston, Massachusetts 02215, United States
- Address all correspondence to: Paolo Cassano, E-mail:
| | - Samuel R. Petrie
- Massachusetts General Hospital, Depression Clinical and Research Program, One Bowdoin Square, 6th Floor, Boston, Massachusetts 02114, United States
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, 50 Blossom Street, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Theodore A. Henderson
- Synaptic Space, 3979 East Arapahoe Road, Littleton, Colorado 80122, United States
- Neuro-Laser Foundation, Suite 420, 215 South Wadsworth, Lakewood, Colorado 80226, United States
| | - Dan V. Iosifescu
- Mount Sinai Medical School, Mood and Anxiety Disorders Program, 1428 Madison Avenue, New York, New York 10029, United States
- Mount Sinai Medical School, Department of Psychiatry and Neuroscience, 1 Gustave L. Levy Place, New York, New York 10029, United States
| |
Collapse
|
11
|
Lapchak PA, Boitano PD. A novel method to promote behavioral improvement and enhance mitochondrial function following an embolic stroke. Brain Res 2016; 1646:125-131. [PMID: 27180104 DOI: 10.1016/j.brainres.2016.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
Abstract
Tissue plasminogen activator (tPA) is the only FDA-approved treatment for stroke; tPA increases cerebral reperfusion, blood flow and improved behavior. Novel transcranial laser therapy (TLT) also enhances cerebral blood flow and activates mitochondrial function. Using the rabbit small clot embolic stroke model (RSCEM), we studied the effects of continuous wave TLT (7.5mW/cm(2)) alone or in combination with standardized intravenous (IV) tPA (3.3mg/kg) applied 1h post-embolization on 3 endpoints: 1) behavioral function measured 2 days [effective stroke dose (P50 in mg) producing neurological deficits in 50% of embolized rabbits], 2) intracerebral hemorrhage (ICH) rate, and 3) cortical adenosine-5'-triphosphate (ATP) content was measured 6h following embolization. TLT and tPA significantly (p<0.05) increased P50 values by 95% and 56% (p<0.05), respectively over control. TLT-tPA increased P50 by 136% over control (p<0.05). Embolization reduced cortical ATP content by 39%; decreases that were attenuated by either TLT or tPA treatment (p<0.05). TLT-tPA further enhanced cortical ATP levels 22% above that measured in naïve control. TLT and tPA both effectively and safely, without affecting ICH rate, improved behavioral outcome in embolized rabbits; and there was a trend (p>0.05) for the TLT-tPA combination to further increase P50. TLT and tPA both attenuated stroke-induced ATP deficits, and the combination of tPA and TLT produced an additive effect on ATP levels. This study demonstrates that the combination of TLT-tPA enhances ATP production, and suggests that tPA-induced reperfusion in combination with TLT neuroprotection therapy may optimally protect viable cells in the cortex measured using ATP levels as a marker.
Collapse
Affiliation(s)
- Paul A Lapchak
- Cedars-Sinai Medical Center Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion Suite 8305, 127 South San Vicente Blvd, Los Angeles 90048, United States.
| | - Paul D Boitano
- Cedars-Sinai Medical Center Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion Suite 8305, 127 South San Vicente Blvd, Los Angeles 90048, United States.
| |
Collapse
|
12
|
Dong T, Zhang Q, Hamblin MR, Wu MX. Low-level light in combination with metabolic modulators for effective therapy of injured brain. J Cereb Blood Flow Metab 2015; 35:1435-44. [PMID: 25966949 PMCID: PMC4640344 DOI: 10.1038/jcbfm.2015.87] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/19/2015] [Accepted: 03/29/2015] [Indexed: 12/20/2022]
Abstract
Vascular damage occurs frequently at the injured brain causing hypoxia and is associated with poor outcomes in the clinics. We found high levels of glycolysis, reduced adenosine triphosphate generation, and increased formation of reactive oxygen species and apoptosis in neurons under hypoxia. Strikingly, these adverse events were reversed significantly by noninvasive exposure of injured brain to low-level light (LLL). Low-level light illumination sustained the mitochondrial membrane potential, constrained cytochrome c leakage in hypoxic cells, and protected them from apoptosis, underscoring a unique property of LLL. The effect of LLL was further bolstered by combination with metabolic substrates such as pyruvate or lactate both in vivo and in vitro. The combinational treatment retained memory and learning activities of injured mice to a normal level, whereas other treatment displayed partial or severe deficiency in these cognitive functions. In accordance with well-protected learning and memory function, the hippocampal region primarily responsible for learning and memory was completely protected by combination treatment, in marked contrast to the severe loss of hippocampal tissue because of secondary damage in control mice. These data clearly suggest that energy metabolic modulators can additively or synergistically enhance the therapeutic effect of LLL in energy-producing insufficient tissue-like injured brain.
Collapse
Affiliation(s)
- Tingting Dong
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Qi Zhang
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mei X Wu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Gonzalez-Lima F, Barrett DW. Augmentation of cognitive brain functions with transcranial lasers. Front Syst Neurosci 2014; 8:36. [PMID: 24672439 PMCID: PMC3953713 DOI: 10.3389/fnsys.2014.00036] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/27/2014] [Indexed: 12/17/2022] Open
Affiliation(s)
- F Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin Austin, TX, USA
| | - Douglas W Barrett
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin Austin, TX, USA
| |
Collapse
|
14
|
Chen Y, De Taboada L, O'Connor M, Delapp S, Zivin JA. Thermal effects of transcranial near-infrared laser irradiation on rabbit cortex. Neurosci Lett 2013; 553:99-103. [PMID: 23933199 DOI: 10.1016/j.neulet.2013.07.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/22/2013] [Accepted: 07/28/2013] [Indexed: 11/15/2022]
Abstract
Transcranial near-infrared laser therapy (TLT) improves stroke outcome in animal models. Adequate laser doses are necessary to exert therapeutic effects. However, applying higher laser energy may cause cortical tissue heating and exacerbate stroke injury. The objective of this study is to examine the thermal effect and safety of transcranial near-infrared laser therapy. Diode laser with a wavelength of 808 nm was used to deliver different power densities to the brain cortex of rabbits. Cortical temperature was monitored and measured using a thermal probe during the 2 min transcranial laser irradiation. Neuro-pathological changes were examined with histological staining 24 h after laser treatment. Transcranial laser irradiation for 2 min at cortical power densities of 22.2 and 55.6 mW/cm(2) with continuous wave (CW) did not increase cortical temperature in rabbits. With the same treatment regime, cortical power density at 111.1 mW/cm(2) increased brain temperature gradually by 0.5 °C over the 2 min exposure and returned to baseline values within 1-2 min post-irradiation. Separately, histological staining was evaluated after triple laser exposure of 22.2 mW/cm(2) CW and 111.1 mW/cm(2) pulse wave (PW) and showed normal neural cell morphology. The present study demonstrated that the TLT powers currently utilized in animal stroke studies do not cause cortical tissue heating and histopathological damage.
Collapse
Affiliation(s)
- Yongmei Chen
- University of California San Diego, Department of Neuroscience, 9500 Gilman Drive MTF321, La Jolla, CA 92093-0624, USA
| | | | | | | | | |
Collapse
|
15
|
Neurological and psychological applications of transcranial lasers and LEDs. Biochem Pharmacol 2013; 86:447-57. [PMID: 23806754 DOI: 10.1016/j.bcp.2013.06.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 11/23/2022]
Abstract
Transcranial brain stimulation with low-level light/laser therapy (LLLT) is the use of directional low-power and high-fluency monochromatic or quasimonochromatic light from lasers or LEDs in the red-to-near-infrared wavelengths to modulate a neurobiological function or induce a neurotherapeutic effect in a nondestructive and non-thermal manner. The mechanism of action of LLLT is based on photon energy absorption by cytochrome oxidase, the terminal enzyme in the mitochondrial respiratory chain. Cytochrome oxidase has a key role in neuronal physiology, as it serves as an interface between oxidative energy metabolism and cell survival signaling pathways. Cytochrome oxidase is an ideal target for cognitive enhancement, as its expression reflects the changes in metabolic capacity underlying higher-order brain functions. This review provides an update on new findings on the neurotherapeutic applications of LLLT. The photochemical mechanisms supporting its cognitive-enhancing and brain-stimulatory effects in animal models and humans are discussed. LLLT is a potential non-invasive treatment for cognitive impairment and other deficits associated with chronic neurological conditions, such as large vessel and lacunar hypoperfusion or neurodegeneration. Brain photobiomodulation with LLLT is paralleled by pharmacological effects of low-dose USP methylene blue, a non-photic electron donor with the ability to stimulate cytochrome oxidase activity, redox and free radical processes. Both interventions provide neuroprotection and cognitive enhancement by facilitating mitochondrial respiration, with hormetic dose-response effects and brain region activational specificity. This evidence supports enhancement of mitochondrial respiratory function as a generalizable therapeutic principle relevant to highly adaptable systems that are exquisitely sensitive to energy availability such as the nervous system.
Collapse
|
16
|
Xuan W, Vatansever F, Huang L, Wu Q, Xuan Y, Dai T, Ando T, Xu T, Huang YY, Hamblin MR. Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen. PLoS One 2013; 8:e53454. [PMID: 23308226 PMCID: PMC3538543 DOI: 10.1371/journal.pone.0053454] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/30/2012] [Indexed: 12/12/2022] Open
Abstract
Low-level laser (light) therapy (LLLT) has been clinically applied around the world for a spectrum of disorders requiring healing, regeneration and prevention of tissue death. One area that is attracting growing interest in this scope is the use of transcranial LLLT to treat stroke and traumatic brain injury (TBI). We developed a mouse model of severe TBI induced by controlled cortical impact and explored the effect of different treatment schedules. Adult male BALB/c mice were divided into 3 broad groups (a) sham-TBI sham-treatment, (b) real-TBI sham-treatment, and (c) real-TBI active-treatment. Mice received active-treatment (transcranial LLLT by continuous wave 810 nm laser, 25 mW/cm2, 18 J/cm2, spot diameter 1 cm) while sham-treatment was immobilization only, delivered either as a single treatment at 4 hours post TBI, as 3 daily treatments commencing at 4 hours post TBI or as 14 daily treatments. Mice were sacrificed at 0, 4, 7, 14 and 28 days post-TBI for histology or histomorphometry, and injected with bromodeoxyuridine (BrdU) at days 21–27 to allow identification of proliferating cells. Mice with severe TBI treated with 1-laser Tx (and to a greater extent 3-laser Tx) had significant improvements in neurological severity score (NSS), and wire-grip and motion test (WGMT). However 14-laser Tx provided no benefit over TBI-sham control. Mice receiving 1- and 3-laser Tx had smaller lesion size at 28-days (although the size increased over 4 weeks in all TBI-groups) and less Fluoro-Jade staining for degenerating neurons (at 14 days) than in TBI control and 14-laser Tx groups. There were more BrdU-positive cells in the lesion in 1- and 3-laser groups suggesting LLLT may increase neurogenesis. Transcranial NIR laser may provide benefit in cases of acute TBI provided the optimum treatment regimen is employed.
Collapse
Affiliation(s)
- Weijun Xuan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Otolaryngology, Traditional Chinese Medical University of Guangxi, Nanning, China
| | - Fatma Vatansever
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liyi Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Infectious Diseases, First Affiliated College & Hospital, Guangxi Medical University, Nanning, China
| | - Qiuhe Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Burn, Jinan Center Hospital, Jinan, China
| | - Yi Xuan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- School of Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Takahiro Ando
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Electronics and Electrical Engineering, Keio University, Kohoku-ku, Yokohama, Japan
| | - Tao Xu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Anesthesiology, Shanghai Jiaotong University, Shanghai, China
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Aesthetic and Plastic Center of Guangxi Medical University, Nanning, China
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Boonswang NA, Chicchi M, Lukachek A, Curtiss D. A new treatment protocol using photobiomodulation and muscle/bone/joint recovery techniques having a dramatic effect on a stroke patient's recovery: a new weapon for clinicians. BMJ Case Rep 2012; 2012:bcr0820114689. [PMID: 22967677 PMCID: PMC4543170 DOI: 10.1136/bcr.08.2011.4689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The subject of this case study is a 29-year-old woman who suffered a brainstem stroke. She remained severely dizzy, had a non-functional left hand secondary to weakness, severe spasticity in the right hand, a right lateral sixth nerve palsy and was unable to ambulate on presentation. The stroke occurred 2 years before presentation. The subject had been treated for 21 months at two different stroke rehabilitation centres before presentation. Our stroke protocol includes photobiomodulation administered with the XR3T-1 device and 'muscle/bone/joint/soft tissue' recovery techniques. The patient was seen once a week for 8 weeks and treatment sessions lasted approximately 60 min. The results were dramatic: after 8 weeks of implementation of our protocol, the patient demonstrated positive change in every area of her deficits as determined by improvements in physical examination findings. The gains achieved at 8 weeks have been maintained to this day and she continues to be treated once every 4 weeks.
Collapse
Affiliation(s)
- N Ab Boonswang
- Cardiothoracic Surgery Department, Easton Hospital, Easton, Pennsylvania, USA.
| | | | | | | |
Collapse
|
18
|
Wu Q, Xuan W, Ando T, Xu T, Huang L, Huang YY, Dai T, Dhital S, Sharma SK, Whalen MJ, Hamblin MR. Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med 2012; 44:218-26. [PMID: 22275301 DOI: 10.1002/lsm.22003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Traumatic brain injury (TBI) affects millions worldwide and is without effective treatment. One area that is attracting growing interest is the use of transcranial low-level laser therapy (LLLT) to treat TBI. The fact that near-infrared light can penetrate into the brain would allow non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. LLLT may treat TBI by increasing respiration in the mitochondria, causing activation of transcription factors, reducing inflammatory mediators and oxidative stress, and inhibiting apoptosis. STUDY DESIGN/MATERIALS AND METHODS We tested LLLT in a mouse model of closed-head TBI produced by a controlled weight drop onto the skull. Mice received a single treatment with continuous-wave 665, 730, 810, or 980 nm lasers (36 J/cm(2) delivered at 150 mW/cm(2)) 4-hour post-TBI and were followed up by neurological performance testing for 4 weeks. RESULTS Mice with moderate-to-severe TBI treated with 665 and 810 nm laser (but not with 730 or 980 nm) had a significant improvement in Neurological Severity Score that increased over the course of the follow-up compared to sham-treated controls. Morphometry of brain sections showed a reduction in small deficits in 665 and 810 nm laser treated mouse brains at 28 days. CONCLUSIONS The effectiveness of 810 nm agrees with previous publications, and together with the effectiveness of 660 nm and non-effectiveness of 730 and 980 nm can be explained by the absorption spectrum of cytochrome oxidase, the candidate mitochondrial chromophore in transcranial LLLT.
Collapse
Affiliation(s)
- Qiuhe Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR. Role of low-level laser therapy in neurorehabilitation. PM R 2011; 2:S292-305. [PMID: 21172691 DOI: 10.1016/j.pmrj.2010.10.013] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
This year marks the 50th anniversary of the discovery of the laser. The development of lasers for medical use, which became known as low-level laser therapy (LLLT) or photobiomodulation, followed in 1967. In recent years, LLLT has become an increasingly mainstream modality, especially in the areas of physical medicine and rehabilitation. At first used mainly for wound healing and pain relief, the medical applications of LLLT have broadened to include diseases such as stroke, myocardial infarction, and degenerative or traumatic brain disorders. This review will cover the mechanisms of LLLT that operate both on a cellular and a tissue level. Mitochondria are thought to be the principal photoreceptors, and increased adenosine triphosphate, reactive oxygen species, intracellular calcium, and release of nitric oxide are the initial events. Activation of transcription factors then leads to expression of many protective, anti-apoptotic, anti-oxidant, and pro-proliferation gene products. Animal studies and human clinical trials of LLLT for indications with relevance to neurology, such as stroke, traumatic brain injury, degenerative brain disease, spinal cord injury, and peripheral nerve regeneration, will be covered.
Collapse
Affiliation(s)
- Javad T Hashmi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Carroll J. Photomedicine and LLT Literature Watch. Photomed Laser Surg 2007; 25:463. [PMID: 17975963 DOI: 10.1089/pho.2007.9985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|