1
|
Stalbow LA, Preuss MH, Smit RAJ, Chami N, Bjørkhaug L, Aukrust I, Gloyn AL, Loos RJF. The contribution of functional HNF1A variants and polygenic susceptibility to risk of type 2 diabetes in ancestrally diverse populations. Diabetologia 2023; 66:116-126. [PMID: 36216889 PMCID: PMC9729131 DOI: 10.1007/s00125-022-05806-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 01/26/2023]
Abstract
AIMS/HYPOTHESIS We examined the contribution of rare HNF1A variants to type 2 diabetes risk and age of diagnosis, and the extent to which their impact is affected by overall genetic susceptibility, across three ancestry groups. METHODS Using exome sequencing data of 160,615 individuals of the UK Biobank and 18,797 individuals of the BioMe Biobank, we identified 746 carriers of rare functional HNF1A variants (minor allele frequency ≤1%), of which 507 carry variants in the functional domains. We calculated polygenic risk scores (PRSs) based on genome-wide association study summary statistics for type 2 diabetes, and examined the association of HNF1A variants and PRS with risk of type 2 diabetes and age of diagnosis. We also tested whether the PRS affects the association between HNF1A variants and type 2 diabetes risk by including an interaction term. RESULTS Rare HNF1A variants that are predicted to impair protein function are associated with increased risk of type 2 diabetes in individuals of European ancestry (OR 1.46, p=0.049), particularly when the variants are located in the functional domains (OR 1.89, p=0.002). No association was observed for individuals of African ancestry (OR 1.10, p=0.60) or Hispanic-Latino ancestry (OR 1.00, p=1.00). Rare functional HNF1A variants were associated with an earlier age at diagnosis in the Hispanic-Latino population (β=-5.0 years, p=0.03), and this association was marginally more pronounced for variants in the functional domains (β=-5.59 years, p=0.03). No associations were observed for other ancestries (African ancestry β=-2.7 years, p=0.13; European ancestry β=-3.5 years, p=0.20). A higher PRS was associated with increased odds of type 2 diabetes in all ancestries (OR 1.61-2.11, p<10-5) and an earlier age at diagnosis in individuals of African ancestry (β=-1.4 years, p=3.7 × 10-6) and Hispanic-Latino ancestry (β=-2.4 years, p<2 × 10-16). Furthermore, a higher PRS exacerbated the effect of the functional HNF1A variants on type 2 diabetes in the European ancestry population (pinteraction=0.037). CONCLUSIONS/INTERPRETATION We show that rare functional HNF1A variants, in particular those located in the functional domains, increase the risk of type 2 diabetes, at least among individuals of European ancestry. Their effect is even more pronounced in individuals with a high polygenic susceptibility. Our analyses highlight the importance of the location of functional variants within a gene and an individual's overall polygenic susceptibility, and emphasise the need for more genetic data in non-European populations.
Collapse
Affiliation(s)
- Lauren A Stalbow
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roelof A J Smit
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lise Bjørkhaug
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Ingvild Aukrust
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Identification and Characterization of Alternatively Spliced Transcript Isoforms of IRX4 in Prostate Cancer. Genes (Basel) 2021; 12:genes12050615. [PMID: 33919200 PMCID: PMC8143155 DOI: 10.3390/genes12050615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing (AS) is tightly regulated to maintain genomic stability in humans. However, tumor growth, metastasis and therapy resistance benefit from aberrant RNA splicing. Iroquois-class homeodomain protein 4 (IRX4) is a TALE homeobox transcription factor which has been implicated in prostate cancer (PCa) as a tumor suppressor through genome-wide association studies (GWAS) and functional follow-up studies. In the current study, we characterized 12 IRX4 transcripts in PCa cell lines, including seven novel transcripts by RT-PCR and sequencing. They demonstrate unique expression profiles between androgen-responsive and nonresponsive cell lines. These transcripts were significantly overexpressed in PCa cell lines and the cancer genome atlas program (TCGA) PCa clinical specimens, suggesting their probable involvement in PCa progression. Moreover, a PCa risk-associated SNP rs12653946 genotype GG was corelated with lower IRX4 transcript levels. Using mass spectrometry analysis, we identified two IRX4 protein isoforms (54.4 kDa, 57 kDa) comprising all the functional domains and two novel isoforms (40 kDa, 8.7 kDa) lacking functional domains. These IRX4 isoforms might induce distinct functional programming that could contribute to PCa hallmarks, thus providing novel insights into diagnostic, prognostic and therapeutic significance in PCa management.
Collapse
|
3
|
Yang Y, Zhou TC, Liu YY, Li X, Wang WX, Irwin DM, Zhang YP. Identification of HNF4A Mutation p.T130I and HNF1A Mutations p.I27L and p.S487N in a Han Chinese Family with Early-Onset Maternally Inherited Type 2 Diabetes. J Diabetes Res 2016; 2016:3582616. [PMID: 26981542 PMCID: PMC4766352 DOI: 10.1155/2016/3582616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is characterized by the onset of diabetes before the age of 25 years, positive family history, high genetic predisposition, monogenic mutations, and an autosomal dominant mode of inheritance. Here, we aimed to investigate the mutations and to characterize the phenotypes of a Han Chinese family with early-onset maternally inherited type 2 diabetes. Detailed clinical assessments and genetic screening for mutations in the HNF4α, GCK, HNF-1α, IPF-1, HNF1β, and NEUROD1 genes were carried out in this family. One HNF4A mutation (p.T130I) and two HNF1A polymorphisms (p.I27L and p.S487N) were identified. Mutation p.T130I was associated with both early-onset and late-onset diabetes and caused downregulated HNF4A expression, whereas HNF1A polymorphisms p.I27L and p.S487N were associated with the age of diagnosis of diabetes. We demonstrated that mutation p.T130I in HNF4A was pathogenic as were the predicted polymorphisms p.I27L and p.S487N in HNF1A by genetic and functional analysis. Our results show that mutations in HNF4A and HNF1A genes might account for this early-onset inherited type 2 diabetes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Tai-Cheng Zhou
- Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
- The Central Laboratory of the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Yong-Ying Liu
- Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Xiao Li
- The Central Laboratory of the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Wen-Xue Wang
- Laboratory of Biochemistry and Molecular Biology, Yunnan University, Kunming, Yunnan 650091, China
| | - David M. Irwin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 2E8
| | - Ya-Ping Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
5
|
Harries LW, Locke JM, Shields B, Hanley NA, Hanley KP, Steele A, Njølstad PR, Ellard S, Hattersley AT. The diabetic phenotype in HNF4A mutation carriers is moderated by the expression of HNF4A isoforms from the P1 promoter during fetal development. Diabetes 2008; 57:1745-52. [PMID: 18356407 DOI: 10.2337/db07-1742] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Mutations in the alternatively spliced HNF4A gene cause maturity-onset diabetes of the young (MODY). We characterized the spatial and developmental expression patterns of HNF4A transcripts in human tissues and investigated their role as potential moderators of the MODY phenotype. RESEARCH DESIGN AND METHODS We measured the expression of HNF4A isoforms in human adult tissues and gestationally staged fetal pancreas by isoform-specific real-time PCR. The correlation between mutation position and age of diagnosis or age-related penetrance was assessed in a cohort of 190 patients with HNF4A mutations. RESULTS HNF4A was expressed exclusively from the P2 promoter in adult pancreas, but from 9 weeks until at least 26 weeks after conception, up to 23% of expression in fetal pancreas was of P1 origin. HNF4A4-6 transcripts were not detected in any tissue. In whole pancreas, HNF4A9 expression was greater than in islets isolated from the endocrine pancreas (relative level 22 vs. 7%). Patients with mutations in exons 9 and 10 (absent from HNF4A3, HNF4A6, and HNF4A9 isoforms) developed diabetes later than those with mutations in exons 2-8, where all isoforms were affected (40 vs. 24 years; P = 0.029). Exon 9/10 mutations were also associated with a reduced age-related penetrance (53 vs. 10% without diabetes at age 55 years; P < 0.00001). CONCLUSIONS We conclude that isoforms derived from the HNF4A P1 promoter are expressed in human fetal, but not adult, pancreas, and that their presence during pancreatic development may moderate the diabetic phenotype in individuals with mutations in the HNF4A gene.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Exeter, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|