1
|
Starke AD, Dierkes J, Lied GA, Kasangu GA, Trattner C. Supporting healthier food choices through AI-tailored advice: A research agenda. PEC INNOVATION 2025; 6:100372. [PMID: 39896056 PMCID: PMC11786099 DOI: 10.1016/j.pecinn.2025.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Objective To develop a research agenda to investigate the effectiveness of AI-tailored advice to support healthier home cooking. It aims to support healthier food choice in the context of hypertension, allergies, and sustainable diets. Methods We describe an agenda that has been formed between 2019 and 2022, through multiple rejected grant applications to the Research Council of Norway. We focus on the case of tailored recipe advice for individuals, formulating research questions and methods for three topics: "Acceptance of Personalized Food Advice", "Algorithm and Interface AI: App Development", and "Nutrition Modeling & Clinical Trials". The overall methodology focuses on mitigating health issues among individuals with hypertension. Conclusion The design of AI to support healthier home cooking should tap into computational principles, as well as (psychological) theories of behavioral change. The effectiveness of an AI-driven home cooking app can be evaluated in a clinical trial akin to 'regular' dietary intervention studies. Innovation The development of a research agenda requires an integrated effort between scientists from different domains, during both the development and writeup of ideas. The proposed project is innovative, as most food technology and AI approaches have yet to be tested in proper trials on changes in eating habits.
Collapse
Affiliation(s)
- Alain D. Starke
- Amsterdam School of Communication Research, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, the Netherlands
- MediaFutures, Department of Information Science and Media Studies, University of Bergen, Norway
| | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Norway
| | - Gülen Arslan Lied
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Norway
- Department of Medicine, Division of Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Gloria A.B. Kasangu
- MediaFutures, Department of Information Science and Media Studies, University of Bergen, Norway
| | - Christoph Trattner
- MediaFutures, Department of Information Science and Media Studies, University of Bergen, Norway
| |
Collapse
|
2
|
Morvaridzadeh M, Zoubdane N, Heshmati J, Alami M, Berrougui H, Khalil A. High-Density Lipoprotein Metabolism and Function in Cardiovascular Diseases: What about Aging and Diet Effects? Nutrients 2024; 16:653. [PMID: 38474781 DOI: 10.3390/nu16050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) have become the leading global cause of mortality, prompting a heightened focus on identifying precise indicators for their assessment and treatment. In this perspective, the plasma levels of HDL have emerged as a pivotal focus, given the demonstrable correlation between plasma levels and cardiovascular events, rendering them a noteworthy biomarker. However, it is crucial to acknowledge that HDLs, while intricate, are not presently a direct therapeutic target, necessitating a more nuanced understanding of their dynamic remodeling throughout their life cycle. HDLs exhibit several anti-atherosclerotic properties that define their functionality. This functionality of HDLs, which is independent of their concentration, may be impaired in certain risk factors for CVD. Moreover, because HDLs are dynamic parameters, in which HDL particles present different atheroprotective properties, it remains difficult to interpret the association between HDL level and CVD risk. Besides the antioxidant and anti-inflammatory activities of HDLs, their capacity to mediate cholesterol efflux, a key metric of HDL functionality, represents the main anti-atherosclerotic property of HDL. In this review, we will discuss the HDL components and HDL structure that may affect their functionality and we will review the mechanism by which HDL mediates cholesterol efflux. We will give a brief examination of the effects of aging and diet on HDL structure and function.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Nada Zoubdane
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Javad Heshmati
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Mehdi Alami
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Hicham Berrougui
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| |
Collapse
|
3
|
Scheepers R, Araujo RP. Robust homeostasis of cellular cholesterol is a consequence of endogenous antithetic integral control. Front Cell Dev Biol 2023; 11:1244297. [PMID: 37842086 PMCID: PMC10570530 DOI: 10.3389/fcell.2023.1244297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Although cholesterol is essential for cellular viability and proliferation, it is highly toxic in excess. The concentration of cellular cholesterol must therefore be maintained within tight tolerances, and is thought to be subject to a stringent form of homeostasis known as Robust Perfect Adaptation (RPA). While much is known about the cellular signalling interactions involved in cholesterol regulation, the specific chemical reaction network structures that might be responsible for the robust homeostatic regulation of cellular cholesterol have been entirely unclear until now. In particular, the molecular mechanisms responsible for sensing excess whole-cell cholesterol levels have not been identified previously, and no mathematical models to date have been able to capture an integral control implementation that could impose RPA on cellular cholesterol. Here we provide a detailed mathematical description of cholesterol regulation pathways in terms of biochemical reactions, based on an extensive review of experimental and clinical literature. We are able to decompose the associated chemical reaction network structures into several independent subnetworks, one of which is responsible for conferring RPA on several intracellular forms of cholesterol. Remarkably, our analysis reveals that RPA in the cholesterol concentration in the endoplasmic reticulum (ER) is almost certainly due to a well-characterised control strategy known as antithetic integral control which, in this case, involves the high-affinity binding of a multi-molecular transcription factor complex with cholesterol molecules that are excluded from the ER membrane. Our model provides a detailed framework for exploring the necessary biochemical conditions for robust homeostatic control of essential and tightly regulated cellular molecules such as cholesterol.
Collapse
Affiliation(s)
| | - Robyn P. Araujo
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
4
|
Davies C, Morgan AE, Mc Auley MT. Computationally Modelling Cholesterol Metabolism and Atherosclerosis. BIOLOGY 2023; 12:1133. [PMID: 37627017 PMCID: PMC10452179 DOI: 10.3390/biology12081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. The underlying pathological driver of CVD is atherosclerosis. The primary risk factor for atherosclerosis is elevated low-density lipoprotein cholesterol (LDL-C). Dysregulation of cholesterol metabolism is synonymous with a rise in LDL-C. Due to the complexity of cholesterol metabolism and atherosclerosis mathematical models are routinely used to explore their non-trivial dynamics. Mathematical modelling has generated a wealth of useful biological insights, which have deepened our understanding of these processes. To date however, no model has been developed which fully captures how whole-body cholesterol metabolism intersects with atherosclerosis. The main reason for this is one of scale. Whole body cholesterol metabolism is defined by macroscale physiological processes, while atherosclerosis operates mainly at a microscale. This work describes how a model of cholesterol metabolism was combined with a model of atherosclerotic plaque formation. This new model is capable of reproducing the output from its parent models. Using the new model, we demonstrate how this system can be utilized to identify interventions that lower LDL-C and abrogate plaque formation.
Collapse
Affiliation(s)
- Callum Davies
- Department of Physical, Mathematical and Engineering Sciences, University of Chester, Chester CH1 4BJ, UK;
| | - Amy E. Morgan
- School of Health & Sport Sciences, Liverpool Hope University, Liverpool L16 9JD, UK;
| | - Mark T. Mc Auley
- Department of Physical, Mathematical and Engineering Sciences, University of Chester, Chester CH1 4BJ, UK;
| |
Collapse
|
5
|
Association of Leu432Val (rs1056836) polymorphism of the CYP1B1 gene with lipid profile in hypertensive Slovak women. ANTHROPOLOGICAL REVIEW 2022. [DOI: 10.18778/1898-6773.85.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leu432Val (rs1056836) polymorphism of the CYP1B1 gene was examined in relationship with lipid profile in hypertensive Slovak women according to their menopausal status. The entire study sample comprised 255 women suffering from hypertension aged from 39 to 65 years who were recruited from different localities in the western, southern, and middle parts of Slovakia. The participants provided a saliva or blood sample for DNA genotyping and a blood sample for biochemical analysis. The Leu432Val genotypes demonstrated statistically significant associations with all monitored atherogenic indices – total cholesterol-to-HDL-Cholesterol (AI1), Non-HDL-Cholesterol (AI2), LDL-Cholesterol-to-HDL-Cholesterol (AI3), and the logarithm of the ratio of plasma concentration of triglycerides to HDL-cholesterol (AIP log) in hypertensive pre/perimenopausal women. The mean values were significantly lower in women carrying the Val/Val genotype. In early postmenopausal hypertensive women the Leu432Val genotypes were statistically significant and associated with LDL-cholesterol (LDL-C) and AI2. The mean values of LDL-C and AI2 were significantly lower in women carrying the Leu/Leu genotype. In conclusion, the Leu432Val polymorphism may be associated with the atherogenic indices and LDL-C in hypertensive women.
Collapse
|
6
|
Han L, Sun R, Wang Y, Luo J, Peng X. Soybean diacylglycerol regulates lipid metabolism in D-galactose-induced aging rats by altering gut microbiota and gene expression of colonic epithelial cells. Food Funct 2022; 13:1437-1446. [PMID: 35048932 DOI: 10.1039/d1fo04140a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid metabolism is closely related to the health of aging bodies and its disorder often leads to cardiovascular diseases and chronic diseases. Dietary fat is one of the important sources of body fat, which affects the body's lipid metabolism. However, how dietary fat affects lipid metabolism in aging bodies has not been reported. Thus, the effects of soybean diacylglycerol (DAG) on lipid metabolism in D-galactose-induced aging rats were investigated by detecting the serum biochemical indexes, hepatocyte morphology, gut microbiota changes, and gene expression of colonic epithelial cells. The results showed that DAG alleviated the lipid metabolism disorders, and the hepatocyte morphology of aging rats fed DAG was normal. 16S rDNA analysis showed that DAG restored Eisenbergiella and Veillonella that were missing in aging rats. The relative abundances of Romboutsia and Ruminococcus_2 decreased and the relative abundance of Lachnospiraceae NK4A136 group increased significantly with the influence of DAG (P < 0.05). Gene expression profiles showed that the gene expression of colon epithelial cells was altered by DAG and DAG downregulated the genes Lipe and Fabp4 related to the lipolysis of adipocytes. In conclusion, DAG regulated the lipid metabolism of aging rats by regulating gut microbiota and gene expression of colonic epithelial cells.
Collapse
Affiliation(s)
- Lulu Han
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China.
| | - Rongrong Sun
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China.
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China.
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China.
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
7
|
Mc Auley MT. Modeling cholesterol metabolism and atherosclerosis. WIREs Mech Dis 2021; 14:e1546. [PMID: 34931487 DOI: 10.1002/wsbm.1546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality among Western populations. Many risk factors have been identified for ASCVD; however, elevated low-density lipoprotein cholesterol (LDL-C) remains the gold standard. Cholesterol metabolism at the cellular and whole-body level is maintained by an array of interacting components. These regulatory mechanisms have complex behavior. Likewise, the mechanisms which underpin atherogenesis are nontrivial and multifaceted. To help overcome the challenge of investigating these processes mathematical modeling, which is a core constituent of the systems biology paradigm has played a pivotal role in deciphering their dynamics. In so doing models have revealed new insights about the key drivers of ASCVD. The aim of this review is fourfold; to provide an overview of cholesterol metabolism and atherosclerosis, to briefly introduce mathematical approaches used in this field, to critically discuss models of cholesterol metabolism and atherosclerosis, and to highlight areas where mathematical modeling could help to investigate in the future. This article is categorized under: Cardiovascular Diseases > Computational Models.
Collapse
|
8
|
Liu F, Sirisena S, Ng K. Efficacy of flavonoids on biomarkers of type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34842001 DOI: 10.1080/10408398.2021.2009761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A systematic review and meta-analysis of 28 randomized controlled trials (RCTs) to assess the efficacy of flavonoids intake on key biomarkers related to Type 2 diabetes mellitus was conducted. The mean difference (MD) with 95% confidence intervals (95% CI) was pooled using a random-effects model. Significant reduction in fasting glucose (MD: -0.22, 95% CI: -0.34 to -0.09, p = 0.0013), hemoglobin A1c (HbA1c) (MD: -0.26, 95% CI: -0.46 to -0.05, p = 0.021), homeostasis model assessment of insulin resistance (HOMA-IR) (MD: -0.40, 95% CI: -0.66 to -0.15, p = 0.0039), triglyceride (TG) (MD: -0.13, 95% CI: -0.21 to -0.05, p = 0.002), total cholesterol (TC) (MD: -0.14, 95% CI: -0.21 to -0.08, p = 0.0002), and low density lipoprotein-C (LDL-C) (MD: -0.15; 95% CI: -0.24 to -0.07, p = 0.0009) were observed in intervention group compare to placebo at the end of trial. Moreover, flavonoid intake had negative but non-significant effect on insulin (MD: -0.46), 2 h-postprandial glucose (2 h-PPG) (MD: -0.22), homeostasis model assessment of β-cell function (HOMA-β) (MD: -2.81), and insignificantly increased high-density lipoprotein-C (HDL-C) (MD: 0.03). In conclusion, flavonoid intake has modest but statistically significant benefits in glucose metabolism, insulin sensitivity, and lipid metabolism, especially for significantly lowing fasting blood glucose, HOMA-IR, HbA1c, TG, TC, and LDL-C.
Collapse
Affiliation(s)
- Fanling Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sameera Sirisena
- Department of Chemical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Huang X, Ouyang Q, Ran M, Zeng B, Deng L, Hu S, Yang M, Li G, Deng T, He M, Li T, Yang H, Zhang G, Zhang H, Zeng C, Wang J. The immune and metabolic changes with age in giant panda blood by combined transcriptome and DNA methylation analysis. Aging (Albany NY) 2020; 12:21777-21797. [PMID: 33188156 PMCID: PMC11623972 DOI: 10.18632/aging.103990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/14/2020] [Indexed: 11/25/2022]
Abstract
Giant panda (Ailuropoda melanoleuca) is an endangered mammalian species. Exploring immune and metabolic changes that occur in giant pandas with age is important for their protection. In this study, we systematically investigated the physiological and biochemical indicators in blood, as well as the transcriptome, and methylation profiles of young, adult, and old giant pandas. The white blood cell (WBC), neutrophil (NEU) counts and hemoglobin (HGB) concentrations increased significantly with age (young to adult), and some indicators related to blood glucose and lipids also changed significantly with age. In the transcriptome analysis, differentially expressed genes (DEGs) were found in comparisons of the young and adult (257), adult and old (20), young and old (744) groups. Separation of the DEGs into eight profiles according to the expression trend using short time-series expression miner (STEM) software revealed that most DEGs were downregulated with age. Functional analysis showed that most DEGs were associated with disease and that these DEGs were also associated with the immune system and metabolism. Furthermore, gene methylation in giant pandas decreased globally with age, and the expression of CCNE1, CD79A, IL1R1, and TCF7 showed a highly negative correlation with their degree of methylation. These results indicate that the giant panda's immune function improves gradually with age (young to adult), and that changes in the methylation profile are involved in the effects of age on immune and metabolic functions. These results have important implications for the understanding and conservation of giant pandas.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingxia Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Linhua Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guo Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Tao Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Ti Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Haidi Yang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Guiquan Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Heming Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
10
|
Morgan AE, Mc Auley MT. Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms. BIOLOGY 2020; 9:E314. [PMID: 33007859 PMCID: PMC7599957 DOI: 10.3390/biology9100314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
The dysregulation of intracellular cholesterol homeostasis is associated with several age-related diseases, most notably cardiovascular disease (CVD). Research in this area has benefitted from using computational modelling to study the inherent complexity associated with the regulation of this system. In addition to facilitating hypothesis exploration, the utility of modelling lies in its ability to represent an array of rate limiting enzymatic reactions, together with multiple feedback loops, which collectively define the dynamics of cholesterol homeostasis. However, to date no model has specifically investigated the effects aging has on this system. This work addresses this shortcoming by explicitly focusing on the impact of aging on hepatic intracellular cholesterol homeostasis. The model was used to investigate the experimental findings that reactive oxygen species induce the total activation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR). Moreover, the model explored the impact of an age-related decrease in hepatic acetyl-CoA acetyltransferase 2 (ACAT2). The model suggested that an increase in the activity of HMGCR does not have as significant an impact on cholesterol homeostasis as a decrease in hepatic ACAT2 activity. According to the model, a decrease in the activity of hepatic ACAT2 raises free cholesterol (FC) and decreases low-density lipoprotein cholesterol (LDL-C) levels. Increased acetyl CoA synthesis resulted in a reduction in the number of hepatic low-density lipoprotein receptors, and increased LDL-C, FC, and cholesterol esters. The rise in LDL-C was restricted by elevated hepatic FC accumulation. Taken together these findings have important implications for healthspan. This is because emerging clinical data suggest hepatic FC accumulation is relevant to the pathogenesis of non-alcoholic fatty liver disease (NAFLD), which is associated with an increased risk of CVD. These pathophysiological changes could, in part, help to explain the phenomenon of increased mortality associated with low levels of LDL-C which have been observed in certain studies involving the oldest old (≥85 years).
Collapse
Affiliation(s)
| | - Mark Tomás Mc Auley
- Faculty of Science and Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK;
| |
Collapse
|
11
|
Salvoza NC, Giraudi PJ, Tiribelli C, Rosso N. Sex differences in non-alcoholic fatty liver disease: hints for future management of the disease. EXPLORATION OF MEDICINE 2020; 1:51-74. [DOI: 10.37349/emed.2020.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 01/04/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a major cause of chronic liver disease worldwide. Despite extensive studies, the heterogeneity of the risk factors as well as different disease mechanisms complicate the goals toward effective diagnosis and management. Recently, it has been shown that sex differences play a role in the prevalence and progression of NAFLD. In vitro, in vivo, and clinical studies revealed that the lower prevalence of NAFLD in premenopausal as compared to postmenopausal women and men is mainly due to the protective effects of estrogen and body fat distribution. It has been also described that males and females present differential pathogenic features in terms of biochemical profiles and histological characteristics. However, the exact molecular mechanisms for the gender differences that exist in the pathogenesis of NAFLD are still elusive. Lipogenesis, oxidative stress, and inflammation play a key role in the progression of NAFLD. For NAFLD, only a few studies characterized these mechanisms at the molecular level. Therefore, we aim to review the reported differential molecular mechanisms that trigger such different pathogenesis in both sexes. Differences in lipid metabolism, glucose homeostasis, oxidative stress, inflammation, and fibrosis were discussed based on the evidence reported in recent publications. In conclusion, with this review, we hope to provide a new perspective for the development of future practice guidelines as well as a new avenue for the management of the disease.
Collapse
Affiliation(s)
- Noel C. Salvoza
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy; Philippine Council for Health Research and Development, DOST Compound, Bicutan Taguig City 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| |
Collapse
|
12
|
Maranhão RC, Pala D, Freitas FR. Lipoprotein removal mechanisms and aging: implications for the cardiovascular health of the elderly. Curr Opin Endocrinol Diabetes Obes 2020; 27:104-109. [PMID: 32011347 DOI: 10.1097/med.0000000000000529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The speed of removal from the plasma of apolipoprotein B-containing lipoproteins, for example, chylomicrons, VLDL and LDL is determinant of the plasma concentration of these lipoproteins, is influenced by genetic features and ambient factors, and has implications in atherogenesis. As aging increases the clinical complications of atherosclerosis, it is important to appraise the status of the removal mechanisms in elderly individuals. RECENT FINDINGS Removal of triglyceride-rich lipoproteins remnants is delayed but the triglyceride breakdown is unchanged in elderly individuals. The discovery of PCSK9, enzyme that degrades LDL receptors, and the recent observation that PCSK9 is elevated in the elderly raises another hypothesis to account for the increased LDL-cholesterol levels in the elderly. The removal of cholesterol from cells by HDL, the first step of cholesterol reverse transport is also less efficient in the elderly, which may compromise the body cholesterol homeostasis. SUMMARY Aging determines reduction of the efficiency of lipoprotein plasma removal mechanisms, which is implicated in increased incidence of cardia complications. Moreover, aging is frequently accompanied by physical activity reduction, weight gain, and metabolic disturbances that can further decrease the efficacy of the removal mechanisms. This knowledge is important for promoting cardiovascular health in the elderly and prolonging survival.
Collapse
Affiliation(s)
- Raul C Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
- Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniela Pala
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| | - Fatima R Freitas
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| |
Collapse
|
13
|
Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. MICROBIOME 2020; 8:36. [PMID: 32169105 PMCID: PMC7071638 DOI: 10.1186/s40168-020-00821-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/02/2020] [Indexed: 05/03/2023]
Abstract
Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although correlations have been shown between CAD and the gut microbiota, demonstration of potential causal relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision preventative and therapeutic strategies for CAD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada.
| |
Collapse
|
14
|
Abstract
The last few decades have witnessed a global rise in the number of older individuals. Despite this demographic shift, morbidity within this population group is high. Many factors influence healthspan; however, an obesity pandemic is emerging as a significant determinant of older people's health. It is well established that obesity adversely affects several metabolic systems. However, due to its close association with overall cardiometabolic health, the impact that obesity has on cholesterol metabolism needs to be recognised. The aim of the present review is to critically discuss the effects that obesity has on cholesterol metabolism and to reveal its significance for healthy ageing.
Collapse
|
15
|
Dong Z, Li C, Yin C, Xu M, Liu S, Gao M. LncRNA PU.1 AS regulates arsenic-induced lipid metabolism through EZH2/Sirt6/SREBP-1c pathway. J Environ Sci (China) 2019; 85:138-146. [PMID: 31471020 DOI: 10.1016/j.jes.2019.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is an omnipresent metalloid toxicant, which has elicited serious environmental pollution and health risky problems. Previous studies have uncovered that the As exposure could also cause markedly reduction of serum triglycerides in mice. However, the regulation mechanisms are still largely unknown. The present study is aimed to elucidate the molecular mechanisms of lncRNAs in As-induced lipid metabolic disequilibrium. We demonstrated that lncRNA PU.1 AS was significantly induced in the liver of As-feed mice companied with lower serum triglycerides contents; further in vitro experiment confirmed that PU.1 AS regulated liver cells lipid accumulation by nile red fluorescence staining. Intensive mechanistic investigations illustrated that PU.1 AS could interact with EZH2 protein to regulate its downstream target gene expression, and As-induced PU.1 AS attenuated EZH2-supppressed Sirt6 expression, thereafter leading to a decreased SREBP-1c protein expression, as well as the diminished synthesis of triglycerides in hepatocytes. In conclusion, this study provided a new lncRNA-related regulatory signaling pathway participating in As-induced abnormal lipid metabolism.
Collapse
Affiliation(s)
- Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changying Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Chunyang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Padilha BM, Ferreira RC, Bueno NB, Tassitano RM, Holanda LDS, Vasconcelos SML, Cabral PC. Association between blood cholesterol and sodium intake in hypertensive women with excess weight. Medicine (Baltimore) 2018; 97:e0371. [PMID: 29642188 PMCID: PMC5908596 DOI: 10.1097/md.0000000000010371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Restricted sodium intake has been recommended for more than 1 century for the treatment of hypertension. However, restriction seems to increase blood cholesterol. In women with excess weight, blood cholesterol may increase even more because of insulin resistance and the high lipolytic activity of adipose tissue.The aim of this study was to assess the association between blood cholesterol and sodium intake in hypertensive women with and without excess weight.This was a cross-sectional study with hypertensive and nondiabetic women aged 20 to 59 years, recruited at the primary healthcare units of Maceio, Alagoas, Brazilian Northeast. Excess weight was defined as body mass index (BMI) ≥25.0 kg/m. Sodium intake was estimated by the 24-hour urinary excretion of sodium. Blood cholesterol was the primary outcome investigated by this study, and its relationship with sodium intake and other variables was assessed by Pearson correlation and multivariate linear regression using a significance level of 5%.This study included 165 hypertensive women. Of these, 135 (81.8%) were with excess weight. The mean sodium intake was 3.7 g (±1.9) and 3.4 g (±2.4) in hypertensive women with and without excess weight, respectively. The multiple normal linear regression models fitted to the "blood cholesterol" in the 2 groups reveal that for the group of hypertensive women without excess weight only 1 independent variable "age" is statistically significant to explain the variability of the blood cholesterol levels. However, for the group of hypertensive women with excess weight, 2 independent variables, age and sodium intake, can statistically explain variations of the blood cholesterol levels.Blood cholesterol is statistically inversely related to sodium intake for hypertensive women with excess weight, but it is not statistically related to sodium intake for hypertensive women without excess weight.
Collapse
Affiliation(s)
- Bruna Merten Padilha
- Faculty of Nutrition, Federal University of Alagoas, Av. Lourival Melo Mota, Alagoas
| | | | - Nassib Bezerra Bueno
- Faculty of Nutrition, Federal University of Alagoas, Av. Lourival Melo Mota, Alagoas
| | - Rafael Miranda Tassitano
- Department of Physical Education, Federal Rural University of Pernambuco, R. Dom Manoel de Medeiros
| | - Lidiana de Souza Holanda
- Department of Nutrition, Federal University of Pernambuco, Av. Prof. Moraes Rego, Recife, Pernambuco, Brazil
| | | | - Poliana Coelho Cabral
- Department of Nutrition, Federal University of Pernambuco, Av. Prof. Moraes Rego, Recife, Pernambuco, Brazil
| |
Collapse
|
17
|
Abstract
The last few decades have witnessed remarkable progress in our understanding of ageing. From an evolutionary standpoint it is generally accepted that ageing is a non-adaptive process which is underscored by a decrease in the force of natural selection with time. From a mechanistic perspective ageing is characterized by a wide variety of cellular mechanisms, including processes such as cellular senescence, telomere attrition, oxidative damage, molecular chaperone activity, and the regulation of biochemical pathways by sirtuins. These biological findings have been accompanied by an unrelenting rise in both life expectancy and the number of older people globally. However, despite age being recognized demographically as a risk factor for healthspan, the processes associated with ageing are routinely overlooked in disease mechanisms. Thus, a central goal of biogerontology is to understand how diseases such as cardiovascular disease (CVD) are shaped by ageing. This challenge cannot be ignored because CVD is the main cause of morbidity in older people. A worthwhile way to examine how ageing intersects with CVD is to consider the effects ageing has on cholesterol metabolism, because dysregualted cholesterol metabolism is the key factor which underpins the pathology of CVD. The aim of this chapter is to outline a hypothesis which accounts for how ageing intersects with intracellular cholesterol metabolism. Moreover, we discuss the implications of this relationship for the onset of disease in the 'oldest old' (individuals ≥85 years of age). We conclude the chapter by discussing the important role mathematical modelling has to play in improving our understanding of cholesterol metabolism and ageing.
Collapse
|
18
|
Mc Auley MT, Mooney KM. LDL-C levels in older people: Cholesterol homeostasis and the free radical theory of ageing converge. Med Hypotheses 2017; 104:15-19. [PMID: 28673574 DOI: 10.1016/j.mehy.2017.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 01/11/2023]
Abstract
The cardiovascular disease (CVD) risk factor, low density lipoprotein cholesterol (LDL-C) increases with age, up until the midpoint of life in males and females. However, LDL-C can decrease with age in older men and women. Intriguingly, a recent systematic review also revealed an inverse association between LDL-C levels and cardiovascular mortality in older people; low levels of LDL-C were associated with reduced risk of mortality. Such findings are puzzling and require a biological explanation. In this paper a hypothesis is proposed to explain these observations. We hypothesize that the free radical theory of ageing (FRTA) together with disrupted cholesterol homeostasis can account for these observations. Based on this hypothesis, dysregulated hepatic cholesterol homeostasis in older people is characterised by two distinct metabolic states. The first state accounts for an older person who has elevated plasma LDL-C. This state is underpinned by the FRTA which suggests there is a decrease in cellular antioxidant capacity with age. This deficiency enables hepatic reactive oxidative species (ROS) to induce the total activation of HMG-CoA reductase, the key rate limiting enzyme in cholesterol biosynthesis. An increase in cholesterol synthesis elicits a corresponding rise in LDL-C, due to the downregulation of LDL receptor synthesis, and increased production of very low density lipoprotein cholesterol (VLDL-C). In the second state of dysregulation, ROS also trigger the total activation of HMG-CoA reductase. However, due to an age associated decrease in the activity of cholesterol-esterifying enzyme, acyl CoA: cholesterol acyltransferase, there is restricted conversion of excess free cholesterol (FC) to cholesterol esters. Consequently, the secretion of VLDL-C drops, and there is a corresponding decrease in LDL-C. As intracellular levels of FC accumulate, this state progresses to a pathophysiological condition akin to nonalcoholic fatty liver disease. It is our conjecture this deleterious state has the potential to account for the inverse association between LDL-C level and CVD risk observed in older people.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Faculty of Science and Engineering, Thornton Science Park, University of Chester, CH2 4NU, UK.
| | - Kathleen M Mooney
- Faculty of Health and Social Care, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| |
Collapse
|
19
|
Abstract
CVD accounted for 27 % of all deaths in the UK in 2014, and was responsible for 1·7 million hospital admissions in 2013/2014. This condition becomes increasingly prevalent with age, affecting 34·1 and 29·8 % of males and females over 75 years of age respectively in 2011. The dysregulation of cholesterol metabolism with age, often observed as a rise in LDL-cholesterol, has been associated with the pathogenesis of CVD. To compound this problem, it is estimated by 2050, 22 % of the world's population will be over 60 years of age, in culmination with a growing resistance and intolerance to pre-existing cholesterol regulating drugs such as statins. Therefore, it is apparent research into additional therapies for hypercholesterolaemia and CVD prevention is a growing necessity. However, it is also imperative to recognise this complex biological system cannot be studied using a reductionist approach; rather its biological uniqueness necessitates a more integrated methodology, such as that offered by systems biology. In this review, we firstly discuss cholesterol metabolism and how it is affected by diet and the ageing process. Next, we describe therapeutic strategies for hypercholesterolaemia, and finally how the systems biology paradigm can be utilised to investigate how ageing interacts with complex systems such as cholesterol metabolism. We conclude by emphasising the need for nutritionists to work in parallel with the systems biology community, to develop novel approaches to studying cholesterol metabolism and its interaction with ageing.
Collapse
|
20
|
Morgan A, Mooney K, Mc Auley M. Obesity and the dysregulation of fatty acid metabolism: implications for healthy aging. Expert Rev Endocrinol Metab 2016; 11:501-510. [PMID: 30058918 DOI: 10.1080/17446651.2016.1245141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The population of the world is aging. In 2010, an estimated 524 million people were aged 65 years or older representing eight percent of the global population. By 2050, this number is expected to nearly triple to approximately 1.5 billion, 16 percent of the world's population. Although people are living longer, the quality of their lives are often compromised due to ill-health. Areas covered: Of the conditions which compromise health as we age, obesity is at the forefront. Over half of the global older population were overweight or obese in 2010, significantly increasing the risk of a range of metabolic diseases. Although, it is well recognised excessive calorie intake is a fundamental driver of adipose tissue dysfunction, the relationship between obesity; intrinsic aging; and fat metabolism is less understood. In this review we discuss the intersection between obesity, aging and the factors which contribute to the dysregulation of whole-body fat metabolism. Expert commentary: Being obese disrupts an array of physiological systems and there is significant crosstalk among these. Moreover it is imperative to acknowledge the contribution intrinsic aging makes to the dysregulation of these systems and the onset of disease.
Collapse
Affiliation(s)
- Amy Morgan
- a Department of Chemical Engineering , University of Chester, Thornton Science Park , Chester , UK
| | - Kathleen Mooney
- b Faculty of Health and Social Care , Edge Hill University , Lancashire , UK
| | - Mark Mc Auley
- a Department of Chemical Engineering , University of Chester, Thornton Science Park , Chester , UK
| |
Collapse
|
21
|
Mathematically modelling the dynamics of cholesterol metabolism and ageing. Biosystems 2016; 145:19-32. [DOI: 10.1016/j.biosystems.2016.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/21/2022]
|
22
|
Morgan A, Mooney K, Wilkinson S, Pickles N, Mc Auley M. Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation. Ageing Res Rev 2016; 27:108-124. [PMID: 27045039 DOI: 10.1016/j.arr.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 02/06/2023]
Abstract
Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions.
Collapse
|
23
|
Mooney KM, Morgan AE, Mc Auley MT. Aging and computational systems biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:123-39. [PMID: 26825379 DOI: 10.1002/wsbm.1328] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/15/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022]
Abstract
Aging research is undergoing a paradigm shift, which has led to new and innovative methods of exploring this complex phenomenon. The systems biology approach endeavors to understand biological systems in a holistic manner, by taking account of intrinsic interactions, while also attempting to account for the impact of external inputs, such as diet. A key technique employed in systems biology is computational modeling, which involves mathematically describing and simulating the dynamics of biological systems. Although a large number of computational models have been developed in recent years, these models have focused on various discrete components of the aging process, and to date no model has succeeded in completely representing the full scope of aging. Combining existing models or developing new models may help to address this need and in so doing could help achieve an improved understanding of the intrinsic mechanisms which underpin aging.
Collapse
Affiliation(s)
- Kathleen M Mooney
- Faculty of Health and Social care, Edge Hill University, Lancashire, UK
| | - Amy E Morgan
- Faculty of Science and Engineering, University of Chester, Chester, UK
| | - Mark T Mc Auley
- Faculty of Science and Engineering, University of Chester, Chester, UK
| |
Collapse
|
24
|
Auley MTM, Mooney KM, Angell PJ, Wilkinson SJ. Mathematical modelling of metabolic regulation in aging. Metabolites 2015; 5:232-51. [PMID: 25923415 PMCID: PMC4495371 DOI: 10.3390/metabo5020232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/20/2022] Open
Abstract
The underlying cellular mechanisms that characterize aging are complex and multifaceted. However, it is emerging that aging could be regulated by two distinct metabolic hubs. These hubs are the pathway defined by the mammalian target of rapamycin (mTOR) and that defined by the NAD+-dependent deacetylase enzyme, SIRT1. Recent experimental evidence suggests that there is crosstalk between these two important pathways; however, the mechanisms underpinning their interaction(s) remains poorly understood. In this review, we propose using computational modelling in tandem with experimentation to delineate the mechanism(s). We briefly discuss the main modelling frameworks that could be used to disentangle this relationship and present a reduced reaction pathway that could be modelled. We conclude by outlining the limitations of computational modelling and by discussing opportunities for future progress in this area.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Faculty of Science & Engineering, University of Chester, Thornton Science Park, CH2 4NU, UK.
| | - Kathleen M Mooney
- Faculty of Health and Social Care, Edge Hill University, Ormskirk, Lancashire, L39 4QP, UK.
| | - Peter J Angell
- School of Health Sciences, Liverpool Hope University, Taggart Avenue, Liverpool, L16 9JD, UK.
| | - Stephen J Wilkinson
- Faculty of Science & Engineering, University of Chester, Thornton Science Park, CH2 4NU, UK.
| |
Collapse
|
25
|
Abstract
One of the greatest challenges in biology is to improve the understanding of the mechanisms which underpin aging and how these affect health. The need to better understand aging is amplified by demographic changes, which have caused a gradual increase in the global population of older people. Aging western populations have resulted in a rise in the prevalence of age-related pathologies. Of these diseases, cardiovascular disease is the most common underlying condition in older people. The dysregulation of lipid metabolism due to aging impinges significantly on cardiovascular health. However, the multifaceted nature of lipid metabolism and the complexities of its interaction with aging make it challenging to understand by conventional means. To address this challenge computational modeling, a key component of the systems biology paradigm is being used to study the dynamics of lipid metabolism. This mini-review briefly outlines the key regulators of lipid metabolism, their dysregulation, and how computational modeling is being used to gain an increased insight into this system.
Collapse
Affiliation(s)
- Mark T. Mc Auley
- Faculty of Science and Engineering, Department of Chemical Engineering, Thornton Science Park, University of Chester, UK
| | - Kathleen M. Mooney
- Faculty of Health and Social Care, Edge Hill University, Ormskirk, Lancashire, UK
| |
Collapse
|