1
|
Hanaki R, Harada K, Sasaki Y, Matsumoto M, Tahara Y. Stomatitis Healing via Hydrogels Comprising Proline, Carboxyvinyl Polymer, and Water. Gels 2025; 11:108. [PMID: 39996651 PMCID: PMC11854774 DOI: 10.3390/gels11020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Chemotherapy using anticancer agents and radiotherapy of cancers frequently induce the development of stomatitis as a side effect. In the present study, hydrogels for effective stomatitis healing under anticancer drug administration were developed using three components, namely proline, carboxyvinyl polymer, and water (denoted proline gels). Characterization including tilting, Fourier transform infrared spectra, and viscoelasticity measurements indicated that proline gels with proline concentrations over 300 μmol/g could retain water on the tongue of mice. The degradation and release behavior of proline gels in serological environments were evaluated, revealing that proline gels were degraded by serological salt concentrations, and the cumulative amount of proline released from proline gels depended on the concentration of proline in the gel. Proline gels were applied to the stomatitis area on the tongue of mice under anticancer drug administration, with subsequent reduction in the stomatitis area and regeneration of the mucosal epithelium layer, demonstrating effective stomatitis healing by proline gels with proline concentrations over 500 μmol/g. Other control samples including the carboxyvinyl polymer or proline alone did not reduce the stomatitis area in model mice. These results suggested that the proline gel is promising for the mucosa regeneration of anticancer drug-induced stomatitis.
Collapse
Affiliation(s)
- Raichi Hanaki
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City 610-0321, Kyoto, Japan (M.M.)
| | - Koji Harada
- Department of Nursing, Faculty of Health Sciences, Hiroshima Cosmopolitan University, 5-13-18 Ujinanishi, Minami-ku, Hiroshima City 734-0014, Hiroshima, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube City 755-8505, Yamaguchi, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Kyoto, Japan;
| | - Michiaki Matsumoto
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City 610-0321, Kyoto, Japan (M.M.)
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City 610-0321, Kyoto, Japan (M.M.)
| |
Collapse
|
2
|
Gavade A, Nagraj AK, Patel R, Pais R, Dhanure P, Scheele J, Seiz W, Patil J. Understanding the Specific Implications of Amino Acids in the Antibody Development. Protein J 2024; 43:405-424. [PMID: 38724751 DOI: 10.1007/s10930-024-10201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
As the demand for immunotherapy to treat and manage cancers, infectious diseases and other disorders grows, a comprehensive understanding of amino acids and their intricate role in antibody engineering has become a prime requirement. Naturally produced antibodies may not have the most suitable amino acids at the complementarity determining regions (CDR) and framework regions, for therapeutic purposes. Therefore, to enhance the binding affinity and therapeutic properties of an antibody, the specific impact of certain amino acids on the antibody's architecture must be thoroughly studied. In antibody engineering, it is crucial to identify the key amino acid residues that significantly contribute to improving antibody properties. Therapeutic antibodies with higher binding affinity and improved functionality can be achieved through modifications or substitutions with highly suitable amino acid residues. Here, we have indicated the frequency of amino acids and their association with the binding free energy in CDRs. The review also analyzes the experimental outcome of two studies that reveal the frequency of amino acids in CDRs and provides their significant correlation between the outcomes. Additionally, it discusses the various bond interactions within the antibody structure and antigen binding. A detailed understanding of these amino acid properties should assist in the analysis of antibody sequences and structures needed for designing and enhancing the overall performance of therapeutic antibodies.
Collapse
Affiliation(s)
- Akshata Gavade
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Anil Kumar Nagraj
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Riya Patel
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Roylan Pais
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Pratiksha Dhanure
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | | | | | - Jaspal Patil
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India.
| |
Collapse
|
3
|
Boros LG, Kyriakopoulos AM, Brogna C, Piscopo M, McCullough PA, Seneff S. Long-lasting, biochemically modified mRNA, and its frameshifted recombinant spike proteins in human tissues and circulation after COVID-19 vaccination. Pharmacol Res Perspect 2024; 12:e1218. [PMID: 38867495 PMCID: PMC11169277 DOI: 10.1002/prp2.1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/20/2024] [Indexed: 06/14/2024] Open
Abstract
According to the CDC, both Pfizer and Moderna COVID-19 vaccines contain nucleoside-modified messenger RNA (mRNA) encoding the viral spike glycoprotein of severe acute respiratory syndrome caused by corona virus (SARS-CoV-2), administered via intramuscular injections. Despite their worldwide use, very little is known about how nucleoside modifications in mRNA sequences affect their breakdown, transcription and protein synthesis. It was hoped that resident and circulating immune cells attracted to the injection site make copies of the spike protein while the injected mRNA degrades within a few days. It was also originally estimated that recombinant spike proteins generated by mRNA vaccines would persist in the body for a few weeks. In reality, clinical studies now report that modified SARS-CoV-2 mRNA routinely persist up to a month from injection and can be detected in cardiac and skeletal muscle at sites of inflammation and fibrosis, while the recombinant spike protein may persist a little over half a year in blood. Vaccination with 1-methylΨ (pseudouridine enriched) mRNA can elicit cellular immunity to peptide antigens produced by +1 ribosomal frameshifting in major histocompatibility complex-diverse people. The translation of 1-methylΨ mRNA using liquid chromatography tandem mass spectrometry identified nine peptides derived from the mRNA +1 frame. These products impact on off-target host T cell immunity that include increased production of new B cell antigens with far reaching clinical consequences. As an example, a highly significant increase in heart muscle 18-flourodeoxyglucose uptake was detected in vaccinated patients up to half a year (180 days). This review article focuses on medical biochemistry, proteomics and deutenomics principles that explain the persisting spike phenomenon in circulation with organ-related functional damage even in asymptomatic individuals. Proline and hydroxyproline residues emerge as prominent deuterium (heavy hydrogen) binding sites in structural proteins with robust isotopic stability that resists not only enzymatic breakdown, but virtually all (non)-enzymatic cleavage mechanisms known in chemistry.
Collapse
Affiliation(s)
- László G. Boros
- Sub‐Molecular Medical Sciences Deutenomics CoreVrije University AmsterdamAmsterdamThe Netherlands
| | | | - Carlo Brogna
- Department of ResearchCraniomed Group Facility SrlItaly
| | - Marina Piscopo
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | | | - Stephanie Seneff
- Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
4
|
Bana AAK, Mehta P, Ramnani KAK. Physical Instabilities of Therapeutic Monoclonal Antibodies: A Critical Review. Curr Drug Discov Technol 2022; 19:e240622206367. [PMID: 35748546 DOI: 10.2174/1570163819666220624092622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
The proteinaceous nature of monoclonal antibodies (mAbs) makes them highly sensitive to various physical and chemical conditions, thus leading to instabilities that are classified as physical and chemical instabilities. In this review, we are discussing in detail the physical instability of mAbs because a large number of articles previously published solely focus on the chemical aspect of the instability with little coverage on the physical side. The physical instabilities of mAbs are classified into denaturation and aggregation (precipitation, visible and subvisible particles). The mechanism involved in their formation is discussed in the article, along with the pathways correlating the denaturation of mAb or the formation of aggregates to immunogenicity. Further equations like Gibbs-Helmholtz involved in detecting and quantifying denaturation are discussed, along with various factors causing the denaturation. Moreover, questions related to aggregation like the types of aggregates and the pathway involved in their formation are answered in this article. Factors influencing the physical stability of the mAbs by causing denaturation or formation of aggregates involving the structure of the protein, concentration of mAbs, pH of the protein and the formulations, excipients involved in the formulations, salts added to the formulations, storage temperature, light and UV radiation exposure and processing factors are mentioned in this article. Finally, the analytical approaches used for detecting and quantifying the physical instability of mAbs at all levels of structural conformation like far and near UV, infrared spectroscopy, capillary electrophoresis, LC-MS, microflow imagining, circular dichroism and peptide mapping are discussed.
Collapse
Affiliation(s)
- Arpit Arun K Bana
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | | |
Collapse
|
5
|
Powell T, Knight MJ, Wood A, O'Hara J, Burkitt W. Photoinduced cross-linking of formulation buffer amino acids to monoclonal antibodies. Eur J Pharm Biopharm 2021; 160:35-41. [PMID: 33508437 DOI: 10.1016/j.ejpb.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
The correct choice of formulation buffer is a critical aspect of drug development and is chosen primarily to improve the stability of a protein therapeutic and protect against degradation. Amino acids are frequently incorporated into formulation buffers. In this study we have identified and characterized light induced cross-links between the side chain of histidine residues in an IgG4 monoclonal antibody and different amino acids commonly used in formulation buffers. These reactions have the potential to impact the overall product quality of the drug. The structure of each cross-link identified was elucidated using high performance liquid chromatography (HPLC) hyphenated to tandem mass spectrometry (MS/MS) with higher energy collisional dissociation (HCD). Furthermore, we speculate on the role of amino acids in formulation buffers and their influence on mAb stability. We theorize that whilst the adduction of formulation buffer amino acids could have a negative impact on product quality, it may protect against other pathways of photo-degradation.
Collapse
Affiliation(s)
- Thomas Powell
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK.
| | - Michael J Knight
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - Amanda Wood
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - John O'Hara
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - William Burkitt
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| |
Collapse
|
6
|
Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical Stability of Monoclonal Antibodies: A Review. J Pharm Sci 2020; 109:169-190. [DOI: 10.1016/j.xphs.2019.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|
7
|
Effect of IVIG Formulation on IgG Binding to Self- and Exo- Antigens In Vitro and In Vivo. PLoS One 2016; 11:e0161826. [PMID: 27561008 PMCID: PMC4999199 DOI: 10.1371/journal.pone.0161826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/14/2016] [Indexed: 12/31/2022] Open
Abstract
In relation to the recent trials of Intravenous Immunoglobulin (IVIG) in Alzheimer’s Disease (AD) it was demonstrated that different IgG preparations contain varying amounts of natural anti-amyloid β (Aβ) antibodies as measured by ELISA. We therefore investigated the relevance of ELISA data for measuring low-affinity antibodies, such as anti-Aβ. We analysed the binding of different commercial Immunoglobulin G (IgG) preparations to Aβ, actin and tetanus toxoid in different binding assays to further investigate the possible cause for observed differences in binding to Aβ and actin between different IgG preparations. We show that the differences of commercial IgG preparations in binding to Aβ and actin in ELISA assays are artefactual and only evident in in vitro binding assays. In functional assays and in vivo animal studies the different IVIG preparations exhibited very similar potency. ELISA data alone are not appropriate to analyse and rank the binding capacity of low-affinity antibodies to Aβ or other endogenous self-antigens contained in IgG preparations. Additional analytical methods should be adopted to complement ELISA data.
Collapse
|
8
|
Abstract
Immunoglobulin (IgG) replacement therapy has been the cornerstone of treatment for primary immunodeficiency disease for nearly 60 years. During this time, research has continually refined the target IgG trough level and IgG replacement dosages to allow patients with primary immunodeficiency disease to achieve effective protection from infection. Manufacturers have also improved IgG formulations to allow patients to receive clinically beneficial dosages of IgG replacement with improved safety and tolerability. This review will introduce Hizentra(®), a highly concentrated (20%) IgG solution for subcutaneous (sc.) infusion, discuss its manufacturing process and pharmacokinetic profile and review its tolerability and efficacy data as evaluated in clinical trials. New highly concentrated sc. IgG products may improve patient quality of life and adherence to therapy because of the flexible dosing options, fewer infusion sites and less infusion time, compared with less concentrated sc. IgG products, resulting in favorable patient outcomes consistent with higher steady-state IgG levels.
Collapse
Affiliation(s)
- Richard L Wasserman
- Dallas Allergy Immunology Research, 7777 Forest Ln, Building B, Suite 332, Dallas, TX 75230, USA
| |
Collapse
|
9
|
Lozano-Blasco J, Martín-Mateos MA, Alsina L, Domínguez O, Giner MT, Piquer M, Alvaro M, Plaza AM. A 10% liquid immunoglobulin preparation for intravenous use (Privigen®) in paediatric patients with primary immunodeficiencies and hypersensitivity to IVIG. Allergol Immunopathol (Madr) 2014; 42:136-41. [PMID: 23253680 DOI: 10.1016/j.aller.2012.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/09/2012] [Accepted: 10/26/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND The objective of this study was to evaluate safety and efficacy of Privigen®, a 10% intravenous immunoglobulin (IVIG), in a particular group of paediatric patients (highly sensitive to previous IVIG infusion) affected with Primary Immunodeficiencies (PID). MATERIAL AND METHODS Patients (n=8) from 3 to 17 years old diagnosed of PID who often suffered from adverse events related to the infusion to previous IVIG were switched to Privigen® in an open protocol. Data were prospectively collected regarding Privigen® administration: infusion, safety and efficacy. In parallel, data on safety and tolerance were retrospectively collected from medical charts regarding the previous 10% IVIG product used. RESULTS 50% of the patients required premedication with previous IVIG. At the end of the study none required premedication with Privigen®. The infusion rate was lower than that recommended by the manufacturer. All patients had suffered through adverse events during previous IVIG infusion being severe in three patients and recurrent in the rest. With Privigen® only three patients suffered from an adverse event (all cases were milder than previous related). Trough levels of IgG remained stable. None suffer from any episode of bacterial infection. CONCLUSION The present work shows that Privigen® was safe in a group of hypersensitive paediatric patients who did not tolerate the administration of a previous 10% liquid IVIG by using a particular infusion protocol slower than recommended. The number of adverse effects was smaller than published, and all cases were mild. No premedication was needed. Privigen® was also effective in this small group.
Collapse
Affiliation(s)
- J Lozano-Blasco
- Pediatric Allergy and Clinical Immunology Department of Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - M A Martín-Mateos
- Pediatric Allergy and Clinical Immunology Department of Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.
| | - L Alsina
- Pediatric Allergy and Clinical Immunology Department of Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - O Domínguez
- Pediatric Allergy and Clinical Immunology Department of Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - M T Giner
- Pediatric Allergy and Clinical Immunology Department of Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - M Piquer
- Pediatric Allergy and Clinical Immunology Department of Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - M Alvaro
- Pediatric Allergy and Clinical Immunology Department of Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - A M Plaza
- Pediatric Allergy and Clinical Immunology Department of Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
10
|
Sun A, Teschner W, Yel L. Improving patient tolerability in immunoglobulin treatment: focus on stabilizer effects. Expert Rev Clin Immunol 2014; 9:577-87. [DOI: 10.1586/eci.13.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Berger M. Adverse effects of IgG therapy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2013; 1:558-66. [PMID: 24565701 DOI: 10.1016/j.jaip.2013.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
Abstract
IgG is widely used for patients with immune deficiencies and in a broad range of autoimmune and inflammatory disorders. Up to 40% of intravenous infusions of IgG may be associated with adverse effects (AEs), which are mostly uncomfortable or unpleasant but often are not serious. The most common infusion-related AE is headache. More serious reactions, including true anaphylaxis and anaphylactoid reactions, occur less frequently. Most reactions are related to the rate of infusion and can be prevented or treated just by slowing the infusion rate. Medications such as nonsteroidal anti-inflammatory drugs, antihistamines, or corticosteroids also may be helpful in preventing or treating these common AEs. IgA deficiency with the potential of IgG or IgE antibodies against IgA increases the risk of some AEs but should not be viewed as a contraindication if IgG therapy is needed. Potentially serious AEs include renal dysfunction and/or failure, thromboembolic events, and acute hemolysis. These events usually are multifactorial, related to combinations of constituents in the IgG product as well as risk factors for the recipient. Awareness of these factors should allow minimization of the risks and consequences of these AEs. Subcutaneous IgG is absorbed more slowly into the circulation and has a lower incidence of AEs, but awareness and diligence are necessary whenever IgG is administered.
Collapse
Affiliation(s)
- Melvin Berger
- Immunology Research and Development, CSL Behring, LLC, King of Prussia, Pa.
| |
Collapse
|
12
|
Bhavsar RD, Prasad S, Roy I. Effect of osmolytes on the fibrillation of HypF-N. Biochimie 2013; 95:2190-3. [PMID: 23911865 DOI: 10.1016/j.biochi.2013.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
We have studied the effect of a series of stabilizing and destabilizing osmolytes on the fibrillation pattern of a model amyloidogenic protein, HypF-N. Under mildly denaturing conditions, HypF-N forms cross β-sheet structures, characteristic of amyloid fibrils. In the presence of all stabilizing osmolytes except proline, fibrillation of HypF-N is inhibited. Notably, fibrillation kinetics is retarded at subdenaturing concentrations of chaotropes. In case of proline, fibrillation of HypF-N is accelerated. Thus, the changes during exposure of a protein to denaturing conditions in the presence of osmolyes cannot be extrapolated from their role as anti-fibrillation agents.
Collapse
Affiliation(s)
- Rupen D Bhavsar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | | | | |
Collapse
|