1
|
Zhao X, Pang J, Zhang W, Peng X, Yang Z, Bai G, Xia Y. Tryptophan metabolism and piglet diarrhea: Where we stand and the challenges ahead. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:123-133. [PMID: 38766516 PMCID: PMC11101943 DOI: 10.1016/j.aninu.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wanghong Zhang
- Yunnan Vocational College of Agriculture, Kunming 650211, China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenguo Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Rahunen R, Tulppo M, Rinne V, Lepojärvi S, Perkiömäki JS, Huikuri HV, Ukkola O, Junttila J, Hukkanen J. Liver X Receptor Agonist 4β-Hydroxycholesterol as a Prognostic Factor in Coronary Artery Disease. J Am Heart Assoc 2024; 13:e031824. [PMID: 38390795 PMCID: PMC10944077 DOI: 10.1161/jaha.123.031824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Regardless of progress in treatment of coronary artery disease (CAD), there is still a significant residual risk of death in patients with CAD, highlighting the need for additional risk stratification markers. Our previous study provided evidence for a novel blood pressure-regulating mechanism involving 4β-hydroxycholesterol (4βHC), an agonist for liver X receptors, as a hypotensive factor. The aim was to determine the role of 4βHC as a prognostic factor in CAD. METHODS AND RESULTS The ARTEMIS (Innovation to Reduce Cardiovascular Complications of Diabetes at the Intersection) cohort consists of 1946 patients with CAD. Men and women were analyzed separately in quartiles according to plasma 4βHC. Basic characteristics, medications, ECG, and echocardiography parameters as well as mortality rate were analyzed. At baseline, subjects with a beneficial cardiovascular profile, as assessed with traditional markers such as body mass index, exercise capacity, prevalence of diabetes, and use of antihypertensives, had the highest plasma 4βHC concentrations. However, in men, high plasma 4βHC was associated with all-cause death, cardiac death, and especially sudden cardiac death (SCD) in a median follow-up of 8.8 years. Univariate and comprehensively adjusted hazard ratios for SCD in the highest quartile were 3.76 (95% CI, 1.6-8.7; P=0.002) and 4.18 (95% CI, 1.5-11.4; P=0.005), respectively. In contrast, the association of cardiac death and SCD in women showed the lowest risk in the highest 4βHC quartile. CONCLUSIONS High plasma 4βHC concentration was associated with death and especially SCD in men, while an inverse association was detected in women. Our results suggest 4βHC as a novel sex-specific risk marker of cardiac death and especially SCD in chronic CAD. REGISTRATION INFORMATION clinicaltrials.gov. Identifier NCT01426685.
Collapse
Affiliation(s)
- Roosa Rahunen
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Mikko Tulppo
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | | | - Samuli Lepojärvi
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Juha S. Perkiömäki
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Heikki V. Huikuri
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Olavi Ukkola
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Juhani Junttila
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Janne Hukkanen
- Research Unit of Biomedicine and Internal MedicineUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| |
Collapse
|
3
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
4
|
Chen J, Horiuchi S, Kuramochi S, Kawasaki T, Kawasumi H, Akiyama S, Arai T, Morinaga K, Kimura T, Kiyono T, Akutsu H, Ishida S, Umezawa A. Human intestinal organoid-derived PDGFRα + mesenchymal stroma enables proliferation and maintenance of LGR4 + epithelial stem cells. Stem Cell Res Ther 2024; 15:16. [PMID: 38229108 PMCID: PMC10792855 DOI: 10.1186/s13287-023-03629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Intestinal epithelial cells derived from human pluripotent stem cells (hPSCs) are generally maintained and cultured as organoids in vitro because they do not exhibit adhesion when cultured. However, the three-dimensional structure of organoids makes their use in regenerative medicine and drug discovery difficult. Mesenchymal stromal cells are found near intestinal stem cells in vivo and provide trophic factors to regulate stem cell maintenance and proliferation, such as BMP inhibitors, WNT, and R-spondin. In this study, we aimed to use mesenchymal stromal cells isolated from hPSC-derived intestinal organoids to establish an in vitro culture system that enables stable proliferation and maintenance of hPSC-derived intestinal epithelial cells in adhesion culture. METHODS We established an isolation protocol for intestinal epithelial cells and mesenchymal stromal cells from hPSCs-derived intestinal organoids and a co-culture system for these cells. We then evaluated the intestinal epithelial cells and mesenchymal stromal cells' morphology, proliferative capacity, chromosomal stability, tumorigenicity, and gene expression profiles. We also evaluated the usefulness of the cells for pharmacokinetic and toxicity studies. RESULTS The proliferating intestinal epithelial cells exhibited a columnar form, microvilli and glycocalyx formation, cell polarity, and expression of drug-metabolizing enzymes and transporters. The intestinal epithelial cells also showed barrier function, transporter activity, and drug-metabolizing capacity. Notably, small intestinal epithelial stem cells cannot be cultured in adherent culture without mesenchymal stromal cells and cannot replaced by other feeder cells. Organoid-derived mesenchymal stromal cells resemble the trophocytes essential for maintaining small intestinal epithelial stem cells and play a crucial role in adherent culture. CONCLUSIONS The high proliferative expansion, productivity, and functionality of hPSC-derived intestinal epithelial cells may have potential applications in pharmacokinetic and toxicity studies and regenerative medicine.
Collapse
Affiliation(s)
- JunLong Chen
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Shinichiro Horiuchi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
| | - So Kuramochi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hayato Kawasumi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Tomoki Arai
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kenichi Morinaga
- 1st Section, 1st Development Department, Food and Healthcare Business Development Unit, Business Development Division, Research & Business Development Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of BioSciences, Kitasato University School of Science, Kanagawa, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
- Graduate School of Engineering, Sojo University, Kumamoto, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
5
|
Orzetti S, Baldo P. Toxicity Derived from Interaction between Natural Compounds and Cancer Therapeutic Drugs Metabolized by CYP3A4: Lessons Learned from Two Clinical Case Reports. Int J Mol Sci 2023; 24:15976. [PMID: 37958959 PMCID: PMC10648905 DOI: 10.3390/ijms242115976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The use of natural compounds and, in general, the use of Complementary and Alternative Medicine (CAM), is growing steadily worldwide, both due to commercial pressure and the increasing use of self-medication and the desire to manage one's own personal health and well-being. Patients facing a cancer diagnosis are also strongly pressured to use these compounds, which are often added to standard therapeutic regimens, that should instead be based solely on diagnostic and therapeutic care pathways (DTCP) or evidence-based medicine (EBM). This study presents two clinical cases of cancer patients who presented to the pharmaceutical consultation service (PCD-Pharmacy Clinical Desk) established at the CRO Institute in Aviano, Italy. Both patients were using natural products along with prescribed chemotherapy. In the first case, a 55-year-old woman diagnosed with bilateral breast cancer with bone metastases, who was using natural compounds based on diosmin, escin (or aescin) and resveratrol in combination with ribociclib anticancer therapy, a severe ADR (neutropenia) was identified as a consequence of the drug-natural product interaction. In the second case, following a detailed medication review by the PCD, we avoided taking a therapeutic treatment (with natural compounds) that in itself could potentially render chemotherapy ineffective in a 57-year-old woman with multiple infiltrating ductal carcinoma of the left breast; the patient was planning to take a natural product containing St. John's Wort tincture and lemon balm tincture, in combination with paclitaxel and trastuzumab. In addition, we describe the corrective actions taken, thus outlining the main objectives of the activity of the PCD's pharmacy counseling service: first, to identify, report, and manage adverse drug reactions (ADRs), and second, to identify therapeutic combinations that present potential risks of toxicity or ineffectiveness of the drug therapy itself.
Collapse
Affiliation(s)
- Sabrina Orzetti
- PCD Pharmacy Clinical Desk, Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy;
| | - Paolo Baldo
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy
| |
Collapse
|
6
|
Shin Y, Choi C, Oh ES, Kim CO, Park K, Park MS. Effect of Rifampicin on the Pharmacokinetics of Evogliptin in Healthy Volunteers. Drug Des Devel Ther 2022; 16:4301-4310. [PMID: 36573067 PMCID: PMC9789683 DOI: 10.2147/dddt.s383157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Evogliptin (DA-1229) is a novel, potent, and selective dipeptidyl peptidase 4 (DPP-4) inhibitor for treating type 2 diabetes mellitus. This study investigates the effect of rifampicin on evogliptin pharmacokinetics. Patients and Methods An open-label, crossover, one-sequence study was conducted on 12 healthy subjects. Reference baseline pharmacokinetic samples were collected on day 1 after the subjects were administered a single dose of 5 mg evogliptin. After a washout period, the subjects were administered 600 mg rifampicin once daily for 10 days, from days 8 to 17, for full induction of hepatic enzyme activity. On day 17, single doses of evogliptin (5 mg) were administered along with rifampicin (600 mg). The test pharmacokinetic samples were collected with a sampling schedule identical to that used for the reference. Results Maximum concentration (Cmax) and area under the plasma drug concentration-time curve (AUC0-96h) of evogliptin with and without co-administration of rifampicin were compared. Reference and test Cmax and AUC0-96h values of evogliptin were 4.70 ng/mL vs 4.86 ng/mL and 153.97 ng∙h/mL vs 58.83 ng∙h/mL, respectively. All adverse events were mild in intensity and considered unrelated to evogliptin administration. Conclusion Rifampicin decreased the AUC0-96h of evogliptin by 61.8% without significantly affecting Cmax. The mechanism underlying the decrease in AUC0-96h is thought to be the induction of cytochrome P450 (CYP), especially 3A, by rifampicin. The adverse events, none of which were serious, were not significantly altered by the concomitant administration of evogliptin and rifampicin. Nevertheless, it would be prudent that evogliptin dosing should be carefully considered when co-administered with CYP3A inducers.
Collapse
Affiliation(s)
- Yesong Shin
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Chungam Choi
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Eun Sil Oh
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul, Korea,Department of Pharmaceutical Medicine and Regulatory Science, Graduate Inter Program, Yonsei University College of Medicine, Seoul, Korea
| | - Choon Ok Kim
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Kyungsoo Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Min Soo Park
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul, Korea,Department of Pharmaceutical Medicine and Regulatory Science, Graduate Inter Program, Yonsei University College of Medicine, Seoul, Korea,Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea,Correspondence: Min Soo Park, Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea, Tel +82-2-2228-0400, Fax +82-31-787-4045, Email
| |
Collapse
|
7
|
Tomás RMF, Bissoyi A, Congdon TR, Gibson MI. Assay-ready Cryopreserved Cell Monolayers Enabled by Macromolecular Cryoprotectants. Biomacromolecules 2022; 23:3948-3959. [PMID: 35972897 PMCID: PMC9472225 DOI: 10.1021/acs.biomac.2c00791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Cell monolayers underpin the discovery and screening
of new drugs
and allow for fundamental studies of cell biology and disease. However,
current cryopreservation technologies do not allow cells to be stored
frozen while attached to tissue culture plastic. Hence, cells must
be thawed from suspension, cultured for several days or weeks, and
finally transferred into multiwell plates for the desired application.
This inefficient process consumes significant time handling cells,
rather than conducting biomedical research or other value-adding activities.
Here, we demonstrate that a synthetic macromolecular cryoprotectant
enables the routine, reproducible, and robust cryopreservation of
biomedically important cell monolayers, within industry-standard tissue
culture multiwell plates. The cells are simply thawed with media and
placed in an incubator ready to use within 24 h. Post-thaw cell recovery
values were >80% across three cell lines with low well-to-well
variance.
The cryopreserved cells retained healthy morphology, membrane integrity,
proliferative capacity, and metabolic activity; showed marginal increases
in apoptotic cells; and responded well to a toxicological challenge
using doxorubicin. These discoveries confirm that the cells are “assay-ready”
24 h after thaw. Overall, we show that macromolecular cryoprotectants
can address a long-standing cryobiological challenge and offers the
potential to transform routine cell culture for biomedical discovery.
Collapse
Affiliation(s)
- Ruben M F Tomás
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Akalabya Bissoyi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
8
|
Jahani R, Behzad S, Saffariha M, Toufan Tabrizi N, Faizi M. Sedative-hypnotic, anxiolytic and possible side effects of Salvia limbata C. A. Mey. Extracts and the effects of phenological stage and altitude on the rosmarinic acid content. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114630. [PMID: 34517061 DOI: 10.1016/j.jep.2021.114630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia limbata C. A. Mey. (Persian name: Maryam Goli-e-labeh dar) has been used for treating central nervous disorders such as insomnia, anxiety and depression in Persian traditional medicine. S. limbata is known for its pharmacological activities which could be at least in a part, upon the presence of rosmarinic acid (RA). However, the sedative-hypnotic effect, anxiolytic activity, possible side effects, and the mechanism of action of S. limbata extract has not yet been examined. AIM OF THE STUDY In the current study the sedative-hypnotic effect, anxiolytic activity, possible side effects, and the mechanism of action of S. limbata extracts were evaluated. Besides, the effects of altitude and phenological stage on the RA content of S. limbata were investigated. MATERIALS AND METHODS Sedative-hypnotic and anxiolytic effects were evaluated through the pentobarbital induced loss of righting reflex test and open field test, respectively. Flumazenil was used to reveal the mechanism of action. Possible side effects were investigated in the passive avoidance and grip strength tests. Besides, the effects of altitude and phenological stage (vegetative, flowering, and seed setting) on the RA content of S. limbata were evaluated using reversed-phase high-performance liquid chromatography (RP-HPLC). RESULTS Following behavioral tests, sedative-hypnotic and anxiolytic effects were observed. Since the observed effects were reversed by flumazenil and no side effect on the memory and muscle strength was reported, modulation of the α1-containing GABA-A receptors could be proposed as one of the involved mechanisms. According to the RP-HPLC analysis, harvesting S. limbata in the vegetative stage at the altitude of 2500 m led to the highest content of RA (8.67 ± 0.13 mg/g dry matter). Among different extract of the plant samples collected in the vegetative stage at the altitude of 2500 m, the hydroalcoholic extract showed the highest rosmarinic acid content. CONCLUSION The obtained results help to find the optimum situation to gain the highest content of RA as well as the pharmacological activity that could be economically important for the pharmaceutical industries.
Collapse
Affiliation(s)
- Reza Jahani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Saffariha
- Department of Rehabilitation of Arid and Mountainous Region, College of Natural Resources, University of Tehran, Tehran, Iran
| | - Niyusha Toufan Tabrizi
- Student Research Committee, Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
CYP3A-status is associated with blood concentration and dose-requirement of tacrolimus in heart transplant recipients. Sci Rep 2021; 11:21389. [PMID: 34725418 PMCID: PMC8560807 DOI: 10.1038/s41598-021-00942-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023] Open
Abstract
High inter-individual variability in tacrolimus clearance is attributed to genetic polymorphisms of CYP3A enzymes. However, due to CYP3A phenoconversion induced by non-genetic factors, continuous changes in tacrolimus-metabolizing capacity entail frequent dose-refinement for optimal immunosuppression. In heart transplant recipients, the contribution of patients' CYP3A-status (CYP3A5 genotype and CYP3A4 expression) to tacrolimus blood concentration and dose-requirement was evaluated in the early and late post-operative period. In low CYP3A4 expressers carrying CYP3A5*3/*3, the dose-corrected tacrolimus level was significantly higher than in normal CYP3A4 expressers or in those with CYP3A5*1. Modification of the initial tacrolimus dose was required for all patients: dose reduction by 20% for low CYP3A4 expressers, a 40% increase for normal expressers and a 2.4-fold increase for CYP3A5*1 carriers. The perioperative high-dose corticosteroid therapy was assumed to ameliorate the low initial tacrolimus-metabolizing capacity during the first month. The fluctuation of CYP3A4 expression and tacrolimus blood concentration (C0/D) was found to be associated with tapering and cessation of corticosteroid in CYP3A5 non-expressers, but not in those carrying CYP3A5*1. Although monitoring of tacrolimus blood concentration cannot be omitted, assaying recipients' CYP3A-status can guide optimization of the initial tacrolimus dose, and can facilitate personalized tacrolimus therapy during steroid withdrawal in the late post-operative period.
Collapse
|
10
|
Skauby RH, Bergan S, Andersen AM, Vethe NT, Christensen H. In vitro assessments predict that CYP3A4 contributes to a greater extent than CYP3A5 to prednisolone clearance. Basic Clin Pharmacol Toxicol 2021; 129:427-436. [PMID: 34396687 DOI: 10.1111/bcpt.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
Because several steroid hormones are metabolized to their respective 6β-hydroxy forms by CYP3A4 and CYP3A5, these isoenzymes have been assumed to metabolize the immunosuppressive drug prednisolone, with conflicting results in the literature with respect to their relative importance. A direct study of the metabolism of prednisolone by microsomal CYP3A4 and CYP3A5 is missing. The aim of this in vitro study was to investigate the relative importance of recombinant CYP3A4 and recombinant CYP3A5 in the metabolism of prednisolone and to compare the extent of formation of 6β-OH-prednisolone by the two enzymes. Through in vitro incubations using rCYP3A4 and rCYP3A5 enzymes, intrinsic clearance (CLint ) of prednisolone was determined by the substrate depletion approach. Formation of the metabolite 6β-OH-prednisolone by rCYP3A4 and rCYP3A5, respectively, were compared. Prednisolone concentrations were measured and its metabolite 6β-OH-prednisolone was identified using a HPLC-MS/MS in-house method. CLint for prednisolone by rCYP3A5 was less than 26% relative to rCYP3A4. Formation of 6β -OH-prednisolone by rCYP3A5 was less than 11% relative to rCYP3A4. The study indicates that 6β-hydroxylation of prednisolone assessed in vitro in recombinant CYP enzymes depends on rCYP3A4 rather than rCYP3A5, and that CYP3A5 may be responsible for the formation of other prednisolone metabolite(s) in addition to 6β-OH-prednisolone.
Collapse
Affiliation(s)
- Ragnhild Heier Skauby
- Department of Pharmacology, Oslo University Hospital, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Stein Bergan
- Department of Pharmacology, Oslo University Hospital, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | | | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| |
Collapse
|
11
|
Karpale M, Käräjämäki AJ, Kummu O, Gylling H, Hyötyläinen T, Orešič M, Tolonen A, Hautajärvi H, Savolainen MJ, Ala-Korpela M, Hukkanen J, Hakkola J. Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism. Br J Pharmacol 2021; 178:2461-2481. [PMID: 33687065 DOI: 10.1111/bph.15433] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Many drugs and environmental contaminants induce hypercholesterolemia and promote the risk of atherosclerotic cardiovascular disease. We tested the hypothesis that pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, regulates the level of circulating atherogenic lipids in humans and utilized mouse experiments to identify the mechanisms involved. EXPERIMENTAL APPROACH We performed serum NMR metabolomics in healthy volunteers administered rifampicin, a prototypical human PXR ligand or placebo in a crossover setting. We used high-fat diet fed wild-type and PXR knockout mice to investigate the mechanisms mediating the PXR-induced alterations in cholesterol homeostasis. KEY RESULTS Activation of PXR induced cholesterogenesis both in pre-clinical and clinical settings. In human volunteers, rifampicin increased intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and total cholesterol and lathosterol-cholesterol ratio, a marker of cholesterol synthesis, suggesting increased cholesterol synthesis. Experiments in mice indicated that PXR activation causes widespread induction of the cholesterol synthesis genes including the rate-limiting Hmgcr and upregulates the intermediates in the Kandutsch-Russell cholesterol synthesis pathway in the liver. Additionally, PXR activation induced plasma proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of hepatic LDL uptake, in both mice and humans. We propose that these effects were mediated through increased proteolytic activation of sterol regulatory element-binding protein 2 (SREBP2) in response to PXR activation. CONCLUSION AND IMPLICATIONS PXR activation induces cholesterol synthesis, elevating LDL and total cholesterol in humans. The PXR-SREBP2 pathway is a novel regulator of the cholesterol and PCSK9 synthesis and a molecular mechanism for drug- and chemical-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Mikko Karpale
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aki Juhani Käräjämäki
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of gastroenterology, Clinics of Internal Medicine, Vaasa Central Hospital, Vaasa, Finland.,Abdominal Center, Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Helena Gylling
- Heart and Lung Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | - Markku J Savolainen
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Mika Ala-Korpela
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Janne Hukkanen
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
12
|
Nabil H, Kummu O, Lehenkari P, Rysä J, Risteli J, Hakkola J, Hukkanen J. Rifampicin induces the bone form of alkaline phosphatase in humans. Basic Clin Pharmacol Toxicol 2021; 130 Suppl 1:81-94. [PMID: 33851518 DOI: 10.1111/bcpt.13586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor that regulates drug metabolism in the liver and intestine. In our clinical trials on healthy volunteers to discover novel metabolic functions of PXR activation, we observed that rifampicin, a well-established ligand for human PXR, 600 mg daily for a week, increased the plasma alkaline phosphatase (ALP) significantly compared with the placebo. Further analysis with lectin affinity electrophoresis revealed that especially the bone form of ALP was elevated. To investigate the mechanism(s) of bone ALP induction, we employed osteoblast lineage differentiated from human primary bone marrow-derived mesenchymal stromal cells. Rifampicin treatment increased ALP activity and mRNA level of bone biomarker genes (ALP, MGP, OPN and OPG). PXR expression was detected in the cells, but the expression was very low compared with the human liver. To further investigate the potential role of PXR in the ALP induction, we treated mice and rats with a rodent PXR ligand pregnenolone 16α-carbonitrile (PCN). However, PCN treatment did not increase plasma ALP activity or bone ALP mRNA expression. In conclusion, rifampicin treatment induces the bone form of ALP in the serum of healthy human volunteers. Further studies are required to establish the mechanism of this novel finding.
Collapse
Affiliation(s)
- Heba Nabil
- Research Unit of Biomedicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Outi Kummu
- Research Unit of Biomedicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Cancer Research and Translational Medicine Research Unit and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha Risteli
- Cancer Research and Translational Medicine Research Unit and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Nordlab, Oulu University Hospital, Oulu, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
13
|
Park RM. A Simple Toxicokinetic Model Exhibiting Complex Dynamics and Nonlinear Exposure Response. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2020; 40:2561-2571. [PMID: 32632964 PMCID: PMC7748990 DOI: 10.1111/risa.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Uncertainty in model predictions of exposure response at low exposures is a problem for risk assessment. A particular interest is the internal concentration of an agent in biological systems as a function of external exposure concentrations. Physiologically based pharmacokinetic (PBPK) models permit estimation of internal exposure concentrations in target tissues but most assume that model parameters are either fixed or instantaneously dose-dependent. Taking into account response times for biological regulatory mechanisms introduces new dynamic behaviors that have implications for low-dose exposure response in chronic exposure. A simple one-compartment simulation model is described in which internal concentrations summed over time exhibit significant nonlinearity and nonmonotonicity in relation to external concentrations due to delayed up- or downregulation of a metabolic pathway. These behaviors could be the mechanistic basis for homeostasis and for some apparent hormetic effects.
Collapse
Affiliation(s)
- Robert M. Park
- Division of Science Integration, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, MS C-15, Cincinnati OH, USA
| |
Collapse
|
14
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
15
|
Factors Contributing to Fentanyl Pharmacokinetic Variability Among Diagnostically Diverse Critically Ill Children. Clin Pharmacokinet 2020; 58:1567-1576. [PMID: 31168770 DOI: 10.1007/s40262-019-00773-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The objective of this study was to characterize the population pharmacokinetics of fentanyl and identify factors that contribute to exposure variability in critically ill pediatric patients. METHODS We conducted a single-center, retrospective cohort study using electronic record data and remnant blood samples in the setting of a mixed medical/surgical intensive care unit (ICU) at a quaternary children's hospital. Children with a predicted ICU length of stay of at least 3 days and presence of an indwelling central venous or arterial line were included. Serum fentanyl measurements were performed for 278 unique remnant samples from 66 patients. Both one- and two-compartment models were evaluated to describe fentanyl disposition. Covariates were introduced into the model in a forward/backward, stepwise approach and included age, sex, race, weight, cytochrome P450 (CYP) 3A5 genotype, and the presence of CYP3A4 or CYP3A5 inducers or inhibitors. Simulations were performed using the successful model to depict the influence of inducers on fentanyl concentrations. RESULTS A two-compartment base model best described the data. There was good agreement between observed and predicted concentrations in the final model. The typical fentanyl clearance for 70 kg (reference weight) and 20.1 kg (median weight) patients were 34.6 and 13.6 L/h, respectively. The magnitude of the unexplained random inter-individual variability was high for both clearance (60.7%) and apparent volume of the central compartment (V1) (107.2%). Coadministration of the known CYP3A4/5 inducers fosphenytoin and/or phenobarbital was associated with significantly increased fentanyl clearance. Simulations demonstrate that the effect of inducer administration was most pronounced following discontinuation of a fentanyl infusion. CONCLUSIONS In this study we show the feasibility and utility of using electronic record data and remnant blood samples to successfully construct population pharmacokinetic models for a heterogeneous cohort of critically ill children. A clinically relevant effect of concomitant CYP3A4/5 inducers was identified. Scaling this population pharmacokinetic approach is necessary to craft precision approaches to fentanyl administration for critically ill children.
Collapse
|
16
|
Hassani‐Nezhad‐Gashti F, Salonurmi T, Hautajärvi H, Rysä J, Hakkola J, Hukkanen J. Pregnane X Receptor Activator Rifampin Increases Blood Pressure and Stimulates Plasma Renin Activity. Clin Pharmacol Ther 2020; 108:856-865. [DOI: 10.1002/cpt.1871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Fatemeh Hassani‐Nezhad‐Gashti
- Research Unit of Biomedicine, Pharmacology and Toxicology University of Oulu Oulu Finland
- Biocenter Oulu Oulu Finland
- Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland
| | - Tuire Salonurmi
- Biocenter Oulu Oulu Finland
- Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland
- Research Unit of Internal Medicine University of Oulu Oulu Finland
| | | | - Jaana Rysä
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology University of Oulu Oulu Finland
- Biocenter Oulu Oulu Finland
- Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland
| | - Janne Hukkanen
- Biocenter Oulu Oulu Finland
- Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland
- Research Unit of Internal Medicine University of Oulu Oulu Finland
| |
Collapse
|
17
|
Perlík F. Impact of smoking on metabolic changes and effectiveness of drugs used for lung cancer. Cent Eur J Public Health 2020; 28:53-58. [PMID: 32228818 DOI: 10.21101/cejph.a5620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 11/17/2019] [Indexed: 11/15/2022]
Affiliation(s)
- František Perlík
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Institute for Postgraduate Medical Education, Prague, Czech Republic
| |
Collapse
|
18
|
Salonurmi T, Nabil H, Ronkainen J, Hyötyläinen T, Hautajärvi H, Savolainen MJ, Tolonen A, Orešič M, Känsäkoski P, Rysä J, Hakkola J, Hukkanen J. 4 β-Hydroxycholesterol Signals From the Liver to Regulate Peripheral Cholesterol Transporters. Front Pharmacol 2020; 11:361. [PMID: 32292343 PMCID: PMC7118195 DOI: 10.3389/fphar.2020.00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 03/10/2020] [Indexed: 01/27/2023] Open
Abstract
Activation of pregnane X receptor (PXR) elevates circulating 4β-hydroxycholesterol (4βHC), an agonist of liver X receptor (LXR). PXR may also regulate 25-hydroxycholesterol and 27-hydroxycholesterol. Our aim was to elucidate the roles of PXR and oxysterols in the regulation of cholesterol transporters. We measured oxysterols in serum of volunteers dosed with PXR agonist rifampicin 600 mg/day versus placebo for a week and analyzed the expression of cholesterol transporters in mononuclear cells. The effect of 4βHC on the transport of cholesterol and the expression of cholesterol transporters was studied in human primary monocyte-derived macrophages and foam cells in vitro. The expression of cholesterol transporters was measured also in rat tissues after dosing with a PXR agonist. The levels of 4βHC were elevated, while 25-hydroxycholesterol and 27-hydroxycholesterol remained unchanged in volunteers dosed with rifampicin. The expression of ATP binding cassette transporter A1 (ABCA1) was induced in human mononuclear cells in vivo. The influx of cholesterol was repressed by 4βHC, as was the expression of influx transporter lectin-like oxidized LDL receptor-1 in vitro. The cholesterol efflux and the expression of efflux transporters ABCA1 and ABCG1 were induced. The expression of inducible degrader of the LDL receptor was induced. In rats, PXR agonist increased circulating 4βHC and expression of LXR targets in peripheral tissues, especially ABCA1 and ABCG1 in heart. In conclusion, PXR activation-elevated 4βHC is a signaling molecule that represses cholesterol influx and induces efflux. The PXR-4βHC-LXR pathway could link the hepatic xenobiotic exposure and the regulation of cholesterol transport in peripheral tissues.
Collapse
Affiliation(s)
- Tuire Salonurmi
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu, Finland
| | - Heba Nabil
- Biocenter Oulu, Oulu, Finland.,Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Justiina Ronkainen
- Biocenter Oulu, Oulu, Finland.,Center for Life-Course Health Research, University of Oulu, Oulu, Finland
| | | | | | - Markku J Savolainen
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Päivi Känsäkoski
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jukka Hakkola
- Biocenter Oulu, Oulu, Finland.,Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Janne Hukkanen
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
19
|
Chai SC, Wright WC, Chen T. Strategies for developing pregnane X receptor antagonists: Implications from metabolism to cancer. Med Res Rev 2019; 40:1061-1083. [PMID: 31782213 DOI: 10.1002/med.21648] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
Pregnane X receptor (PXR) is a ligand-activated nuclear receptor (NR) that was originally identified as a master regulator of xenobiotic detoxification. It regulates the expression of drug-metabolizing enzymes and transporters to control the degradation and excretion of endobiotics and xenobiotics, including therapeutic agents. The metabolism and disposition of drugs might compromise their efficacy and possibly cause drug toxicity and/or drug resistance. Because many drugs can promiscuously bind and activate PXR, PXR antagonists might have therapeutic value in preventing and overcoming drug-induced PXR-mediated drug toxicity and drug resistance. Furthermore, PXR is now known to have broader cellular functions, including the regulation of cell proliferation, and glucose and lipid metabolism. Thus, PXR might be involved in human diseases such as cancer and metabolic diseases. The importance of PXR antagonists is discussed in the context of the role of PXR in xenobiotic sensing and other disease-related pathways. This review focuses on the development of PXR antagonists, which has been hampered by the promiscuity of PXR ligand binding. However, substantial progress has been made in recent years, suggesting that it is feasible to develop selective PXR antagonists. We discuss the current status, challenges, and strategies in developing selective PXR antagonists. The strategies are based on the molecular mechanisms of antagonism in related NRs that can be applied to the design of PXR antagonists, primarily driven by structural information.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
20
|
Cardenas A, Lutz SM, Everson TM, Perron P, Bouchard L, Hivert MF. Mediation by Placental DNA Methylation of the Association of Prenatal Maternal Smoking and Birth Weight. Am J Epidemiol 2019; 188:1878-1886. [PMID: 31497855 DOI: 10.1093/aje/kwz184] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Prenatal maternal smoking is a risk factor for lower birth weight. We performed epigenome-wide association analyses of placental DNA methylation (DNAm) at 720,077 cytosine-phosphate-guanine (CpG) sites and prenatal maternal smoking among 441 mother-infant pairs (2010-2014) and evaluated whether DNAm mediates the association between smoking and birth weight using mediation analysis. Mean birth weight was 3,443 (standard deviation, 423) g, and 38 mothers (8.6%) reported smoking at a mean of 9.4 weeks of gestation. Prenatal maternal smoking was associated with a 175-g lower birth weight (95% confidence interval (CI): -305.5, -44.8) and with differential DNAm of 71 CpGs in placenta, robust to latent-factor adjustment reflecting cell types (Bonferroni-adjusted P < 6.94 × 10-8). Of the 71 CpG sites, 7 mediated the association between prenatal smoking and birth weight (on MDS2, PBX1, CYP1A2, VPRBP, WBP1L, CD28, and CDK6 genes), and prenatal smoking × DNAm interactions on birth weight were observed for 5 CpG sites. The strongest mediator, cg22638236, was annotated to the PBX1 gene body involved in skeletal patterning and programming, with a mediated effect of 301-g lower birth weight (95% CI: -543, -86) among smokers but no mediated effect for nonsmokers (β = -38 g; 95% CI: -88, 9). Prenatal maternal smoking might interact with placental DNAm at specific loci, mediating the association with lower infant birth weight.
Collapse
|
21
|
Dash RP, Babu RJ, Srinivas NR. Two Decades-Long Journey from Riluzole to Edaravone: Revisiting the Clinical Pharmacokinetics of the Only Two Amyotrophic Lateral Sclerosis Therapeutics. Clin Pharmacokinet 2019; 57:1385-1398. [PMID: 29682695 DOI: 10.1007/s40262-018-0655-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent approval of edaravone has provided an intravenous option to treat amyotrophic lateral sclerosis (ALS) in addition to the existing oral agent, riluzole. The present work was primarily undertaken to provide a comprehensive clinical pharmacokinetic summary of the two approved ALS therapeutics. The key objectives of the review were to (i) tabulate the clinical pharmacokinetics of riluzole and edaravone with emphasis on absorption, distribution, metabolism and excretion (ADME) properties; (ii) provide a comparative scenario of the pharmacokinetics of the two drugs wherever possible; and (iii) provide perspectives and introspection on the gathered clinical pharmacokinetic data of the two drugs with appropriate conjectures to quench scientific curiosity. Based on this review, the following key highlights were deduced: (i) as a result of both presystemic metabolism and polymorphic hepatic cytochrome P450 (CYP) metabolism, the oral drug riluzole exhibited more inter-subject variability than that of intravenous edaravone; (ii) using various parameters for comparison, including the published intravenous data for riluzole, it was apparent that edaravone was achieving the desired systemic concentrations to possibly drive the local brain concentrations for its efficacy in ALS patients with lesser variability than riluzole; (iii) using scientific conjectures, it was deduced that the availability of intravenous riluzole may not be beneficial in therapy due to its fast systemic clearance; (iv) on the contrary, however, there appeared to be an opportunity for the development of an oral dosage form of edaravone, which may potentially benefit the therapy option for ALS patients by avoiding hospitalization costs; and (v) because of the existence of pharmaco-resistance for the brain entry in ALS patients, it appeared prudent to consider combination strategies of edaravone and/or riluzole with suitable P-glycoprotein efflux-blocking drugs to gain more favorable outcomes in ALS patients.
Collapse
Affiliation(s)
- Ranjeet Prasad Dash
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Nuggehally R Srinivas
- Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmedabad, Gujarat, 382210, India.
| |
Collapse
|
22
|
Bernasconi C, Pelkonen O, Andersson TB, Strickland J, Wilk-Zasadna I, Asturiol D, Cole T, Liska R, Worth A, Müller-Vieira U, Richert L, Chesne C, Coecke S. Validation of in vitro methods for human cytochrome P450 enzyme induction: Outcome of a multi-laboratory study. Toxicol In Vitro 2019; 60:212-228. [PMID: 31158489 PMCID: PMC6718736 DOI: 10.1016/j.tiv.2019.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
CYP enzyme induction is a sensitive biomarker for phenotypic metabolic competence of in vitro test systems; it is a key event associated with thyroid disruption, and a biomarker for toxicologically relevant nuclear receptor-mediated pathways. This paper summarises the results of a multi-laboratory validation study of two in vitro methods that assess the potential of chemicals to induce cytochrome P450 (CYP) enzyme activity, in particular CYP1A2, CYP2B6, and CYP3A4. The methods are based on the use of cryopreserved primary human hepatocytes (PHH) and human HepaRG cells. The validation study was coordinated by the European Union Reference Laboratory for Alternatives to Animal Testing of the European Commission's Joint Research Centre and involved a ring trial among six laboratories. The reproducibility was assessed within and between laboratories using a validation set of 13 selected chemicals (known human inducers and non-inducers) tested under blind conditions. The ability of the two methods to predict human CYP induction potential was assessed. Chemical space analysis confirmed that the selected chemicals are broadly representative of a diverse range of chemicals. The two methods were found to be reliable and relevant in vitro tools for the assessment of human CYP induction, with the HepaRG method being better suited for routine testing. Recommendations for the practical application of the two methods are proposed.
Collapse
Affiliation(s)
| | - Olavi Pelkonen
- Research Unit of Biomedicine/Pharmacology and Toxicology, Faculty of Medicine, Aapistie 5B, University of Oulu, FIN-90014, Finland; Clinical Research Center, Oulu University Hospital, Finland
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Judy Strickland
- Integrated Laboratory Systems (contractor supporting NICEATM), Research Triangle Park, North, Carolina, 27709, USA
| | | | - David Asturiol
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Thomas Cole
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Roman Liska
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ursula Müller-Vieira
- Boehringer Ingelheim, Germany. Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, an der Riss, Germany
| | - Lysiane Richert
- KaLy-Cell, 20A, rue du Général Leclerc, 67115 Plobsheim, France(g) Biopredic International, Parc d'activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France
| | - Christophe Chesne
- Biopredic International, Parc d'activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
23
|
Paudel S, Shrestha A, Cho P, Shrestha R, Kim Y, Lee T, Kim JH, Jeong TC, Lee ES, Lee S. Assessing Drug Interaction and Pharmacokinetics of Loxoprofen in Mice Treated with CYP3A Modulators. Pharmaceutics 2019; 11:pharmaceutics11090479. [PMID: 31527544 PMCID: PMC6781309 DOI: 10.3390/pharmaceutics11090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022] Open
Abstract
Loxoprofen (LOX) is a non-selective cyclooxygenase inhibitor that is widely used for the treatment of pain and inflammation caused by chronic and transitory conditions. Its alcoholic metabolites are formed by carbonyl reductase (CR) and they consist of trans-LOX, which is active, and cis-LOX, which is inactive. In addition, LOX can also be converted into an inactive hydroxylated metabolite (OH-LOXs) by cytochrome P450 (CYP). In a previous study, we reported that CYP3A4 is primarily responsible for the formation of OH-LOX in human liver microsomes. Although metabolism by CYP3A4 does not produce active metabolites, it can affect the conversion of LOX into trans-/cis-LOX, since CYP3A4 activity modulates the substrate LOX concentration. Although the pharmacokinetics (PK) and metabolism of LOX have been well defined, its CYP-related interactions have not been fully characterized. Therefore, we investigated the metabolism of LOX after pretreatment with dexamethasone (DEX) and ketoconazole (KTC), which induce and inhibit the activities of CYP3A, respectively. We monitored their effects on the PK parameters of LOX, cis-LOX, and trans-LOX in mice, and demonstrated that their PK parameters significantly changed in the presence of DEX or KTC pretreatment. Specifically, DEX significantly decreased the concentration of the LOX active metabolite formed by CR, which corresponded to an increased concentration of OH-LOX formed by CYP3A4. The opposite result occurred with KTC (a CYP3A inhibitor) pretreatment. Thus, we conclude that concomitant use of LOX with CYP3A modulators may lead to drug–drug interactions and result in minor to severe toxicity even though there is no direct change in the metabolic pathway that forms the LOX active metabolite.
Collapse
Affiliation(s)
- Sanjita Paudel
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | | | - Piljoung Cho
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Riya Shrestha
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Younah Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Taeho Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea.
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea.
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea.
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
24
|
The Sex-Gender Effects in the Road to Tailored Botanicals. Nutrients 2019; 11:nu11071637. [PMID: 31319627 PMCID: PMC6682902 DOI: 10.3390/nu11071637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Phenols are a wide family of phytochemicals that are characterized by large chemical diversity and are considered to bioactive molecules of foods, beverages, and botanicals. Although they have a multitude of biological actions, their beneficial effects are rarely evidenced in clinical research with high scientific rigor. This may occur due to the presence of numerous confounders, such as the modulation of phenol bioavailability, which can be regulated by microbiota, age, sex-gender. Sex-gender is an important determinant of health and well-being, and has an impact on environmental and occupational risks, access to health care, disease prevalence, and treatment outcomes. In addition, xenobiotic responses may be strongly influenced by sex-gender. This review describes how sex–gender differentially influences the activities of phenols also in some critical periods of women life such as pregnancy and lactation, considering also the sex of fetuses and infants. Thus, sex–gender is a variable that must be carefully considered and should be used to propose directions for future research on the road to tailored medicine and nutrition.
Collapse
|
25
|
Tornio A, Filppula AM, Niemi M, Backman JT. Clinical Studies on Drug-Drug Interactions Involving Metabolism and Transport: Methodology, Pitfalls, and Interpretation. Clin Pharmacol Ther 2019; 105:1345-1361. [PMID: 30916389 PMCID: PMC6563007 DOI: 10.1002/cpt.1435] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022]
Abstract
Many drug-drug interactions (DDIs) are based on alterations of the plasma concentrations of a victim drug due to another drug causing inhibition and/or induction of the metabolism or transporter-mediated disposition of the victim drug. In the worst case, such interactions cause more than tenfold increases or decreases in victim drug exposure, with potentially life-threatening consequences. There has been tremendous progress in the predictability and modeling of DDIs. Accordingly, the combination of modeling approaches and clinical studies is the current mainstay in evaluation of the pharmacokinetic DDI risks of drugs. In this paper, we focus on the methodology of clinical studies on DDIs involving drug metabolism or transport. We specifically present considerations related to general DDI study designs, recommended enzyme and transporter index substrates and inhibitors, pharmacogenetic perspectives, index drug cocktails, endogenous substrates, limited sampling strategies, physiologically-based pharmacokinetic modeling, complex DDIs, methodological pitfalls, and interpretation of DDI information.
Collapse
Affiliation(s)
- Aleksi Tornio
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne M Filppula
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
26
|
Griffiths WJ, Abdel-Khalik J, Yutuc E, Roman G, Warner M, Gustafsson JÅ, Wang Y. Concentrations of bile acid precursors in cerebrospinal fluid of Alzheimer's disease patients. Free Radic Biol Med 2019; 134:42-52. [PMID: 30578919 PMCID: PMC6597949 DOI: 10.1016/j.freeradbiomed.2018.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 01/19/2023]
Abstract
Using liquid chromatography - mass spectrometry in combination with derivatisation chemistry we profiled the oxysterol and cholestenoic acid content of cerebrospinal fluid from patients with Alzheimer's disease (n = 21), vascular dementia (n = 11), other neurodegenerative diseases (n = 15, Lewy bodies dementia, n = 3, Frontotemporal dementia, n = 11) and controls (n = 15). Thirty different sterols were quantified and the bile acid precursor 7α,25-dihydroxy-3-oxocholest-4-en-26-oic acid found to be reduced in abundance in cerebrospinal fluid of Alzheimer's disease patient-group. This was the only sterol found to be changed amongst the different groups.
Collapse
Affiliation(s)
- William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| | - Jonas Abdel-Khalik
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Gustavo Roman
- Methodist Neurological Institute, Methodist Hospital, Houston, TX 77030, USA
| | - Margaret Warner
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
27
|
Chen K, Zhong J, Hu L, Li R, Du Q, Cai J, Li Y, Gao Y, Cui X, Yang X, Wu X, Yao L, Dai J, Wang Y, Jin H. The Role of Xenobiotic Receptors on Hepatic Glycolipid Metabolism. Curr Drug Metab 2019; 20:29-35. [PMID: 30227815 DOI: 10.2174/1389200219666180918152241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023]
Abstract
Background:
PXR (Pregnane X Receptor) and CAR (Constitutive Androstane Receptor) are termed as
xenobiotic receptors, which are known as core factors in regulation of the transcription of metabolic enzymes and
drug transporters. However, accumulating evidence has shown that PXR and CAR exert their effects on energy metabolism
through the regulation of gluconeogenesis, lipogenesis and β-oxidation. Therefore, in this review, we are
trying to summary recent advances to show how xenobiotic receptors regulate energy metabolism.
Methods:
A structured search of databases has been performed by using focused review topics. According to conceptual
framework, the main idea of research literature was summarized and presented.
Results:
For introduction of each receptor, the general introduction and the critical functions in hepatic glucose and
lipid metabolism have been included. Recent important studies have shown that CAR acts as a negative regulator of
lipogenesis, gluconeogenesis and β -oxidation. PXR activation induces lipogenesis, inhibits gluconeogenesis and
inhabits β-oxidation.
Conclusion:
In this review, the importance of xenobiotic receptors in hepatic glucose and lipid metabolism has been
confirmed. Therefore, PXR and CAR may become new therapeutic targets for metabolic syndrome, including obesity
and diabetes. However, further research is required to promote the clinical application of this new energy metabolism
function of xenobiotic receptors.
Collapse
Affiliation(s)
- Ke Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Hu
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruliu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qun Du
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhong Cai
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaona Cui
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaojie Wu
- Department of Immunology, Binzhou Medical University, Yantai, Shangdong, China
| | - Lu Yao
- Jilin Medical University, Jilin, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Wang
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyong Jin
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
28
|
Hautajärvi H, Hukkanen J, Turpeinen M, Mattila S, Tolonen A. Quantitative analysis of 4β- and 4α‑hydroxycholesterol in human plasma and serum by UHPLC/ESI-HR-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:179-186. [DOI: 10.1016/j.jchromb.2018.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/06/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023]
|
29
|
Alshogran OY, Magarbeh LS, Alzoubi KH, Saleh MI, Khabour OF. Evaluation of the impact of waterpipe tobacco smoke exposure on the activity and expression of rat hepatic CYP450: a pharmacokinetic study. Inhal Toxicol 2018; 30:519-526. [PMID: 30734611 DOI: 10.1080/08958378.2019.1569182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/23/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Waterpipe smoke contains many toxic constituents that can alter drug pharmacokinetics. This study assessed the effect of waterpipe smoke exposure on the activity and expression of CYP450 enzymes in rats. Animals (n = 10/group) were exposed to either waterpipe smoke or side-stream cigarette smoke for 1 h/day (6 days/week) for 31 days, or fresh air (control). An intragastric cocktail solution containing three probe drugs, phenacetin, chlorzoxazone and testosterone was administered to assess the activity of CYP1A2, CYP2E1 and CYP3A, respectively. Serum concentrations were determined using LC-MS/MS and the pharmacokinetic parameters were calculated. The mRNA expression of hepatic enzymes was also quantified. Waterpipe and cigarette smoke exposure did not significantly alter the pharmacokinetics of phenacetin, chlorzoxazone and testosterone. For example, the clearance and drug exposure values were comparable among groups for all probe drugs. Additionally, there was no significant effect of waterpipe and cigarette smoke on mRNA expression of hepatic CYP1A2, CYP2E1 and CYP3A2. The results demonstrate that waterpipe smoke exposure had no effect on the functional expression of three key CYP450 isoforms in rats. Future research is required with longer exposure periods to waterpipe smoke. Such work serves to enhance current understanding of effect of waterpipe smoke exposure on pharmacokinetics.
Collapse
Affiliation(s)
- Osama Y Alshogran
- a Department of Clinical Pharmacy Faculty of Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Leen S Magarbeh
- a Department of Clinical Pharmacy Faculty of Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Karem H Alzoubi
- a Department of Clinical Pharmacy Faculty of Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Mohammad I Saleh
- b Department of Biopharmaceutics and Clinical Pharmacy , The University of Jordan , Amman , Jordan
| | - Omar F Khabour
- c Department of Medical Laboratory Sciences Faculty of Applied Medical Sciences , Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
30
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
31
|
Wang X, Liu B, Searle X, Yeung C, Bogdan A, Greszler S, Singh A, Fan Y, Swensen AM, Vortherms T, Balut C, Jia Y, Desino K, Gao W, Yong H, Tse C, Kym P. Discovery of 4-[(2R,4R)-4-({[1-(2,2-Difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic Acid (ABBV/GLPG-2222), a Potent Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Corrector for the Treatment of Cystic Fibrosis. J Med Chem 2018; 61:1436-1449. [PMID: 29251932 DOI: 10.1021/acs.jmedchem.7b01339] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cystic fibrosis (CF) is a multiorgan disease of the lungs, sinuses, pancreas, and gastrointestinal tract that is caused by a dysfunction or deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an epithelial anion channel that regulates salt and water balance in the tissues in which it is expressed. To effectively treat the most prevalent patient population (F508del mutation), two biomolecular modulators are required: correctors to increase CFTR levels at the cell surface, and potentiators to allow the effective opening of the CFTR channel. Despite approved potentiator and potentiator/corrector combination therapies, there remains a high need to develop more potent and efficacious correctors. Herein, we disclose the discovery of a highly potent series of CFTR correctors and the structure-activity relationship (SAR) studies that guided the discovery of ABBV/GLPG-2222 (22), which is currently in clinical trials in patients harboring the F508del CFTR mutation on at least one allele.
Collapse
Affiliation(s)
- Xueqing Wang
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Bo Liu
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xenia Searle
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Clinton Yeung
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew Bogdan
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stephen Greszler
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashvani Singh
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yihong Fan
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew M Swensen
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Timothy Vortherms
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Corina Balut
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ying Jia
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kelly Desino
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Wenqing Gao
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Hong Yong
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Chris Tse
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Philip Kym
- Research and Development, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
32
|
Yoshimaru S, Shizu R, Tsuruta S, Amaike Y, Kano M, Hosaka T, Sasaki T, Yoshinari K. Acceleration of murine hepatocyte proliferation by imazalil through the activation of nuclear receptor PXR. J Toxicol Sci 2018; 43:443-450. [DOI: 10.2131/jts.43.443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shohei Yoshimaru
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Satoshi Tsuruta
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yuto Amaike
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Makoto Kano
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
33
|
Effect of Rifampin on Thyroid Function Test in Patients on Levothyroxine Medication. PLoS One 2017; 12:e0169775. [PMID: 28081173 PMCID: PMC5231266 DOI: 10.1371/journal.pone.0169775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
Background Levothyroxine (LT4) and rifampin (RIF) are sometimes used together; however, no clinical studies have assessed the effects of these drugs on thyroid function or the need to adjust LT4 dose. Methods We retrospectively reviewed the records of 71 Korean patients who started RIF during LT4 treatment. Clinically relevant cases that required dose adjustment according to the American Thyroid Association (ATA)/American Association of Clinical Endocrinologists (AACE) guidelines were identified, and risk factors of increased LT4 dose were analyzed. Results After administering RIF, median serum thyroid-stimulating hormone (TSH) level (2.58 mIU/L, interquartile range [IQR] 0.21–7.44) was significantly higher than that before RIF (0.25 mIU/L, IQR, 0.03–2.62; P < 0.001). An increased LT4 dose was required for 50% of patients in the TSH suppression group for thyroid cancer and 26% of patients in the replacement group for hypothyroidism. Risk factor analysis showed that remaining thyroid gland (odds ratio [OR] 9.207, P = 0.002), the time interval between starting RIF and TSH measurement (OR 1.043, P = 0.019), and baseline LT4 dose per kg body weight (OR 0.364, P = 0.011) were clinically relevant variables. Conclusions In patients receiving LT4, serum thyroid function test should be performed after starting RIF treatment. For patients with no remnant thyroid gland and those receiving a lower LT4 dose, close observation is needed when starting RIF and TB medication.
Collapse
|
34
|
Gomtsyan A, Schmidt RG, Bayburt EK, Gfesser GA, Voight EA, Daanen JF, Schmidt DL, Cowart MD, Liu H, Altenbach RJ, Kort ME, Clapham B, Cox PB, Shrestha A, Henry R, Whittern DN, Reilly RM, Puttfarcken PS, Brederson JD, Song P, Li B, Huang SM, McDonald HA, Neelands TR, McGaraughty SP, Gauvin DM, Joshi SK, Banfor PN, Segreti JA, Shebley M, Faltynek CR, Dart MJ, Kym PR. Synthesis and Pharmacology of (Pyridin-2-yl)methanol Derivatives as Novel and Selective Transient Receptor Potential Vanilloid 3 Antagonists. J Med Chem 2016; 59:4926-47. [DOI: 10.1021/acs.jmedchem.6b00287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Arthur Gomtsyan
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Robert G. Schmidt
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Erol K. Bayburt
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gregory A. Gfesser
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Eric A. Voight
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jerome F. Daanen
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Diana L. Schmidt
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Marlon D. Cowart
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Huaqing Liu
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Robert J. Altenbach
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael E. Kort
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Bruce Clapham
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Phil B. Cox
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Anurupa Shrestha
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Rodger Henry
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David N. Whittern
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Regina M. Reilly
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Pamela S. Puttfarcken
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jill-Desiree Brederson
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ping Song
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Bin Li
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Susan M. Huang
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Heath A. McDonald
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Torben R. Neelands
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Steve P. McGaraughty
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Donna M. Gauvin
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shailen K. Joshi
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Patricia N. Banfor
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jason A. Segreti
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Mohamad Shebley
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Connie R. Faltynek
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael J. Dart
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Philip R. Kym
- Research & Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
35
|
Hakkola J, Rysä J, Hukkanen J. Regulation of hepatic energy metabolism by the nuclear receptor PXR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1072-1082. [PMID: 27041449 DOI: 10.1016/j.bbagrm.2016.03.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/30/2022]
Abstract
The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; Research Unit of Internal Medicine, University of Oulu, Oulu, Finland; Department of Internal Medicine, Oulu University Hospital, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| |
Collapse
|
36
|
Seah TC, Tay YL, Tan HK, Tengku Muhammad TS, Wahab HA, Tan ML. Determination of CYP3A4 Inducing Properties of Compounds Using a Laboratory-Developed Cell-Based Assay. Int J Toxicol 2015; 34:454-68. [DOI: 10.1177/1091581815599335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A cell-based assay to measure cytochrome P450 3A4 (CYP3A4) induction was developed to screen for potential CYP3A4 inducers. This 96-well format assay utilizes HepG2 cells transfected with a gene construct of CYP3A4 proximal promoter linked to green fluorescence protein (GFP) gene, and the expression of the GFP is then measured quantitatively. Bergamottin at 5 to 25 µmol/L produced low induction relative to the positive control. Both curcumin and lycopene were not found to affect the expression of GFP, suggesting no induction properties toward CYP3A4. Interestingly, resveratrol produced significant induction from 25 µmol/L onward, which was similar to omeprazole and may warrant further studies. In conclusion, the present study demonstrated that this cell-based assay can be used as a tool to evaluate the potential CYP3A4 induction properties of compounds. However, molecular docking data have not provided satisfactory pointers to differentiate between CYP3A4 inducers from noninducers or from inhibitors, more comprehensive molecular screening may be indicated.
Collapse
Affiliation(s)
- Tiong Chai Seah
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Pulau Pinang, Malaysia
| | - Yea Lu Tay
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Pulau Pinang, Malaysia
| | - Heng Kean Tan
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Pulau Pinang, Malaysia
| | | | - Habibah Abdul Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mei Lan Tan
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Pulau Pinang, Malaysia
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
37
|
Hukkanen J, Puurunen J, Hyötyläinen T, Savolainen MJ, Ruokonen A, Morin-Papunen L, Orešič M, Piltonen T, Tapanainen JS. The effect of atorvastatin treatment on serum oxysterol concentrations and cytochrome P450 3A4 activity. Br J Clin Pharmacol 2015; 80:473-9. [PMID: 26095142 DOI: 10.1111/bcp.12701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/07/2015] [Accepted: 06/14/2015] [Indexed: 01/14/2023] Open
Abstract
AIMS Atorvastatin is known to both inhibit and induce the cytochrome P450 3A4 (CYP3A4) enzyme in vitro. Some clinical studies indicate that atorvastatin inhibits CYP3A4 but there are no well-controlled longer term studies that could evaluate the inducing effect of atorvastatin. We aimed to determine if atorvastatin induces or inhibits CYP3A4 activity as measured by the 4β-hydroxycholesterol to cholesterol ratio (4βHC : C). METHODS In this randomized, double-blind, placebo-controlled 6 month study we evaluated the effects of atorvastatin 20 mg day(-1) (n = 15) and placebo (n = 14) on oxysterol concentrations and determined if atorvastatin induces or inhibits CYP3A4 activity as assessed by the 4βHC : C index. The respective 25-hydroxycholesterol and 5α,6α-epoxycholesterol ratios were used as negative controls. RESULTS Treatment with atorvastatin decreased 4βHC and 5α,6α-epoxycholesterol concentrations by 40% and 23%, respectively. The mean 4βHC : C ratio decreased by 13% (0.214 ± 0.04 to 0.182 ± 0.04, P = 0.024, 95% confidence interval (CI) of the difference -0.0595, -0.00483) in the atorvastatin group while no significant change occurred in the placebo group. The difference in change of 4βHC : C between study arms was statistically significant (atorvastatin -0.032, placebo 0.0055, P = 0.020, 95% CI of the difference -0.069, -0.0067). The ratios of 25-hydroxycholesterol and 5α,6α-epoxycholesterol to cholesterol did not change. CONCLUSIONS The results establish atorvastatin as an inhibitor of CYP3A4 activity. Furthermore, 4βHC : C is a useful index of CYP3A4 activity, including the conditions with altered cholesterol concentrations.
Collapse
Affiliation(s)
- Janne Hukkanen
- Research Center for Internal Medicine, University of Oulu, Oulu.,Department of Internal Medicine, Oulu University Hospital, Oulu.,Biocenter Oulu, Oulu.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulo
| | - Johanna Puurunen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulo.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Oulu, Oulu.,Department of Obstetrics and Gynaecology, Oulu University Hospital, Oulo, Finland
| | | | - Markku J Savolainen
- Research Center for Internal Medicine, University of Oulu, Oulu.,Department of Internal Medicine, Oulu University Hospital, Oulu.,Biocenter Oulu, Oulu.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulo
| | - Aimo Ruokonen
- Department of Clinical Chemistry, Institute of Diagnostics, University of Oulu, Oulu.,NordLab Oulu, Oulu University Hospital, Oulu
| | - Laure Morin-Papunen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulo.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Oulu, Oulu.,Department of Obstetrics and Gynaecology, Oulu University Hospital, Oulo, Finland
| | | | - Terhi Piltonen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulo.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Oulu, Oulu.,Department of Obstetrics and Gynaecology, Oulu University Hospital, Oulo, Finland
| | - Juha S Tapanainen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulo.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Oulu, Oulu.,Department of Obstetrics and Gynaecology, Oulu University Hospital, Oulo, Finland.,Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
38
|
Effects of cigarette smoking on metabolism and effectiveness of systemic therapy for lung cancer. J Thorac Oncol 2015; 9:917-926. [PMID: 24926542 DOI: 10.1097/jto.0000000000000191] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cigarette smoke associated polycyclic aromatic hydrocarbons can induce key drug-metabolizing enzymes of cytochrome P450 and isoforms of the glucuronyl transferases families. These enzymes metabolize several systemic therapies for lung cancer. Induction of these enzymes may lead to accelerated clearance with resultant impact on systemic therapy efficacy and toxicity in smokers compared with nonsmokers. This article reviews published literature regarding the influence of smoking as it relates to alteration of metabolism of systemic therapy in lung cancer. METHODS A structured search of the National Library of Medicine's PubMed/MEDLINE identified relevant articles. Data were abstracted and analyzed to summarize the findings. RESULTS Studies that analyzed pharmacokinetic data were prospective. Smokers receiving erlotinib exhibited rapid clearance, requiring a higher dose to reach equivalent systemic exposure compared with nonsmokers. Smokers receiving irinotecan also demonstrated increased clearance and lower systemic exposure. There was no difference in clearance of paclitaxel or docetaxel in smokers. Chemotherapy-associated neutropenia was worse in nonsmokers compared with smokers in patients treated with paclitaxel, docetaxel, irinotecan, and gemcitabine. CONCLUSIONS Systemic therapy for lung cancer has a narrow therapeutic index such that small changes in plasma concentrations or exposure in smokers may result in suboptimal therapy and poor outcomes. Smoking cessation must be emphasized at each clinical visit. However, prospective trials should take into consideration the effects of smoking history on drug pharmacokinetics and efficacy. The metabolizing enzyme phenotype in smokers may require individualized dose algorithms for specific agents.
Collapse
|
39
|
Cho YY, Jeong HU, Kim JH, Lee HS. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2137-45. [PMID: 25395831 PMCID: PMC4224024 DOI: 10.2147/dddt.s72305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA) levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase 2A1 (SULT2A1), were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 μM) increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5–50 μM) did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19) or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1) in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1′-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans.
Collapse
Affiliation(s)
- Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Hyeon-Uk Jeong
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
40
|
|
41
|
Cayot A, Laroche D, Disson-Dautriche A, Arbault A, Maillefert JF, Ornetti P. Cytochrome P450 interactions and clinical implication in rheumatology. Clin Rheumatol 2014; 33:1231-8. [DOI: 10.1007/s10067-014-2710-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022]
|
42
|
Koe XF, Tengku Muhammad TS, Chong ASC, Wahab HA, Tan ML. Cytochrome P450 induction properties of food and herbal-derived compounds using a novel multiplex RT-qPCR in vitro assay, a drug-food interaction prediction tool. Food Sci Nutr 2014; 2:500-20. [PMID: 25473508 PMCID: PMC4237480 DOI: 10.1002/fsn3.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022] Open
Abstract
A multiplex RT-qPCR was developed to examine CYP1A2, CYP2D6, and CYP3A4 induction properties of compounds from food and herbal sources. The induction of drug metabolizing enzymes is an important pharmacokinetic interaction with unique features in comparison with inhibition of metabolizing enzymes. Cytochrome induction can lead to serious drug-drug or drug-food interactions, especially if the coadministered drug plasma level is critical as it can reduce therapeutic effects and cause complications. Using this optimized multiplex RT-qPCR, cytochrome induction properties of andrographolide, curcumin, lycopene, bergamottin, and resveratrol were determined. Andrographolide, curcumin, and lycopene produced no significant induction effects on CYP1A2, CYP2D6, and CYP3A4. However, bergamottin appeared to be a significant in vitro CYP1A2 inducer starting from 5 to 50 μmol/L with induction ranging from 60 to 100-fold changes. On the other hand, resveratrol is a weak in vitro CYP1A2 inducer. Examining the cytochrome induction properties of food and herbal compounds help complement CYP inhibition studies and provide labeling and safety caution for such products.
Collapse
Affiliation(s)
- Xue Fen Koe
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, Ministry of Science, Technology & Innovation (MOSTI) Halaman Bukit Gambir, 11700, Georgetown, Pulau Pinang, Malaysia
| | | | - Alexander Shu-Chien Chong
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, Ministry of Science, Technology & Innovation (MOSTI) Halaman Bukit Gambir, 11700, Georgetown, Pulau Pinang, Malaysia ; The Centre for Chemical Biology, Universiti Sains Malaysia Georgetown, Pulau Pinang, Malaysia
| | - Habibah Abdul Wahab
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, Ministry of Science, Technology & Innovation (MOSTI) Halaman Bukit Gambir, 11700, Georgetown, Pulau Pinang, Malaysia ; School of Pharmaceutical Sciences, Universiti Sains Malaysia Georgetown, Pulau Pinang, Malaysia
| | - Mei Lan Tan
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, Ministry of Science, Technology & Innovation (MOSTI) Halaman Bukit Gambir, 11700, Georgetown, Pulau Pinang, Malaysia ; Advanced Medical & Dental Institute, Universiti Sains Malaysia Georgetown, Pulau Pinang, Malaysia
| |
Collapse
|
43
|
Kolovou G, Ragia G, Kolovou V, Mihas C, Katsiki N, Vasiliadis I, Mavrogeni S, Vartela V, Tavridou A, Manolopoulos VG. Impact of CYP3A5 Gene Polymorphism on Efficacy of Simvastatin. Open Cardiovasc Med J 2014; 8:12-7. [PMID: 24653785 PMCID: PMC3959175 DOI: 10.2174/1874192401408010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/20/2014] [Accepted: 01/25/2014] [Indexed: 11/22/2022] Open
Abstract
Background: One of the promises of human genetics is individualized therapy. Therefore, we evaluated the impact of CYP3A5 gene polymorphism on the effectiveness of simvastatin (a HMG-CoA reductase inhibitor). Methods: Patients (n = 191) with hypercholesterolemia were treated with simvastatin for at least 6 months and were genotyped for the CYP3A5 polymorphism. Results: The frequency of CYP3A5 polymorphism was 0.5% for WT (wild-type), 15.6% for HT (heterozygous, expressors) and 83.9% for HM (homozygous, non-expressors). Differences in lipid profile before and after dose-response of simvastatin treatment were described as % difference {[(variable after-variable before)/variable before]*100}. There was a trend towards the decrease of low density lipoprotein cholesterol (LDL-C) in HT individuals who had a -35.2% reduction with a dose of 20 mg simvastatin and HM individuals who had a slightly higher decrease (-37.5%) despite the lower dose of simvastatin (10 mg, p = 0.07). Furthermore, HT genotype individuals had significantly higher than expected (6-8%) LDL-C % difference between 20 and 40 mg of simvastatin (-35.2 vs -49.2%, p = 0.037). In individuals with HM genotype a significant LDL-C % difference was found between 10 and 40 mg of simvastatin (-37.5 vs -48.4%, p = 0.023). Conclusion: The individuals with HM polymorphism display a trend towards higher LDL-C reductions compared with HT polymorphism. Within the same genotype, differences between doses were also observed. These findings need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Genovefa Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center Athens, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vana Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center Athens, Greece; ; Molecular Immunology Laboratory, Onassis Cardiac Surgery Center Athens, Greece
| | | | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | | | - Sophie Mavrogeni
- Cardiology Department, Onassis Cardiac Surgery Center Athens, Greece
| | - Vassiliki Vartela
- Cardiology Department, Onassis Cardiac Surgery Center Athens, Greece
| | - Anna Tavridou
- Cardiology Department, Onassis Cardiac Surgery Center Athens, Greece
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
44
|
Pregnane X receptor (PXR) – a contributor to the diabetes epidemic? ACTA ACUST UNITED AC 2014; 29:3-15. [DOI: 10.1515/dmdi-2013-0036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/25/2013] [Indexed: 01/30/2023]
|
45
|
Pelkonen O, Ahokas JT, Hakkola J, Turpeinen M. Consideration of Metabolism in In Vitro Cellular Systems. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014:501-519. [DOI: 10.1007/978-1-4939-0521-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
46
|
López Mantecón AM, Garrido G, Delgado-Hernández R, Garrido-Suárez BB. Combination of Mangifera indica L. extract supplementation plus methotrexate in rheumatoid arthritis patients: a pilot study. Phytother Res 2013; 28:1163-72. [PMID: 24344049 DOI: 10.1002/ptr.5108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 01/31/2023]
Abstract
The purpose of the present study was to evaluate the possible therapeutic effects and the safety of Mangifera indica extract (Vimang tablets, 300 mg) combined with methotrexate (MTX) on reducing disease activity in rheumatoid arthritis (RA). Twenty patients with active RA underwent a year of treatment with MTX (12.5 mg/week) associated to non-steroidal anti-inflammatory drugs (NSAIDs) and/or prednisone (5-10 mg/day) were randomly allocated to the experimental group (n=10), that received the extract supplementation (900 mg/day) or preceding usual treatment (n=10) during 180 days. RA activity was evaluated using the tender and swollen joint counts, erythrocyte sedimentation rate, disease activity score-28 (DAS 28), visual analogue scale (VAS) and health assessment questionnaire (HAQ). Treatment's efficacy was demonstrated with ACR criteria. Only the patients of MTX-Vimang group revealed statistically significant improvement in DAS 28 parameters with respect baseline data but no differences were observed between groups. ACR improvements amounted 80% only in MTX-Vimang group at the 90 days (p<0.001). In MTX-Vimang group, 100% of patients decreased NSAIDs administration (p<0.01) and 70% of those eradicated gastrointestinal side effects (p<0.01) ensuing of the preceding treatment. Other adverse effects were not reported.
Collapse
Affiliation(s)
- Ana M López Mantecón
- Servicio Nacional de Reumatología, Hospital Docente Clínico Quirúrgico 10 de Octubre, Calzada de 10 de Octubre No. 130 entre Alejandro Ramírez y Agua Dulce, La Habana, Cuba
| | | | | | | |
Collapse
|
47
|
Rysä J, Buler M, Savolainen MJ, Ruskoaho H, Hakkola J, Hukkanen J. Pregnane X receptor agonists impair postprandial glucose tolerance. Clin Pharmacol Ther 2013; 93:556-63. [PMID: 23588309 DOI: 10.1038/clpt.2013.48] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We conducted a randomized, open, placebo-controlled crossover trial to investigate the effects of the pregnane X receptor (PXR) agonist rifampin on an oral glucose tolerance test (OGTT) in 12 healthy volunteers. The subjects were administered 600 mg rifampin or placebo once daily for 7 days, and OGTT was performed on the eighth day. The mean incremental glucose and insulin areas under the plasma concentration-time curves (AUC(incr)) increased by 192% (P = 0.008) and 45% (P = 0.031), respectively. The fasting glucose, insulin, and C-peptide, and the homeostasis model assessment for insulin resistance, were not affected. The glucose AUC(incr) during OGTT was significantly increased in rats after 4-day treatment with pregnenolone 16α-carbonitrile (PCN), an agonist of the rat PXR. The hepatic level of glucose transporter 2 (Glut2) mRNA was downregulated by PCN. In conclusion, both human and rat PXR agonists elicited postprandial hyperglycemia, suggesting a detrimental role of PXR activation on glucose tolerance.
Collapse
Affiliation(s)
- J Rysä
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|