1
|
Piou V, Arafah K, Bocquet M, Bulet P, Vétillard A. The proteomic content of Varroa destructor gut varies according to the developmental stage of its host. PLoS Pathog 2024; 20:e1012802. [PMID: 39774526 PMCID: PMC11723617 DOI: 10.1371/journal.ppat.1012802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/10/2025] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The nutritional physiology of parasites is often overlooked although it is at the basis of host-parasite interactions. In the case of Varroa destructor, one of the major pests of the Western honey bee Apis mellifera, the nature of molecules and tissues ingested by the parasite is still not completely understood. Here, the V. destructor feeding biology was explored through artificial feeding, dissection of the mite's gut and proteomic analyses. More specifically, the proteome of guts extracted from starved mites and honey bee-fed mites was compared to highlight both the parasite proteins likely involved in food processing and the honey bee proteins actually ingested by the mite. We could identify 25 V. destructor candidate proteins likely involved in the parasite digestion. As the host developmental stages infested by the mite are diverse, we also focused on the identity and on the origin of honey bee proteins ingested by the mite when it feeds on larvae, pupae or adults. We highlighted profiles of consumed honey bee proteins and their variations throughout the V. destructor life cycle. These variations matched the ones observed in the honey bee hemolymph, showing that this tissue is an important part of the mite's diet. Based on the variations of abundance of the most consumed honey bee proteins and on their functions, the potential implication of these key candidate nutrients in V. destructor reproduction is also discussed.
Collapse
Affiliation(s)
- Vincent Piou
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, France
| | - Karim Arafah
- Plateforme BioPark d’Archamps, Archparc, Archamps, France
| | | | - Philippe Bulet
- Plateforme BioPark d’Archamps, Archparc, Archamps, France
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France
| | - Angélique Vétillard
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, France
- Conservatoire National des Arts et Métiers (CNAM Paris), Unité Métabiot, Ploufragan, France
| |
Collapse
|
2
|
Deng B, Vanagas L, Alonso AM, Angel SO. Proteomics Applications in Toxoplasma gondii: Unveiling the Host-Parasite Interactions and Therapeutic Target Discovery. Pathogens 2023; 13:33. [PMID: 38251340 PMCID: PMC10821451 DOI: 10.3390/pathogens13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Toxoplasma gondii, a protozoan parasite with the ability to infect various warm-blooded vertebrates, including humans, is the causative agent of toxoplasmosis. This infection poses significant risks, leading to severe complications in immunocompromised individuals and potentially affecting the fetus through congenital transmission. A comprehensive understanding of the intricate molecular interactions between T. gondii and its host is pivotal for the development of effective therapeutic strategies. This review emphasizes the crucial role of proteomics in T. gondii research, with a specific focus on host-parasite interactions, post-translational modifications (PTMs), PTM crosstalk, and ongoing efforts in drug discovery. Additionally, we provide an overview of recent advancements in proteomics techniques, encompassing interactome sample preparation methods such as BioID (BirA*-mediated proximity-dependent biotin identification), APEX (ascorbate peroxidase-mediated proximity labeling), and Y2H (yeast two hybrid), as well as various proteomics approaches, including single-cell analysis, DIA (data-independent acquisition), targeted, top-down, and plasma proteomics. Furthermore, we discuss bioinformatics and the integration of proteomics with other omics technologies, highlighting its potential in unraveling the intricate mechanisms of T. gondii pathogenesis and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Bin Deng
- Department of Biology and VBRN Proteomics Facility, University of Vermont, Burlington, VT 05405, USA
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Andres M. Alonso
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| |
Collapse
|
3
|
Fragoso MSI, de Siqueira CM, Vitorino FNL, Vieira AZ, Martins-Duarte ÉS, Faoro H, da Cunha JPC, Ávila AR, Nardelli SC. TgKDAC4: A Unique Deacetylase of Toxoplasma' s Apicoplast. Microorganisms 2023; 11:1558. [PMID: 37375060 DOI: 10.3390/microorganisms11061558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and causes toxoplasmosis infections, a disease that affects a quarter of the world's population and has no effective cure. Epigenetic regulation is one of the mechanisms controlling gene expression and plays an essential role in all organisms. Lysine deacetylases (KDACs) act as epigenetic regulators affecting gene silencing in many eukaryotes. Here, we focus on TgKDAC4, an enzyme unique to apicomplexan parasites, and a class IV KDAC, the least-studied class of deacetylases so far. This enzyme shares only a portion of the specific KDAC domain with other organisms. Phylogenetic analysis from the TgKDAC4 domain shows a putative prokaryotic origin. Surprisingly, TgKDAC4 is located in the apicoplast, making it the only KDAC found in this organelle to date. Transmission electron microscopy assays confirmed the presence of TgKDAC4 in the periphery of the apicoplast. We identified possible targets or/and partners of TgKDAC4 by immunoprecipitation assays followed by mass spectrometry analysis, including TgCPN60 and TgGAPDH2, both located at the apicoplast and containing acetylation sites. Understanding how the protein works could provide new insights into the metabolism of the apicoplast, an essential organelle for parasite survival.
Collapse
Affiliation(s)
| | | | - Francisca Nathália Luna Vitorino
- Special Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signalling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Érica Santos Martins-Duarte
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Helisson Faoro
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba 81350-010, Brazil
| | - Júlia Pinheiro Chagas da Cunha
- Special Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signalling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | | | | |
Collapse
|
4
|
Nie LB, Cong W, He JJ, Zheng WB, Zhu XQ. Global proteomic profiling of multiple organs of cats (Felis catus) and proteome-transcriptome correlation during acute Toxoplasma gondii infection. Infect Dis Poverty 2022; 11:96. [PMID: 36104766 PMCID: PMC9473462 DOI: 10.1186/s40249-022-01022-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Toxoplasma gondii is a protozoan parasite which can infect almost all warm-blooded animals and humans. Understanding the differential expression of proteins and transcripts associated with T. gondii infection in its definitive host (cat) may improve our knowledge of how the parasite manipulates the molecular microenvironment of its definitive host. The aim of this study was to explore the global proteomic alterations in the major organs of cats during acute T. gondii infection. Methods iTRAQ-based quantitative proteomic profiling was performed on six organs (brain, liver, lung, spleen, heart and small intestine) of cats on day 7 post-infection by cysts of T. gondii PRU strain (Genotype II). Mascot software was used to conduct the student’s t-test. Proteins with P values < 0.05 and fold change > 1.2 or < 0.83 were considered as differentially expressed proteins (DEPs). Results A total of 32,657 proteins were identified in the six organs, including 2556 DEPs; of which 1325 were up-regulated and 1231 were down-regulated. The brain, liver, lung, spleen, heart and small intestine exhibited 125 DEPs, 463 DEPs, 255 DEPs, 283 DEPs, 855 DEPs and 575 DEPs, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of all proteins and DEPs in all organs showed that many proteins were enriched in binding, cell part, cell growth and death, signal transduction, translation, sorting and degradation, extracellular matrix remodeling, tryptophan catabolism, and immune system. Correlations between differentially expressed proteins and transcripts were detected in the liver (n = 19), small intestine (n = 17), heart (n = 9), lung (n = 9) and spleen (n = 3). Conclusions The present study identified 2556 DEPs in six cat tissues on day 7 after infection by T. gondii PRU strain, and functional enrichment analyses showed that these DEPs were associated with various cellular and metabolic processes. These findings provide a solid base for further in-depth investigation of the complex proteotranscriptomic reprogramming that mediates the dynamic interplays between T. gondii and the different feline tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-01022-7.
Collapse
|
5
|
Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals (Basel) 2022; 12:ani12091098. [PMID: 35565525 PMCID: PMC9099775 DOI: 10.3390/ani12091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The One Health concept to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. Toxoplasmosis outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. Consequently, the development of effective vaccine and diagnostic strategies is urgent for the elimination of this disease. Proteomics analysis has allowed the identification of key proteins that can be utilized in the development of novel disease diagnostics and vaccines. This work presents relevant proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites. In fact, it brings together the main functionality key proteins from Toxoplasma parasites coming from proteomic approaches that are most likely to be useful in improving the disease management, and critically proposes innovative directions to finally develop promising vaccines and diagnostics tools. Abstract Toxoplasma gondii is a pathogenic protozoan parasite that infects the nucleated cells of warm-blooded hosts leading to an infectious zoonotic disease known as toxoplasmosis. The infection outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. The One Health approach to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. The presence of drug resistance and side effects, the further improvement of sensitivity and specificity of serodiagnostic tools and the potentiality of vaccine candidates to induce the host immune response are considered as justifiable reasons for the identification of novel targets for the better management of toxoplasmosis. Thus, the identification of new critical proteins in the proteome of Toxoplasma parasites can also be helpful in designing and test more effective drugs, vaccines, and diagnostic tools. Accordingly, in this study we present important proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites that are potential diagnostic or vaccine candidates. The current study might help to understand the complexity of these parasites and provide a possible source of strategies and biomolecules that can be further evaluated in the pathobiology of Toxoplasma parasites and for diagnostics and vaccine trials against this disease.
Collapse
|
6
|
Abstract
Apicomplexans are important pathogens that cause severe infections in humans and animals. The biology and pathogeneses of these parasites have shown that proteins are intrinsically modulated during developmental transitions, physiological processes and disease progression. Also, proteins are integral components of parasite structural elements and organelles. Among apicomplexan parasites, Eimeria species are an important disease aetiology for economically important animals wherein identification and characterisation of proteins have been long-winded. Nonetheless, this review seeks to give a comprehensive overview of constitutively expressed Eimeria proteins. These molecules are discussed across developmental stages, organelles and sub-cellular components vis-à-vis their biological functions. In addition, hindsight and suggestions are offered with intention to summarise the existing trend of eimerian protein characterisation and to provide a baseline for future studies.
Collapse
|
7
|
Identification of Oocyst-Driven Toxoplasma gondii Infections in Humans and Animals through Stage-Specific Serology-Current Status and Future Perspectives. Microorganisms 2021; 9:microorganisms9112346. [PMID: 34835471 PMCID: PMC8618849 DOI: 10.3390/microorganisms9112346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
The apicomplexan zoonotic parasite Toxoplasma gondii has three infective stages: sporozoites in sporulated oocysts, which are shed in unsporulated form into the environment by infected felids; tissue cysts containing bradyzoites, and fast replicating tachyzoites that are responsible for acute toxoplasmosis. The contribution of oocysts to infections in both humans and animals is understudied despite being highly relevant. Only a few diagnostic antigens have been described to be capable of discriminating which parasite stage has caused an infection. Here we provide an extensive overview of the antigens and serological assays used to detect oocyst-driven infections in humans and animals according to the literature. In addition, we critically discuss the possibility to exploit the increasing knowledge of the T. gondii genome and the various 'omics datasets available, by applying predictive algorithms, for the identification of new oocyst-specific proteins for diagnostic purposes. Finally, we propose a workflow for how such antigens and assays based on them should be evaluated to ensure reproducible and robust results.
Collapse
|
8
|
Firdaus ER, Park JH, Lee SK, Park Y, Cha GH, Han ET. 3D morphological and biophysical changes in a single tachyzoite and its infected cells using three-dimensional quantitative phase imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e202000055. [PMID: 32441392 DOI: 10.1002/jbio.202000055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Toxoplasma gondii is an apicomplexan parasite that causes toxoplasmosis in the human body and commonly infects warm-blooded organisms. Pathophysiology of its diseases is still an interesting issue to be studied since T gondii can infect nearly all nucleated cells. Imaging techniques are crucial for studying its pathophysiology. In T gondii-infected cells structural and biochemical alterations occurred. To study that modification, we use digital holotomography to investigate the structure and biochemical alteration of single tachyzoite and its infected cells in a label-free and quantitative manner. Quantification analysis was done by measuring the refractive index distribution, which provides information about the concentration and dry mass of individual cells. This study showed that holotomography could be effectively used to identify the structural and biochemical alteration in tremendously different cells in supporting pathophysiological research in particular for T gondii-caused diseases.
Collapse
Affiliation(s)
- Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Guang-Ho Cha
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
9
|
Yin D, Jiang N, Zhang Y, Wang D, Sang X, Feng Y, Chen R, Wang X, Yang N, Chen Q. Global Lysine Crotonylation and 2-Hydroxyisobutyrylation in Phenotypically Different Toxoplasma gondii Parasites. Mol Cell Proteomics 2019; 18:2207-2224. [PMID: 31488510 PMCID: PMC6823851 DOI: 10.1074/mcp.ra119.001611] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii is a unicellular protozoan parasite of the phylum Apicomplexa. The parasite repeatedly goes through a cycle of invasion, division and induction of host cell rupture, which is an obligatory process for proliferation inside warm-blooded animals. It is known that the biology of the parasite is controlled by a variety of mechanisms ranging from genomic to epigenetic to transcriptional regulation. In this study, we investigated the global protein posttranslational lysine crotonylation and 2-hydroxyisobutyrylation of two T. gondii strains, RH and ME49, which represent distinct phenotypes for proliferation and pathogenicity in the host. Proteins with differential expression and modification patterns associated with parasite phenotypes were identified. Many proteins in T. gondii were crotonylated and 2-hydroxyisobutyrylated, and they were localized in diverse subcellular compartments involved in a wide variety of cellular functions such as motility, host invasion, metabolism and epigenetic gene regulation. These findings suggest that lysine crotonylation and 2-hydroxyisobutyrylation are ubiquitous throughout the T. gondii proteome, regulating critical functions of the modified proteins. These data provide a basis for identifying important proteins associated with parasite development and pathogenicity.
Collapse
Affiliation(s)
- Deqi Yin
- Key Laoratory of Animal Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110166, China
| | - Ning Jiang
- Key Laoratory of Animal Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110166, China
| | - Yue Zhang
- Key Laoratory of Animal Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110166, China
| | - Dawei Wang
- Key Laoratory of Animal Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110166, China
| | - Xiaoyu Sang
- Key Laoratory of Animal Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110166, China
| | - Ying Feng
- Key Laoratory of Animal Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110166, China
| | - Rang Chen
- Key Laoratory of Animal Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110166, China
| | - Xinyi Wang
- College of Basic Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110166, China
| | - Na Yang
- Key Laoratory of Animal Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110166, China
| | - Qijun Chen
- Key Laoratory of Animal Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110166, China.
| |
Collapse
|
10
|
Vetrivel U, Nagarajan H. Deciphering ophthalmic adaptive inhibitors targeting RON4 of Toxoplasma gondii: An integrative in silico approach. Life Sci 2018; 213:82-93. [DOI: 10.1016/j.lfs.2018.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
|
11
|
Biron D, Nedelkov D, Missé D, Holzmuller P. Proteomics and Host–Pathogen Interactions. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2017. [PMCID: PMC7149668 DOI: 10.1016/b978-0-12-799942-5.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Qiu J, Wang L, Zhang R, Ge K, Guo H, Liu X, Liu J, Kong D, Wang Y. Identification of a TNF-α inducer MIC3 originating from the microneme of non-cystogenic, virulent Toxoplasma gondii. Sci Rep 2016; 6:39407. [PMID: 28000706 PMCID: PMC5175157 DOI: 10.1038/srep39407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is an opportunistic parasite with avirulent cystogenic and highly virulent non-cystogenic isolates. Although non-cystogenic strains are considered the most virulent, there are also marked genetic and virulence differences among these strains. Excretory-secretory antigens (ESAs) of T. gondii are critical for the invasion process and the immune response of the host. To better understand the differences in virulence between non-cystogenic T. gondii isolates, we studied ESAs of the RH strain (Type I), and the very prevalent in China, but less virulent TgCtwh3 strain (Chinese 1). ESAs of RH and TgCtwh3 triggered different levels of TNF-α production and macrophage M1 polarization. Using iTRAQ analysis, 27 differentially expressed proteins originating from secretory organelles and surface were quantified. Of these proteins, 11 microneme-associated proteins (MICs), 6 rhoptry proteins, 2 dense granule proteins and 5 surface proteins were more abundant in RH than in TgCtwh3. The protein-protein correlation network was employed to identify the important functional node protein MIC3, which was upregulated 5-fold in RH compared with TgCtwh3. MIC3 was experimentally confirmed to evoke a TNF-α secretory response, and it also induced macrophage M1 polarization. This result suggests that MIC3 is a potentially useful immunomodulator that induces TNF-α secretion and macrophage M1 polarization.
Collapse
Affiliation(s)
- Jingfan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Lijuan Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Rong Zhang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Ge
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Hongfei Guo
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Jinfeng Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Delong Kong
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Yong Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
13
|
Silmon de Monerri NC, Yakubu RR, Chen AL, Bradley PJ, Nieves E, Weiss LM, Kim K. The Ubiquitin Proteome of Toxoplasma gondii Reveals Roles for Protein Ubiquitination in Cell-Cycle Transitions. Cell Host Microbe 2016; 18:621-33. [PMID: 26567513 DOI: 10.1016/j.chom.2015.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 10/22/2015] [Indexed: 12/28/2022]
Abstract
Protein ubiquitination plays key roles in protein turnover, cellular signaling, and intracellular transport. The genome of Toxoplasma gondii encodes ubiquitination machinery, but the roles of this posttranslational modification (PTM) are unknown. To examine the prevalence and function of ubiquitination in T. gondii, we mapped the ubiquitin proteome of tachyzoites. Over 500 ubiquitin-modified proteins, with almost 1,000 sites, were identified on proteins with diverse localizations and functions. Enrichment analysis demonstrated that 35% of ubiquitinated proteins are cell-cycle regulated. Unexpectedly, most classic cell-cycle regulators conserved in T. gondii were not detected in the ubiquitinome. Furthermore, many ubiquitinated proteins localize to the cytoskeleton and inner membrane complex, a structure beneath the plasma membrane facilitating division and host invasion. Comparing the ubiquitinome with other PTM proteomes reveals waves of PTM enrichment during the cell cycle. Thus, T. gondii PTMs are implicated as critical regulators of cell division and cell-cycle transitions.
Collapse
Affiliation(s)
| | - Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Allan L Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095-1489, USA
| | - Peter J Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095-1489, USA
| | - Edward Nieves
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kami Kim
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
14
|
Gómez de León CT, Díaz Martín RD, Mendoza Hernández G, González Pozos S, Ambrosio JR, Mondragón Flores R. Proteomic characterization of the subpellicular cytoskeleton of Toxoplasma gondii tachyzoites. J Proteomics 2014; 111:86-99. [DOI: 10.1016/j.jprot.2014.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 01/09/2023]
|
15
|
S Ferreira DD, Menezes Resende IT, Lopez JA. Proteome investigation of an organellar fraction of Toxoplasma gondii: a preliminary study. BMC Proc 2014. [PMCID: PMC4204214 DOI: 10.1186/1753-6561-8-s4-p74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Butler CL, Lucas O, Wuchty S, Xue B, Uversky VN, White M. Identifying novel cell cycle proteins in Apicomplexa parasites through co-expression decision analysis. PLoS One 2014; 9:e97625. [PMID: 24841368 PMCID: PMC4026381 DOI: 10.1371/journal.pone.0097625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/22/2014] [Indexed: 11/26/2022] Open
Abstract
Hypothetical proteins comprise roughly half of the predicted gene complement of Toxoplasma gondii and Plasmodium falciparum and represent the largest class of uniquely functioning proteins in these parasites. Following the idea that functional relationships can be informed by the timing of gene expression, we devised a strategy to identify the core set of apicomplexan cell division cycling genes with important roles in parasite division, which includes many uncharacterized proteins. We assembled an expanded list of orthologs from the T. gondii and P. falciparum genome sequences (2781 putative orthologs), compared their mRNA profiles during synchronous replication, and sorted the resulting set of dual cell cycle regulated orthologs (744 total) into protein pairs conserved across many eukaryotic families versus those unique to the Apicomplexa. The analysis identified more than 100 ortholog gene pairs with unknown function in T. gondii and P. falciparum that displayed co-conserved mRNA abundance, dynamics of cyclical expression and similar peak timing that spanned the complete division cycle in each parasite. The unknown cyclical mRNAs encoded a diverse set of proteins with a wide range of mass and showed a remarkable conservation in the internal organization of ordered versus disordered structural domains. A representative sample of cyclical unknown genes (16 total) was epitope tagged in T. gondii tachyzoites yielding the discovery of new protein constituents of the parasite inner membrane complex, key mitotic structures and invasion organelles. These results demonstrate the utility of using gene expression timing and dynamic profile to identify proteins with unique roles in Apicomplexa biology.
Collapse
Affiliation(s)
- Carrie L. Butler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Olivier Lucas
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Stefan Wuchty
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bin Xue
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Michael White
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
17
|
Tao Q, Xiao J, Wang Y, Fang K, Li N, Hu M, Zhou Y, Zhao J. Identification of genes expressed during Toxoplasma gondii infection by in vivo-induced antigen technology (IVIAT) with positive porcine sera. J Parasitol 2014; 100:470-9. [PMID: 24646180 DOI: 10.1645/13-240.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Infection of pigs with Toxoplasma gondii is a common source of human toxoplasmosis and causes serious economic losses. In vivo-induced antigen technology (IVIAT) is an effective immunological technique to identify the antigens that a pathogen specifically expressed during infection. To discover the genes that are important in T. gondii infection of pigs, we employed IVIAT using sera from infected pigs. Fourteen antigens were identified including microneme protein 11 (MIC11), dense granule protein 5 (GRA5), 18 kDa cyclophilin (C-18), serine proteinase inhibitor (PI), calmodulin (CaM), leucine-rich repeat protein ( LRRP), D-3-phosphoglycerate dehydrogenase (D3PD), elongation factor 1-gamma (EF1), and 6 hypothetical proteins. The increased transcription levels of 5 (MIC11, GRA5, C-18, PI, and CaM) of the 14 molecules identified by IVIAT were confirmed by real-time PCR. The full length or partial proteins encoded by these 5 genes were expressed in Escherichia coli , and their immunogenicity was confirmed by Western blot analysis with positive porcine sera. Further functional studies were conducted with CaM. Suppression of CaM expression by RNA interference decreased T. gondii tachyzoites cell attachment, invasion, and egress but did not influence their replication. The proteins identified in this study are predicted to be involved in cell invasion, ion-protein binding, protein folding, biosynthesis, and metabolism. The results of the functional analysis support the hypothesis that CaM contributes to parasite pathogenesis during infection. These results may have significant implications for the discovery of candidate molecules for the development of potential therapies and preventive measures against toxoplasmosis in pigs.
Collapse
Affiliation(s)
- Qing Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhou DH, Zhao FR, Nisbet AJ, Xu MJ, Song HQ, Lin RQ, Huang SY, Zhu XQ. Comparative proteomic analysis of differentToxoplasma gondiigenotypes by two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry. Electrophoresis 2013; 35:533-45. [DOI: 10.1002/elps.201300044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 08/30/2013] [Accepted: 10/10/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
| | - Fu-Rong Zhao
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
| | - Alasdair J. Nisbet
- Vaccines and Diagnostics, Moredun Research Institute; Pentlands Science Park; Scotland UK
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
| | - Rui-Qing Lin
- College of Veterinary Medicine; South China Agricultural University; Guangzhou Guangdong Province P. R. China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
- College of Animal Science and Veterinary Medicine; Heilongjiang Bayi Agricultural University; Daqing Heilongjiang Province P. R. China
| |
Collapse
|
19
|
García-Lunar P, Regidor-Cerrillo J, Gutiérrez-Expósito D, Ortega-Mora L, Alvarez-García G. First 2-DE approach towards characterising the proteome and immunome of Besnoitia besnoiti in the tachyzoite stage. Vet Parasitol 2013; 195:24-34. [DOI: 10.1016/j.vetpar.2012.12.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/07/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
|
20
|
Identification of Besnoitia besnoiti proteins that showed differences in abundance between tachyzoite and bradyzoite stages by difference gel electrophoresis. Parasitology 2013; 140:999-1008. [PMID: 23594379 DOI: 10.1017/s003118201300036x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bovine besnoitiosis is a chronic and debilitating disease, caused by the apicomplexan parasite Besnoitia besnoiti. Infection of cattle by B. besnoiti is governed by the tachyzoite stage, which is related to acute infection, and the bradyzoite stage gathered into macroscopic cysts located in subcutaneous tissue in the skin, mucosal membranes and sclera conjunctiva and related to persistence and chronic infection. However, the entire life cycle of this parasite and the molecular mechanisms underlying tachyzoite-to-bradyzoite conversion remain unknown. In this context, a different antigenic pattern has been observed between tachyzoite and bradyzoite extracts. Thus, to identify stage-specific proteins, a difference gel electrophoresis (DIGE) approach was used on tachyzoite and bradyzoite extracts followed by mass spectrometry (MS) analysis. A total of 130 and 132 spots were differentially expressed in bradyzoites and tachyzoites, respectively (average ratio ± 1.5, P<0.05 in t-test). Furthermore, 25 differentially expressed spots were selected and analysed by MALDI-TOF/MS. As a result, 5 up-regulated bradyzoite proteins (GAPDH, ENO1, LDH, SOD and RNA polymerase) and 5 up-regulated tachyzoite proteins (ENO2; LDH; ATP synthase; HSP70 and PDI) were identified. The present results set the basis for the identification of new proteins as drug targets. Moreover, the role of these proteins in tachyzoite-to-bradyzoite conversion and the role of the host cell environment should be a subject of further research.
Collapse
|
21
|
Identification of antigenic proteins of Toxoplasma gondii RH strain recognized by human immunoglobulin G using immunoproteomics. J Proteomics 2012; 77:423-32. [PMID: 23026549 DOI: 10.1016/j.jprot.2012.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/12/2012] [Accepted: 09/16/2012] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii, a ubiquitous intracellular protozoan, infects one third of the world human population. It is of great medical significance, especially for pregnant women and immune-compromised patients. Accurate and early detection of T. gondii infection is crucial in the management of this disease. To obtain potential diagnostic markers, immunoproteomics was employed to identify immunodominant proteins separated by 2-D immunobloting and probed with sera collected from Toxoplasma-positive pregnant women. MALDI-TOF MS and MS/MS analyses identified a total of 18 immunoreactive proteins that were recognized by Toxoplasma-positive sera, whereas none was reactive with the negative-control sera from healthy, Toxoplasma-negative volunteers. Pregnant women showed a diverse immunoreactivity pattern with each serum recognizing one to eight identified tachyzoite proteins. The identified proteins were localized in the membrane, cytoplasm and specific organelles of T. gondii, and are involved in host cell invasion, metabolism and cell structure. Among these 18 proteins, actin, catalase, GAPDH, and three hypothetical proteins had a broad reactivity with Toxoplasma-positive sera, indicating their potential as diagnostic markers for toxoplasmosis. Each of several combinations of the identified proteins offered 100% detection of Toxoplasma infections of all 28 Toxoplasma-positive women. The study findings suggest that Toxoplasma tachyzoites are highly immunogenic and highlights the heterogeneity of host responses to Toxoplasma infection and the importance of using combinations of immunogens as diagnostic antigens. The findings have significant implications to the development of diagnostic reagents with high sensitivity and specificity.
Collapse
|
22
|
Liu Q, Singla LD, Zhou H. Vaccines against Toxoplasma gondii: status, challenges and future directions. Hum Vaccin Immunother 2012; 8:1305-8. [PMID: 22906945 DOI: 10.4161/hv.21006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous protozoan parasite that can infect a wide range of animals including humans. This single known species in the genus Toxoplasma is considered as one of the most successful eukaryotic pathogens which is of major medical and veterinary importance. Effective vaccines may contribute toward preventing and controlling the spread of toxoplasmosis. The present communication addresses the current status of development of vaccines against T. gondii. Further discussion is made on the difficulties along with challenges, such as vaccine construct, mode of vaccine administration and standardization of immunization evaluation. Finally suggestions are made on possible directions for future research on the development of vaccines against T. gondii.
Collapse
Affiliation(s)
- Qi Liu
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | |
Collapse
|
23
|
Adomako-Ankomah Y, Wier GM, Boyle JP. Beyond the genome: recent advances in Toxoplasma gondii functional genomics. Parasite Immunol 2012; 34:80-9. [PMID: 21722143 DOI: 10.1111/j.1365-3024.2011.01312.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent years have witnessed an explosion in the amount of genomic information available for Toxoplasma gondii and other closely related pathogens. These data, many of which have been made publicly available prior to publication, have facilitated a wide variety of functional genomics studies. In this review, we provide a brief overview of existing database tools for querying the Toxoplasma genome and associated genome-wide data and review recent publications that have been facilitated by these data. Topics covered include strain comparisons and quantitative trait loci mapping, gene expression analyses during the cell cycle as well as during parasite differentiation, and proteomics.
Collapse
Affiliation(s)
- Y Adomako-Ankomah
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
24
|
Zhou DH, Yuan ZG, Zhao FR, Li HL, Zhou Y, Lin RQ, Zou FC, Song HQ, Xu MJ, Zhu XQ. Modulation of mouse macrophage proteome induced by Toxoplasma gondii tachyzoites in vivo. Parasitol Res 2011; 109:1637-46. [PMID: 21584632 DOI: 10.1007/s00436-011-2435-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/27/2011] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite, which can invade and multiply within the macrophages of humans and most warm-blooded animals. Macrophages are important effector cells for the control and killing of intracellular T. gondii, and they may also serve as long-term host cells for the replication and survival of the parasite. In the present study, we explored the proteomic profile of macrophages of the specific pathogen-free Kunming mice at 24 h after infection with tachyzoites of the virulent T. gondii RH strain using two-dimensional gel electrophoresis combined with matrix-assisted laser desorption ionization time-of-flight (TOF)/TOF tandem mass spectrometry. Totally, 60 differentially expressed protein spots were identified. Among them, 52 spots corresponded to 38 proteins matching to proteins of the mouse, including actin, enolase, calumenin, vimentin, plastin 2, annexin A1, cathepsin S, arginase-1, arachidonate 12-lipoxygenase, and aminoacylase-1. Functional prediction using Gene Ontology database showed that these proteins were mainly involved in metabolism, structure, protein fate, and immune responses. The findings provided an insight into the interactive relationship between T. gondii and the host macrophages, and will shed new lights on the understanding of molecular mechanisms of T. gondii pathogenesis.
Collapse
Affiliation(s)
- D H Zhou
- Department of Parasitology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bahl A, Davis PH, Behnke M, Dzierszinski F, Jagalur M, Chen F, Shanmugam D, White MW, Kulp D, Roos DS. A novel multifunctional oligonucleotide microarray for Toxoplasma gondii. BMC Genomics 2010; 11:603. [PMID: 20974003 PMCID: PMC3017859 DOI: 10.1186/1471-2164-11-603] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microarrays are invaluable tools for genome interrogation, SNP detection, and expression analysis, among other applications. Such broad capabilities would be of value to many pathogen research communities, although the development and use of genome-scale microarrays is often a costly undertaking. Therefore, effective methods for reducing unnecessary probes while maintaining or expanding functionality would be relevant to many investigators. RESULTS Taking advantage of available genome sequences and annotation for Toxoplasma gondii (a pathogenic parasite responsible for illness in immunocompromised individuals) and Plasmodium falciparum (a related parasite responsible for severe human malaria), we designed a single oligonucleotide microarray capable of supporting a wide range of applications at relatively low cost, including genome-wide expression profiling for Toxoplasma, and single-nucleotide polymorphism (SNP)-based genotyping of both T. gondii and P. falciparum. Expression profiling of the three clonotypic lineages dominating T. gondii populations in North America and Europe provides a first comprehensive view of the parasite transcriptome, revealing that ~49% of all annotated genes are expressed in parasite tachyzoites (the acutely lytic stage responsible for pathogenesis) and 26% of genes are differentially expressed among strains. A novel design utilizing few probes provided high confidence genotyping, used here to resolve recombination points in the clonal progeny of sexual crosses. Recent sequencing of additional T. gondii isolates identifies >620 K new SNPs, including ~11 K that intersect with expression profiling probes, yielding additional markers for genotyping studies, and further validating the utility of a combined expression profiling/genotyping array design. Additional applications facilitating SNP and transcript discovery, alternative statistical methods for quantifying gene expression, etc. are also pursued at pilot scale to inform future array designs. CONCLUSIONS In addition to providing an initial global view of the T. gondii transcriptome across major lineages and permitting detailed resolution of recombination points in a historical sexual cross, the multifunctional nature of this array also allowed opportunities to exploit probes for purposes beyond their intended use, enhancing analyses. This array is in widespread use by the T. gondii research community, and several aspects of the design strategy are likely to be useful for other pathogens.
Collapse
Affiliation(s)
- Amit Bahl
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Choi SH, Kim TY, Park SG, Cha GH, Shin DW, Chai JY, Lee YH. Proteomic analysis of Toxoplasma gondii KI-1 tachyzoites. THE KOREAN JOURNAL OF PARASITOLOGY 2010; 48:195-201. [PMID: 20877497 DOI: 10.3347/kjp.2010.48.3.195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/23/2022]
Abstract
We studied on the proteomic characteristics of Toxoplasma gondii KI-1 tachyzoites which were originally isolated from a Korean patient, and compared with those of the well-known virulent RH strain using 2-dimensional electrophoresis (2-DE), mass spectrometry, and quantitative real-time PCR. Two-dimensional separation of the total proteins isolated from KI-1 tachyzoites revealed up to 150 spots, of which 121 were consistent with those of RH tachyzoites. Of the remaining 29 spots, 14 showed greater than 5-fold difference in density between the KI-1 and RH tachyzoites at a pH of 5.0-8.0. Among the 14 spots, 5 from the KI-1 isolate and 7 from the RH strain were identified using MALDI-TOF mass spectrometry and database searches. The spots from the KI-1 tachyzoites were dense granule proteins (GRA 2, 3, 6, and 7), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGRPTase), and uracil phosphoribosyltransferase (UPRTase). The spots from the RH strain were surface antigen 1 (SAG 1), L-lactate dehydrogenase (LDH), actin, chorismate synthase, peroximal catalase, hexokinase, bifunctional dihydrofolate reductase-thymidylate synthase (DHTR-TS), and nucleoside-triphosphatases (NTPases). Quantitative real-time PCR supported our mass spectrometric results by showing the elevated expression of the genes encoding GRA 2, 3, and 6 and UPRTase in the KI-1 tachyzoites and those encoding GRA 7, SAG 1, NTPase, and chorismate synthase in the RH tachyzoites. These observations demonstrate that the protein compositions of KI-1 and RH tachyzoites are similar but differential protein expression is involved in virulence.
Collapse
Affiliation(s)
- Si-Hwan Choi
- Department of Ophthalmology, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Perez-Cervera Y, Harichaux G, Schmidt J, Debierre-Grockiego F, Dehennaut V, Bieker U, Meurice E, Lefebvre T, Schwarz RT. Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study. Amino Acids 2010; 40:847-56. [PMID: 20661758 DOI: 10.1007/s00726-010-0702-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/13/2010] [Indexed: 02/05/2023]
Abstract
Toxoplasma gondii and Plasmodium falciparum are apicomplexan parasites responsible for serious diseases in humans. Many studies have focused on the post-translational modifications (PTMs) found in the two protists including phosphorylation, acetylation or SUMOylation but only a few of these are concerned with the nuclear and cytosolic-specific glycosylation O-GlcNAcylation. O-GlcNAcylation is a highly dynamic PTM-regulated by the ON and OFF enzymes: O-GlcNAc transferase and O-GlcNAcase-that can compete with phosphorylation but its function remains unclear. In this work, we directly prove the O-GlcNAcylation in T. gondii using antibodies specifically directed against the modification and we strongly suggest its occurrence in P. falciparum. We found that the inducible 70 kDa-Heat Shock Protein is O-GlcNAcylated, or associated with an O-GlcNAc-partner, in T. gondii. Using anti-OGT antibodies we were able to detect the expression of the glycosyltransferase in T. gondii cultured both in human foreskin fibroblast and in Vero cells and report its putative sequence. For the first time the presence of O-GlcNAcylation is unequivocally shown in T. gondii and suspected in P. falciparum. Since the O-GlcNAcylation is implicated in many biological fundamental processes this study opens a new research track in the knowledge of apicomplexans' life cycle and pathogenic potential.
Collapse
Affiliation(s)
- Yobana Perez-Cervera
- Unit of Structural and Functional Glycobiology, CNRS-UMR 8576, IFR 147, Université de Lille 1, Cité Scientifique, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|