1
|
Kamel M, Davidson JL, Schober JM, Fraley GS, Verma MS. A paper-based loop-mediated isothermal amplification assay for highly pathogenic avian influenza. Sci Rep 2025; 15:12110. [PMID: 40204842 PMCID: PMC11982278 DOI: 10.1038/s41598-025-95452-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Avian influenza outbreaks have had significant economic and public health consequences worldwide. Therefore, prompt, reliable, and cost-effective diagnostic devices are crucial for scrutinizing and confining highly pathogenic avian influenza viruses (HPAIVs). Our study introduced and evaluated a novel paper-based loop-mediated isothermal amplification (LAMP) test for diagnosing the H5 subtype of the avian influenza virus (AIV). We meticulously designed and screened LAMP primers targeting the H5-haemagglutinin (H5-HA) gene of AIV and fine-tuned the paper-based detection assay for best performance. The paper-based LAMP assay demonstrated a detection limit of 500 copies per reaction (25 copies/µl). Additionally, the assay exhibited no cross-reactivity with common bovine and avian pathogens, confirming its specificity. Spiking experiments revealed that the assay could accurately detect 1000 copies of synthetic HPAIV RNA (per reaction) when spiked into oropharyngeal swab samples, achieving 100% analytical sensitivity, specificity, and accuracy. This inexpensive, user-friendly point-of-need diagnostic tool holds great promise, especially in resource-limited settings. It only requires a water bath for incubation and enables visual detection of results without special equipment. Overall, the paper-based LAMP assay provides a promising method for rapidly and reliably detecting the H5 subtype of AIV, contributing to improved surveillance and early intervention strategies.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jenna M Schober
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907-2050, USA
| | - Gregory S Fraley
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907-2050, USA
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Mira‐Iglesias A, López‐Lacort M, Bricout H, Loiacono M, Carballido‐Fernández M, Mollar‐Maseres J, Tortajada‐Girbés M, Schwarz‐Chávarri G, López‐Labrador F, Puig‐Barberà J, Díez‐Domingo J, Orrico‐Sánchez A. Accuracy of ICD Influenza Discharge Diagnosis Codes in Hospitalized Adults From the Valencia Region, Spain, in the Pre-COVID-19 Period 2012/2013 to 2017/2018. Influenza Other Respir Viruses 2025; 19:e70069. [PMID: 39909969 PMCID: PMC11798732 DOI: 10.1111/irv.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND International Classification of Diseases (ICD) codes obtained from real-world data can be used to identify influenza cases for epidemiological research but, without validation, may introduce biases. The objective of this study was to validate ICD influenza discharge diagnoses using real-time reverse transcription-polymerase chain reaction (RT-PCR) laboratory-confirmed influenza (LCI) results. METHODS The study was conducted during six influenza seasons (2012/2013-2017/2018) in the Valencia Hospital Surveillance Network for the Study of Influenza (VAHNSI). Patients aged 18+ years were identified via active-surveillance and had to meet an influenza-like illness (ILI) case definition to be included. All patients were tested for influenza by real-time RT-PCR. Main and secondary influenza discharge diagnosis codes were extracted from hospital discharge letters. Positive predictive values (PPVs) and the complementary of the sensitivities (1-Sensitivity) of ICD codes with corresponding 95% credible intervals (CrIs) were estimated via binomial Bayesian regression models. RESULTS A total of 13,545 patients were included, with 2257 (17%) positive for influenza. Of 2257 LCI cases, 1385 (61%) were not ICD-coded as influenza. Overall, 74.73% (95% CrI: 63.24-84.44) of LCI were not-ICD coded as influenza (1-Sensitivity) after adjustment. Sensitivity improved across seasons and with increasing age. Average PPV was 74.02% (95% CrI: 68.58-79.17), ranging from 43.71% to 81.57% between seasons. CONCLUSION Using only main and secondary discharge diagnosis codes for influenza detection markedly underestimates the full burden of influenza in hospitalized patients. Future studies, including post-COVID context, using prospective surveillance for ILI are required to assess the validity of hospital discharge data as a tool for determining influenza-related burden of disease.
Collapse
Affiliation(s)
- Ainara Mira‐Iglesias
- Área de Investigación en VacunasFundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO‐Public Health)ValenciaSpain
- CIBER de Epidemiología y Salud PúblicaInstituto de Salud Carlos IIIMadridSpain
| | - Mónica López‐Lacort
- Área de Investigación en VacunasFundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO‐Public Health)ValenciaSpain
- CIBER de Epidemiología y Salud PúblicaInstituto de Salud Carlos IIIMadridSpain
| | | | | | - Mario Carballido‐Fernández
- Hospital General Universitario de CastellónCastellón de la PlanaSpain
- Universidad CEU Cardenal HerreraCastellón de la PlanaSpain
| | | | | | | | - F. Xavier López‐Labrador
- CIBER de Epidemiología y Salud PúblicaInstituto de Salud Carlos IIIMadridSpain
- Laboratorio de Virología, Área de Genómica y SaludFundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO‐Public Health)ValenciaSpain
| | - Joan Puig‐Barberà
- Área de Investigación en VacunasFundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO‐Public Health)ValenciaSpain
| | - Javier Díez‐Domingo
- Área de Investigación en VacunasFundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO‐Public Health)ValenciaSpain
- CIBER de Epidemiología y Salud PúblicaInstituto de Salud Carlos IIIMadridSpain
- Universidad Católica de Valencia San Vicente MártirValenciaSpain
| | - Alejandro Orrico‐Sánchez
- Área de Investigación en VacunasFundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO‐Public Health)ValenciaSpain
- CIBER de Epidemiología y Salud PúblicaInstituto de Salud Carlos IIIMadridSpain
- Universidad Católica de Valencia San Vicente MártirValenciaSpain
| |
Collapse
|
3
|
Kamel M, Davidson JL, Verma MS. A Paper-based Loop-Mediated Isothermal Amplification (LAMP) Assay for Highly Pathogenic Avian Influenza. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607641. [PMID: 39211221 PMCID: PMC11361134 DOI: 10.1101/2024.08.12.607641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Avian influenza outbreaks have had significant economic and public health consequences worldwide. Therefore, prompt, reliable, and cost-effective diagnostic devices are crucial for scrutinizing and confining highly pathogenic avian influenza viruses (HPAIVs). Our study introduced and evaluated a novel paper-based loop-mediated isothermal amplification (LAMP) test for diagnosing the H5 subtype of the avian influenza virus (AIV). We meticulously designed and screened LAMP primers targeting the H5-haemagglutinin (H5-HA) gene of AIV and fine-tuned the paper-based detection assay for best performance. The paper-based LAMP assay demonstrated a detection limit of 500 copies per reaction (25 copies/µL). This inexpensive, user-friendly point-of-need diagnostic tool holds great promise, especially in resource-limited settings. It only requires a water bath for incubation and enables visual detection of results without special equipment. Overall, the paper-based LAMP assay provides a promising method for rapidly and reliably detecting the H5 subtype of AIV, contributing to improved surveillance and early intervention strategies.
Collapse
|
4
|
Pott H, LeBlanc JJ, ElSherif M, Hatchette TF, McNeil SA, Andrew MK. Predicting major clinical events among Canadian adults with laboratory-confirmed influenza infection using the influenza severity scale. Sci Rep 2024; 14:18378. [PMID: 39112632 PMCID: PMC11306731 DOI: 10.1038/s41598-024-67931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
We developed and validated the Influenza Severity Scale (ISS), a standardized risk assessment for influenza, to estimate and predict the probability of major clinical events in patients with laboratory-confirmed infection. Data from the Canadian Immunization Research Network's Serious Outcomes Surveillance Network (2011/2012-2018/2019 influenza seasons) enabled the selecting of all laboratory-confirmed influenza patients. A machine learning-based approach then identified variables, generated weighted scores, and evaluated model performance. This study included 12,954 patients with laboratory-confirmed influenza infections. The optimal scale encompassed ten variables: demographic (age and sex), health history (smoking status, chronic pulmonary disease, diabetes mellitus, and influenza vaccination status), clinical presentation (cough, sputum production, and shortness of breath), and function (need for regular support for activities of daily living). As a continuous variable, the scale had an AU-ROC of 0.73 (95% CI, 0.71-0.74). Aggregated scores classified participants into three risk categories: low (ISS < 30; 79.9% sensitivity, 51% specificity), moderate (ISS ≥ 30 but < 50; 54.5% sensitivity, 55.9% specificity), and high (ISS ≥ 50; 51.4% sensitivity, 80.5% specificity). ISS demonstrated a solid ability to identify patients with hospitalized laboratory-confirmed influenza at increased risk for Major Clinical Events, potentially impacting clinical practice and research.
Collapse
Affiliation(s)
- Henrique Pott
- Canadian Centre for Vaccinology, Dalhousie University, Halifax, Canada.
- Department of Medicine, Universidade Federal de São Carlos, Rod. Washington Luis, km 235, São Carlos, SP, 13656-905, Brazil.
| | - Jason J LeBlanc
- Canadian Centre for Vaccinology, Dalhousie University, Halifax, Canada
- Department of Pathology, Dalhousie University, Halifax, Canada
| | - May ElSherif
- Canadian Centre for Vaccinology, Dalhousie University, Halifax, Canada
| | - Todd F Hatchette
- Canadian Centre for Vaccinology, Dalhousie University, Halifax, Canada
- Department of Pathology, Dalhousie University, Halifax, Canada
| | - Shelly A McNeil
- Canadian Centre for Vaccinology, Dalhousie University, Halifax, Canada
- Department of Medicine (Infectious Diseases), Dalhousie University, Halifax, Canada
| | - Melissa K Andrew
- Canadian Centre for Vaccinology, Dalhousie University, Halifax, Canada
- Department of Medicine (Geriatrics), Dalhousie University, Halifax, Canada
| |
Collapse
|
5
|
Rohana H, Marmur G, Azrad M, Peretz A. A new antigen test device for rapid influenza A and B detection. Heliyon 2024; 10:e33979. [PMID: 39055805 PMCID: PMC11269840 DOI: 10.1016/j.heliyon.2024.e33979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction Tests for detection of influenza must demonstrate high sensitivity and specificity, affordability, and rapidness. Methods This study aimed to evaluate the performance of the LabOn-Time™ Influenza A + B Rapid test device (BMT Diagnostics, Ltd), as compared to Real-time polymerase chain reaction (RT-PCR), in identifying influenza A/B among 183 nasopharyngeal samples collected between February and April 2023 from patients with Influenza-like symptoms. Results Out of 70 participants with a positive RT-PCR result, 53 (75.7 %) had a positive LabOn-Time result. The LabOn-Time kit had a sensitivity of 75.7 % and specificity of 100 %. The odds ratio for showing a false negative LabOn-Time result for influenza B, compared to influenza A was 5.24 (95%CI: 1.35-20.31). All false negative LabOn-Time samples had a RT-PCT cycle threshold ≥20. Mean time from symptom onset was significantly lower in the false negative LabOn-Time cases compared to the positive cases (36 ± 15.3 vs. 42.6 ± 10.1, respectively). The mean number of symptoms reported per patient was significantly higher in positive compared to negative LabOn-Time cases (2.5 ± 0.5 vs. 1.9 ± 0.4, p < 0.001). Conclusions The LabOn-Time device, which is very simple and intuitive to operate, could significantly contribute to early detection of influenza A/B infection.
Collapse
Affiliation(s)
- Hanan Rohana
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Israel
| | - Guy Marmur
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Maya Azrad
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Israel
| | - Avi Peretz
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
6
|
Seder I, Coronel-Tellez R, Helalat SH, Sun Y. Fully integrated sample-in-answer-out platform for viral detection using digital reverse transcription recombinase polymerase amplification (dRT-RPA). Biosens Bioelectron 2023; 237:115487. [PMID: 37352758 DOI: 10.1016/j.bios.2023.115487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Recombinase polymerase amplification (RPA) is one of the most promising diagnostic methods for pathogen detection, owing to the simplified isothermal amplification technique. Using one-step digital reverse transcription RPA (dRT-RPA) to detect viral RNA provides a fast diagnosis and absolute quantification. Here, we present a chip that purifies, digitalizes, and detects viral RNA of SARS-CoV-2 in a fully automated and sensitive manner. The chip purifies the RNA using the surface charge concept of magnet bead-RNA binding, then mixes the RNA with the amplification reagents, digitalizes the amplification mixture, and performs dRT-RPA. RNA-bead complex is transported among purification buffers that are separated by an oil phase. For reagent manipulation and mixing, a magnetic valve system is integrated on the chip, where an external magnet controls the reagent direction and time of addition. Besides, a novel vacuum system is suggested to drive and regulate the reagents into two fluid systems simultaneously in ∼2 min. We also developed a cost-effective way to perform fluorescent detection for dRT-RPA on chip by using EvaGreen® dye. With integrated heating and optical detection system, the on-chip dRT-RPA presents a sample-to-answer detection platform for absolute viral RNA quantitation in 37 min and a sensitivity as low as 10 RNA copies/μL. Hence, this platform is expected to be a useful tool for accurate and automated diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Islam Seder
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800, Kgs. Lyngby, Denmark
| | - Rodrigo Coronel-Tellez
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800, Kgs. Lyngby, Denmark
| | - Seyed Hossein Helalat
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800, Kgs. Lyngby, Denmark
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Harder T, de Wit S, Gonzales JL, Ho JHP, Mulatti P, Prajitno TY, Stegeman A. Epidemiology-driven approaches to surveillance in HPAI-vaccinated poultry flocks aiming to demonstrate freedom from circulating HPAIV. Biologicals 2023; 83:101694. [PMID: 37494751 DOI: 10.1016/j.biologicals.2023.101694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Incursion pressure of high pathogenicity avian influenza viruses (HPAIV) by secondary spread among poultry holdings and/or from infected migratory wild bird populations increases worldwide. Vaccination as an additional layer of protection of poultry holdings using appropriately matched vaccines aims at reducing clinical sequelae of HPAIV infection, disrupting HPAIV transmission, curtailing economic losses and animal welfare problems and cutting exposure risks of zoonotic HPAIV at the avian-human interface. Products derived from HPAIV-vaccinated poultry should not impose any risk of virus spread or exposure. Vaccination can be carried out with zero-tolerance for infection in vaccinated herds and must then be flanked by appropriate surveillance which requires tailoring at several levels: (i) Controlling appropriate vaccination coverage and adequate population immunity in individual flocks and across vaccinated populations; (ii) assessing HPAI-infection trends in unvaccinated and vaccinated parts of the poultry population to provide early detection of new/re-emerged HPAIV outbreaks; and (iii) proving absence of HPAIV circulation in vaccinated flocks ideally by real time-monitoring. Surveillance strategies, i.e. selecting targets, tools and random sample sizes, must be accommodated to the specific epidemiologic and socio-economic background. Methodological approaches and practical examples from three countries or territories applying AI vaccination under different circumstances are reviewed here.
Collapse
Affiliation(s)
- Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler Institute, Greifswald-Insel Riems, Germany.
| | - Sjaak de Wit
- Royal GD, Deventer, the Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jose L Gonzales
- Epidemiology, Bio-informatics & Animal Models, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Jeremy H P Ho
- Agriculture, Fisheries and Conservation Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Teguh Y Prajitno
- Japfa Comfeed Indonesia, Vaksindo Satwa Nusantara, Animal Health & Laboratory Services, Jakarta, Indonesia
| | - Arjan Stegeman
- Department Population Health Sciences, Farm Animal Health, Veterinary Epidemiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Kang JS, Seo MR, Chung YJ. Development of reverse-transcription loop-mediated isothermal amplification assays for point-of-care testing of human influenza virus subtypes H1N1 and H3N2. Genomics Inform 2022; 20:e46. [PMID: 36617653 PMCID: PMC9847375 DOI: 10.5808/gi.22057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/05/2022] [Indexed: 12/31/2022] Open
Abstract
Influenza A virus (IAV) is the most widespread pathogen causing human respiratory infections. Although polymerase chain reaction (PCR)-based methods are currently the mostcommonly used tools for IAV detection, PCR is not ideal for point-of-care testing. In thisstudy, we aimed to develop a more rapid and sensitive method than PCR-based tools todetect IAV using loop-mediated isothermal amplification (LAMP) technology. We designedreverse-transcriptional (RT)-LAMP primers targeting the hemagglutinin gene. RNAs fromreference H1N1 and H3N2 showed specific RT-LAMP signals with the designed primers.We optimized the reaction conditions and developed universal reaction conditions for bothLAMP assays. Under these conditions, the detection limit was 50 copies for both RT-LAMPassays. There was no non-specific signal to 19 non-IAV respiratory viruses, such as influenza B virus, coronaviruses, and respiratory syncytial viruses. Regarding the reaction time, apositive signal was detected within 25 min after starting the reaction. In conclusion, ourRT-LAMP assay has high sensitivity and specificity for the detection of the H1 and H3 subtypes, making it suitable for point-of-care IAV testing.
Collapse
Affiliation(s)
- Ji-Soo Kang
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | - Yeun-Jun Chung
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
9
|
Chen D, Bryden WA, Fenselau C, McLoughlin M, Haddaway CR, Devin AP, Caton ER, Bradrick SS, Miller JM, Tacheny EA, Lemmon MM, Bogan J. MALDI-TOF Mass Spectrometric Detection of SARS-CoV-2 Using Cellulose Sulfate Ester Enrichment and Hot Acid Treatment. J Proteome Res 2022; 21:2055-2062. [PMID: 35787094 PMCID: PMC9305670 DOI: 10.1021/acs.jproteome.2c00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here we report a novel strategy for the rapid detection of SARS-CoV-2 based on an enrichment approach exploiting the affinity between the virus and cellulose sulfate ester functional groups, hot acid hydrolysis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Virus samples were enriched using cellulose sulfate ester microcolumns. Virus peptides were prepared using the hot acid aspartate-selective hydrolysis and characterized by MALDI-TOF MS. Collected spectra were processed with a peptide fingerprint algorithm, and searching parameters were optimized for the detection of SARS-CoV-2. These peptides provide high sequence coverage for nucleocapsid (N protein) and allow confident identification of SARS-CoV-2. Peptide markers contributing to the detection were rigorously identified using bottom-up proteomics. The approach demonstrated in this study holds the potential for developing a rapid assay for COVID-19 diagnosis and detecting virus variants from a variety of sources, such as sewage and nasal swabs.
Collapse
Affiliation(s)
- Dapeng Chen
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | | | - Catherine Fenselau
- Department of Chemistry and Biochemistry,
University of Maryland, College Park, Maryland 20742,
United States
| | | | | | - Alese P. Devin
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | - Emily R. Caton
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | | | - Joy M. Miller
- MRIGlobal, Kansas City,
Missouri 64110, United States
| | | | | | - Joseph Bogan
- MRIGlobal, Gaithersburg,
Maryland 20878, United States
| |
Collapse
|
10
|
Parvu V, Gary DS, Mann J, Lin YC, Mills D, Cooper L, Andrews JC, Manabe YC, Pekosz A, Cooper CK. Factors that Influence the Reported Sensitivity of Rapid Antigen Testing for SARS-CoV-2. Front Microbiol 2021; 12:714242. [PMID: 34675892 PMCID: PMC8524138 DOI: 10.3389/fmicb.2021.714242] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Tests that detect the presence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigen in clinical specimens from the upper respiratory tract can provide a rapid means of coronavirus disease 2019 (COVID-19) diagnosis and help identify individuals who may be infectious and should isolate to prevent SARS-CoV-2 transmission. This systematic review assesses the diagnostic accuracy of SARS-CoV-2 antigen detection in COVID-19 symptomatic and asymptomatic individuals compared to quantitative reverse transcription polymerase chain reaction (RT-qPCR) and summarizes antigen test sensitivity using meta-regression. In total, 83 studies were included that compared SARS-CoV-2 rapid antigen-based lateral flow testing (RALFT) to RT-qPCR for SARS-CoV-2. Generally, the quality of the evaluated studies was inconsistent; nevertheless, the overall sensitivity for RALFT was determined to be 75.0% (95% confidence interval: 71.0-78.0). Additionally, RALFT sensitivity was found to be higher for symptomatic vs. asymptomatic individuals and was higher for a symptomatic population within 7 days from symptom onset compared to a population with extended days of symptoms. Viral load was found to be the most important factor for determining SARS-CoV-2 antigen test sensitivity. Other design factors, such as specimen storage and anatomical collection type, also affect the performance of RALFT. RALFT and RT-qPCR testing both achieve high sensitivity when compared to SARS-CoV-2 viral culture.
Collapse
Affiliation(s)
- Valentin Parvu
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Devin S. Gary
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Joseph Mann
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Yu-Chih Lin
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Dorsey Mills
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Lauren Cooper
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Jeffrey C. Andrews
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Yukari C. Manabe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Charles K. Cooper
- Becton, Dickinson and Company, BD Life Sciences–Integrated Diagnostic Solutions, Sparks, MD, United States
| |
Collapse
|
11
|
Wiriyachaiporn N, Sirikaew S, Bamrungsap S, Limcharoen T, Polkankosit P, Roeksrungruang P, Ponlamuangdee K. A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1687-1694. [PMID: 33861235 DOI: 10.1039/d0ay01988g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening as a model target molecule was successfully developed. In this work, Cy5-loaded silica nanoparticles were directly conjugated to monoclonal antibodies, specific to the influenza B nucleoprotein, via a direct physisorption method and used as detector probes. Using this approach, the signal response to the detection was further determined using a fluorescent signal intensity measurement method via a portable reader, in combination with fluorescence imaging analysis. The degree to which the fluorescence signal response is detected is proportional to the amount of the target virus protein present in the system, reflected by the accumulation of the formed particle-antibody conjugates within the test system. Under optimized conditions, the system is capable of detecting the influenza B virus protein at a level of 0.55 μg per test within 30 min, using small sample volumes as low as 100 μL (R2 = 0.9544). In addition to its simplicity, further application of the system in detecting the influenza B virus protein was demonstrated using the viral transport media as specimen matrices. It was also shown that the system can perform the detection without cross-reactivity to other closely related respiratory viruses.
Collapse
Affiliation(s)
- Natpapas Wiriyachaiporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | | | | | | | | | | | | |
Collapse
|
12
|
Bakre AA, Jones LP, Bennett HK, Bobbitt DE, Tripp RA. Detection of swine influenza virus in nasal specimens by reverse transcription-loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 2021; 288:114015. [PMID: 33271254 PMCID: PMC7799534 DOI: 10.1016/j.jviromet.2020.114015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Detection of swine influenza virus (SIV) in commercial swine herds is important for understanding the infection status of the herd and for controlling disease. Current molecular diagnostics require that specimens be submitted to a laboratory which provides results to the growers after some time which is generally too late to intercede in disease control. Moreover, current diagnostic assays are time-consuming, typically costly, and require skilled technical expertise. We have instituted a reverse transcription loop-mediated isothermal amplification (RT-LAMP) diagnostic assay based on conserved regions of the SIV matrix (M) gene and H1N1 hemagglutinin (HA) sequences. The RT-LAMP assay was optimized to use both colorimetric and fluorescent endpoints and was validated. The M and HA RT-LAMP assays have a limit-of-detection (LOD) sensitive to 11 and 8-log-fold dilutions of viral RNA, respectively, and are capable of discriminating between H1 and H3 strains of SIV. Additionally, the RT-LAMP assay was optimized for direct amplification of SIV from field samples without the need for viral RNA isolation. The direct RT-LAMP detected >86 % of qRT-PCR validated SIV samples, and >66 % of negative samples when spiked with viral RNA or SIV. The diagnostic RT-LAMP assay is a rapid, sensitive, specific, and cost-effective method for the detection of SIV in herds substantially aiding diagnosis and surveillance.
Collapse
Affiliation(s)
- Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Les P Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Hailey K Bennett
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Davis E Bobbitt
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.
| |
Collapse
|
13
|
Su X, Sutarlie L, Loh XJ. Sensors and Analytical Technologies for Air Quality: Particulate Matters and Bioaerosols. Chem Asian J 2020; 15:4241-4255. [DOI: 10.1002/asia.202001051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/31/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaodi Su
- Institute of Materials Research and Engineering Agency for Science, Technology and Research 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
- Department of Chemistry National University of Singapore, Block S8, Level 3, 3 Singapore Science Drive 3 Singapore
| | - Laura Sutarlie
- Institute of Materials Research and Engineering Agency for Science, Technology and Research 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering Agency for Science, Technology and Research 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| |
Collapse
|
14
|
Van Poelvoorde LA, Saelens X, Thomas I, Roosens NH. Next-Generation Sequencing: An Eye-Opener for the Surveillance of Antiviral Resistance in Influenza. Trends Biotechnol 2020; 38:360-367. [DOI: 10.1016/j.tibtech.2019.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
|
15
|
Mirzaei SG, Shoushtari A, Nouri A. Development and Evaluation of Real-Time Reverse Transcription Polymerase Chain Reaction Test for Quantitative and Qualitative Recognition of H5 Subtype of Avian Influenza Viruses. ARCHIVES OF RAZI INSTITUTE 2020; 75:17-22. [PMID: 32291998 DOI: 10.22092/ari.2019.120821.1201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 01/17/2019] [Indexed: 12/16/2022]
Abstract
Avian influenza viruses (AIV) affect a wide range of birds and mammals, cause severe economic damage to the poultry industry, and pose a serious threat to humans. Highly pathogenic avian influenza viruses (HPAI) H5N1 were first identified in Southeast Asia in 1996 and spread to four continents over the following years. The viruses have caused high mortality in chickens and various bird species and deadly infections in humans. Multiple conventional methods have been so far introduced for the detection and identification of avian influenza viruses. Traditional virus isolation methods are gold standard protocol in AI detection; nonetheless, virus isolation in embryonating chicken eggs (ECE) is not a rapid method for the detection of influenza viruses since it is time-consuming and labor-intensive. Furthermore, the isolation of highly pathogenic viruses, such as H5, needs BSL3 laboratories. Real-Time Reverse Transcription-Polymerase Chain Reaction (RRT-PCR) is a sensitive and specific method for the detection of influenza viruses. The application of these nucleic acid-based techniques has increased our ability to identify and perform influenza virus care programs, especially in surveillance programs. The current study aimed to detect H5 subtype of avian influenza (AI) virus using fast, specific, and sensitive TaqMan RRT-PCR. Notably, single step RRT-PCR was used to prevent possible laboratory contamination. The specificity of this test was evaluated using nucleic acid extracted from several poultry pathogenic microorganisms and negative clinical specimens from AI-uninfected birds. The sensitivity analysis of the RRT-PCR assay was performed using in vitro-transcribed RNA copy and 10-fold serial dilution of standard AI virus with specific titer. The results indicated the high sensitivity of this method and the lowest detectable dilution of this method based on RNA copies and 1:10 serial dilutions of the standard virus was 10 1.9 EID50 /100.
Collapse
Affiliation(s)
- S G Mirzaei
- Department of Poultry Diseases Research and Diagnosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.,Department of Poultry Diseases Research and Diagnosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Shoushtari
- Department of Poultry Diseases Research and Diagnosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Nouri
- Department of Poultry Diseases Research and Diagnosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
16
|
Al-Badry M, Al-Mubarak F. Molecular surveillance of avian influenza A viruses in Basrah and Wasit. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.15547/bjvm.2019-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to detect influenza A virus in broiler chickens and wild ducks in different geographical regions of Basrah and Wasit provinces, Iraq. This study was authenticated by analysing the viral genome and designing a set of universal primers for the detection of all influenza A subtypes in a single enzymatic reaction through the amplification of a highly conserved region of viral M gene. A total of 157 and 155 oropharyngeal and cloacal swabs from broiler chickens and wild ducks, respectively, were analysed. The study shows that influenza A viruses were prevalent in these birds in all study regions with a significantly higher percentage in wild ducks compared to broiler chickens. The results showed that 92/157 samples (54/75 wild ducks and 38/82 broiler chickens) and 96/155 samples (38/75 wild ducks and 58/80 broiler chickens) in Basrah and Wasit, respectively, were positive for the viral M gene. In addition, there was no significant difference in virus prevalence between Basrah and Wasit provinces.
Collapse
|
17
|
Lee MH, Song KY, Hwang HJ, Kim JH, Hwang I. Development of fast and sensitive protocols for the detection of viral pathogens using a small portable convection PCR platform. Mol Biol Rep 2019; 46:5073-5077. [PMID: 31313130 DOI: 10.1007/s11033-019-04961-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 11/26/2022]
Abstract
One of the most crucial steps for preventing viral pandemics is the early detection of the causative virus on site. Various molecular and immunological approaches have been developed for virus detection. In this study, we investigated the utility of the recently introduced convection polymerase chain reaction (cPCR) platform for the rapid and sensitive detection of various animal viruses in the field, including the foot-and-mouth disease virus (FMDV) and avian influenza viruses (AIVs). Primer sets were designed to simultaneously detect two highly conserved regions of the FMDV, including the 5' untranslated region (5'-UTR) and 3D gene, and to specifically amplify the NP and hemagglutinin (HA) genes of H5 and H9 subtypes of AIVs. The portable cPCR system was able to amplify from as low as 1 to 10 copies of viral cDNAs in the singleplex mode and 10 to 100 copies of viral cDNAs in the duplex mode within 21 min. Thus, our data suggest that the cPCR protocols developed in this study are highly sensitive and enable quick detection of animal viruses in biological samples.
Collapse
Affiliation(s)
- Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | - Kyung-Young Song
- R&D Center, Ahram Biosystems Inc, Seoul, 133-120, Republic of Korea
| | - Hyun Jin Hwang
- R&D Center, Ahram Biosystems Inc, Seoul, 133-120, Republic of Korea
| | - Jeong Hee Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, Graduate School, Kyung Hee University, Seoul, 130-701, Republic of Korea.
- Department of Life and Nanopharmaceutical Sciences, College of Dentistry, Graduate School, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.
| |
Collapse
|
18
|
McClelland A, Guta A, Gagnon M. The rise of molecular HIV surveillance: implications on consent and criminalization. CRITICAL PUBLIC HEALTH 2019. [DOI: 10.1080/09581596.2019.1582755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Alexander McClelland
- Centre for Interdisciplinary Studies in Society & Culture, Concordia University, Montreal, Quebec, Canada
| | - Adrian Guta
- School of Social Work, University of Windsor, Windsor, Canada
| | - Marilou Gagnon
- University of Victoria, School of Nursing, Victoria, British Columbia, Canada
| |
Collapse
|
19
|
Prasert K, Patumanond J, Praphasiri P, Siriluk S, Ditsungnoen D, Chittaganpich M, Dawood FS, Mott JA, Lindblade KA. Effectiveness of trivalent inactivated influenza vaccine among community-dwelling older adults in Thailand: A two-year prospective cohort study. Vaccine 2019; 37:783-791. [DOI: 10.1016/j.vaccine.2018.12.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 11/26/2022]
|
20
|
Choi J, Jeun M, Yuk SS, Park S, Choi J, Lee D, Shin H, Kim H, Cho IJ, Kim SK, Lee S, Song CS, Lee KH. Fully Packaged Portable Thin Film Biosensor for the Direct Detection of Highly Pathogenic Viruses from On-Site Samples. ACS NANO 2019; 13:812-820. [PMID: 30596428 DOI: 10.1021/acsnano.8b08298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The thin film transistor (TFT) is a promising biosensor system with great sensitivity, label-free detection, and a quick response time. However, even though the TFT sensor has such advantageous characteristics, the disadvantages hamper the TFT sensor's application in the clinical field. The TFT is susceptible to light, noise, vibration, and limited usage, and this significantly limits its on-site potential as a practical biosensor. Herein, we developed a fully packaged, portable TFT electrochemical biosensor into a chip form, providing both portability through minimizing the laboratory equipment size and multiple safe usages by protecting the semiconductor sensor. Additionally, a safe environment that serves as a miniature probe station minimizes the previously mentioned disadvantages, while providing the means to properly link the TFT biosensor with a portable analyzer. The biosensor was taken into a biosafety level 3 (BSL-3) laboratory setting to analyze highly pathogenic avian influenza virus (HPAIV) samples. This virus quickly accumulates within a host, and therefore, early stage detection is critical to deterring the further spread of the deadly disease to other areas. However, current on-site methods have poor limits of detection (105-106 EID50/mL), and because the virus has low concentration in its early stages, it cannot be detected easily. We have compared the sample measurements from our device with virus concentration data obtained from a RT-PCR (virus range: 100-104 EID50/mL) and have identified an increasing voltage signal which corresponds to increasing virus concentration.
Collapse
Affiliation(s)
- Jaewon Choi
- Center for Biomaterials , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology , KIST School - Korea University of Science and Technology (UST) , Seoul 02792 , Republic of Korea
| | - Minhong Jeun
- Center for Biomaterials , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Seong-Su Yuk
- Department of Veterinary Medicine , Konkuk University , Seoul 05029 , Republic of Korea
| | - Sungwook Park
- Center for Biomaterials , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology , KIST School - Korea University of Science and Technology (UST) , Seoul 02792 , Republic of Korea
| | - Jaebin Choi
- Sensor System Research Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Donggeun Lee
- Sensor System Research Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Hyogeun Shin
- Division of Bio-Medical Science & Technology , KIST School - Korea University of Science and Technology (UST) , Seoul 02792 , Republic of Korea
- Center for BioMicrosystems , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Hojun Kim
- Center for Biomaterials , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Il-Joo Cho
- Division of Bio-Medical Science & Technology , KIST School - Korea University of Science and Technology (UST) , Seoul 02792 , Republic of Korea
- Center for BioMicrosystems , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Sang Kyung Kim
- Division of Bio-Medical Science & Technology , KIST School - Korea University of Science and Technology (UST) , Seoul 02792 , Republic of Korea
- Center for BioMicrosystems , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Seok Lee
- Sensor System Research Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Chang Seon Song
- Department of Veterinary Medicine , Konkuk University , Seoul 05029 , Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology , KIST School - Korea University of Science and Technology (UST) , Seoul 02792 , Republic of Korea
| |
Collapse
|
21
|
Zoonotic Influenza and Human Health-Part 2: Clinical Features, Diagnosis, Treatment, and Prevention Strategies. Curr Infect Dis Rep 2018; 20:38. [PMID: 30069787 PMCID: PMC7102074 DOI: 10.1007/s11908-018-0643-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose of Review Zoonotic influenza viruses are those influenza viruses that cross the animal-human barrier and can cause disease in humans, manifesting from minor respiratory illnesses to multiorgan dysfunction. The increasing incidence of infections caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. In this second part of a two-part review, we discuss the clinical features, diagnostic modalities, and treatment of zoonotic influenza, and provide an overview of prevention strategies. Recent Findings Illnesses caused by novel reassortant avian influenza viruses continue to be detected and described; most recently, a human case of avian influenza A(H7N4) has been described from China. We continue to witness increasing rates of A(H7N9) infections, with the latest (fifth) wave, from late 2016 to 2017, being the largest to date. The case fatality rate for A(H7N9) and A(H5N1) infections among humans is much higher than that of seasonal influenza infections. Since the emergence of the A(H1N1) 2009 pandemic, and subsequently A(H7N9), testing and surveillance for novel influenzas have become more effective. Various newer treatment options, including peramivir, favipiravir (T-705), and DAS181, and human or murine monoclonal antibodies have been evaluated in vitro and in animal models. Summary Armed with robust diagnostic modalities, antiviral medications, vaccines, and advanced surveillance systems, we are today better prepared to face a new influenza pandemic and to limit the burden of zoonotic influenza than ever before. Sustained efforts and robust research are necessary to efficiently deal with the highly mutagenic zoonotic influenza viruses.
Collapse
|
22
|
PK/PD-based adaptive tailoring of oseltamivir doses to treat within-host influenza viral infections. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 139:31-42. [PMID: 30031022 DOI: 10.1016/j.pbiomolbio.2018.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
Abstract
Influenza A virus (IAV) is a latent global threat to human health. In view of the risk of pandemics, prophylactic and curative treatments are essential. Oseltamivir is a neuraminidase inhibitor efficiently supporting recovery from influenza infections. Current common clinical practice is a constant drug dose (75 or 150 mg) administered at regular time intervals twice a day. We aim to use quantitative systems pharmacology to propose an efficient adaptive drug scheduling. We combined the mathematical model for IAV infections validated by murine data, which captures the viral dynamics and the dynamics of the immune host response, with a pharmacokinetic (PK)/pharmacodynamic (PD) model of oseltamivir. Next, we applied an adaptive impulsive feedback control method to systematically calculate the adaptive dose of oseltamivir in dependence on the viral load and the number of immune effectors at the time of drug administration. Our in silico results revealed that the treatment with adaptive control-based drug scheduling is able to either increase the drug virological efficacy or reduce the drug dose while keeping the same virological efficacy. Thus, adaptive adjustment of the drug dose would reduce not only the potential side effects but also the amount of stored oseltamivir required for the prevention of outbreaks.
Collapse
|
23
|
Laris González A, Villa Guillén M, López Martínez B, Gamiño Arroyo AE, Moreno Espinosa S, Jiménez Juárez RN, Sánchez Huerta JL, de la Rosa Zamboni D. Influenza-like illness in healthcare personnel at a paediatric referral hospital: Clinical picture and impact of the disease. Influenza Other Respir Viruses 2018; 12:475-481. [PMID: 29505162 PMCID: PMC6005608 DOI: 10.1111/irv.12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Healthcare personnel (HP) are frequently exposed to influenza and can be a source of transmission to patients and other workers, resulting in high-cost outbreaks for healthcare institutions. OBJECTIVES To analyse the presentation of HP with influenza-like illness (ILI) and the differences between individuals with influenza confirmed by polymerase chain reaction (PCR) and those with a negative test. The secondary objective was to evaluate the duration of symptomatology and work absenteeism as well as the vaccination rate of HP at a paediatric referral hospital. METHODS A cross-sectional, descriptive study was conducted at a paediatric referral hospital. Clinical and epidemiological data on HP with ILI were collected between January and April 2016. Nasopharyngeal swab for influenza PCR was obtained from one in every three workers with ILI. Telephone follow-up was conducted to document duration of symptoms, complications and absenteeism. RESULTS A total of 164 ILI episodes were evaluated in 162 HP. A swab was obtained in 59 cases, and influenza was detected in 30 cases. The clinical picture of HP with confirmed influenza was similar to that of HP with a negative PCR. Arthralgia was more common in those with influenza (90% vs 58%), with a tendency towards statistical significance. No HP required hospitalization, and 78.5% were absent from work at least 1 day. CONCLUSIONS Influenza causes significant morbidity and absenteeism among HP. Influenza infection was confirmed in only half of HP with an ILI on whom a PCR was performed, suggesting that other respiratory viruses can cause a similar pattern.
Collapse
|
24
|
Sharma V, Chaudhry D, Kaushik S. Evaluation of clinical applicability of reverse transcription-loop-mediated isothermal amplification assay for detection and subtyping of Influenza A viruses. J Virol Methods 2018; 253:18-25. [PMID: 29253497 PMCID: PMC7113880 DOI: 10.1016/j.jviromet.2017.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Influenza A viruses (IAVs) have always remain a serious concern for the global economy and public health. A rapid, specific and sensitive detection method is always needed to control the influenza in its early stages by timely intervention of therapy and early clinical management. OBJECTIVES To develop RT-LAMP assays for detection of influenza A viruses, their further subtyping into seasonal (H1N1, H3N2) and novel pandemic H1N1 viruses and to evaluate clinical applicability of optimized RT-LAMP assays on patients' samples. STUDY DESIGN In this study, we optimized RT-LAMP assay to detect IAVs by using primers against matrix gene and subtyping of IAVs was done by using primers against hemagglutinin gene. Optimized RT-LAMP assays were applied on clinical samples from patients having influenza like illness and results were compared with conventional one-step RT-PCR and real-time RT-PCR. RESULTS RT-LAMP assays successfully detected and differentiated IAVs into H1N1, H3N2 and pdm09/H1N1 subtypes. One hundred and sixty seven clinical swab samples from influenza suspected patients were taken and tested with RT-LAMP assay, detecting 30 (17.9%) samples positive for Influenza A virus. Out of 30 samples, 21, 7 and 2 were found positive for pdm09/H1N1, H3N2 and seasonal H1 respectively. Conventional one-step RT-PCR detected a total of 27 (16.2%) samples for influenza A and further subtyping showed 20 and 7 samples positive for pdm09/H1N1 and H3N2 virus respectively whereas none was found positive for seasonal H1N1. RT-LAMP assay demonstrated higher sensitivity (93.8%) than conventional RT-PCR (84.4%) for influenza A viruses detection in clinical samples. CONCLUSIONS RT-LAMP assay is rapid, sensitive, specific and cost effective method for detection of influenza A viruses than conventional one-step RT-PCR and it can serve as a good alternate for diagnosis and surveillance studies during influenza outbreaks in resource-limited setups of developing countries.
Collapse
Affiliation(s)
- Vikrant Sharma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Dhruva Chaudhry
- Pulmonary and Critical Care Medicine, Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India.
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
25
|
Impact of RNA Degradation on Viral Diagnosis: An Understated but Essential Step for the Successful Establishment of a Diagnosis Network. Vet Sci 2018; 5:vetsci5010019. [PMID: 29415432 PMCID: PMC5876574 DOI: 10.3390/vetsci5010019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
The current global conditions, which include intensive globalization, climate changes, and viral evolution among other factors, have led to an increased emergence of viruses and new viral diseases; RNA viruses are key drivers of this evolution. Laboratory networks that are linked to central reference laboratories are required to conduct both active and passive environmental surveillance of this complicated global viral environment. These tasks require a continuous exchange of strains or field samples between different diagnostic laboratories. The shipment of these samples on dry ice represents both a biological hazard and a general health risk. Moreover, the requirement to ship on dry ice could be hampered by high costs, particularly in underdeveloped countries or regions located far from each other. To solve these issues, the shipment of RNA isolated from viral suspensions or directly from field samples could be a useful way to share viral genetic material. However, extracted RNA stored in aqueous solutions, even at -70 °C, is highly prone to degradation. The current study evaluated different RNA storage conditions for safety and feasibility for future use in molecular diagnostics. The in vitro RNA-transcripts obtained from an inactivated highly pathogenic avian influenza (HPAI) H5N1 virus was used as a model. The role of secondary structures in the protection of the RNA was also explored. Of the conditions evaluated, the dry pellet matrix was best able to protect viral RNA under extreme storage conditions. This method is safe, cost-effective and assures the integrity of RNA samples for reliable molecular diagnosis. This study aligns with the globally significant "Global One Health" paradigm, especially with respect to the diagnosis of emerging diseases that require confirmation by reference laboratories.
Collapse
|
26
|
Ait-Aissa A, Derrar F, Hannoun D, Gradi EA, Scaravelli D, Bouslama Z. Surveillance for antiviral resistance among influenza viruses circulating in Algeria during five consecutive influenza seasons (2009-2014). J Med Virol 2018; 90:844-853. [PMID: 29315673 DOI: 10.1002/jmv.25029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023]
Abstract
Influenza season 2007/2008 was marked by a worldwide emergence of oseltamivir-resistant A(H1N1) viruses possessing a mutation in the neuraminidase gene causing His-to-Tyr substitution at amino acid position 275 (H275Y). These strains were isolated in Algeria where 30% of seasonal A(H1N1) viruses harbored the H275Y mutation. Emergence of resistant viruses to currently approved antiviral drug determined the need for antiviral susceptibility monitoring in Algeria especially that oseltamivir is currently used in hospitals of some provinces of the country for treatment of influenza in populations at risk. The aim of the present study is to investigate the sensitivity of circulating influenza viruses in Algeria to oseltamivir. We present 5-year local surveillance results from 2009/2010 influenza season to 2013/2014 influenza season. We tested the sensitivity to oseltamivir of 387 human influenza A and B viruses isolated in Algeria. Determination of IC50 values were performed using the fluorogenic MUNANA substrate. To detect the H275Y mutation in the neuraminidase of the A(H1N1) strains we performed a real-time RT-PCR allelic discrimination analysis. The obtained results showed that all influenza A(H1N1)pdm09, A(H3N2), and B viruses studied remained susceptible to oseltamivir. This is the first study on influenza antiviral susceptibility surveillance in Algeria. Obtained results allow establishing a baseline data for future studies on antiviral resistance emergence worldwide. Our report highlights the importance of a continued and active monitoring of circulating viruses in Algeria for strengthens collaboration within the Global Influenza Surveillance and Response System.
Collapse
Affiliation(s)
- Assia Ait-Aissa
- Department of Virology, National Influenza Center, Respiratory Viruses Unit, Institut Pasteur of Algeria, Algiers, Algeria.,Faculty of Sciences, Department of Biology, EcoSTAq Research Laboratory, University Badji Mokhtar, Annaba, Algeria
| | - Fawzi Derrar
- Department of Virology, National Influenza Center, Respiratory Viruses Unit, Institut Pasteur of Algeria, Algiers, Algeria
| | - Djouhar Hannoun
- National Institute of Public Health of Algeria, Algiers, Algeria
| | - El Alia Gradi
- Department of Virology, National Influenza Center, Respiratory Viruses Unit, Institut Pasteur of Algeria, Algiers, Algeria
| | - Dino Scaravelli
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Zihad Bouslama
- Faculty of Sciences, Department of Biology, EcoSTAq Research Laboratory, University Badji Mokhtar, Annaba, Algeria
| |
Collapse
|
27
|
Duh D, Blažič B. Single mutation in the matrix gene of seasonal influenza A viruses critically affects the performance of diagnostic molecular assay. J Virol Methods 2018; 251:43-45. [DOI: 10.1016/j.jviromet.2017.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
28
|
Eybpoosh S, Haghdoost AA, Mostafavi E, Bahrampour A, Azadmanesh K, Zolala F. Molecular epidemiology of infectious diseases. Electron Physician 2017; 9:5149-5158. [PMID: 28979755 PMCID: PMC5614305 DOI: 10.19082/5149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
Molecular epidemiology (ME) is a branch of epidemiology developed by merging molecular biology into epidemiological studies. In this paper, the authors try to discuss the ways that molecular epidemiology studies identify infectious diseases' causation and pathogenesis, and unravel infectious agents' sources, reservoirs, circulation pattern, transmission pattern, transmission probability, and transmission order. They bring real-world examples of research works in each area to make each study design more understandable. They also address some research areas and study design aspects that need further attention in future. They close with some thoughts about future directions in this field and emphasize on the need for training competent molecular epidemiology specialists that are capable of dealing with rapid advances in the field.
Collapse
Affiliation(s)
- Sana Eybpoosh
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Akbar Haghdoost
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Bahrampour
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Farzaneh Zolala
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
29
|
Enhancing the sensitivity of Dengue virus serotype detection by RT-PCR among infected children in India. J Virol Methods 2017; 244:46-54. [PMID: 28254680 DOI: 10.1016/j.jviromet.2017.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/19/2022]
Abstract
Dengue surveillance relies on reverse transcription-polymerase chain reaction (RT-PCR), for confirmation of dengue virus (DENV) serotypes. We compared efficacies of published and modified primer sets targeting envelope (Env) and capsid-premembrane (C-prM) genes for detection of circulating DENV serotypes in southern India. Acute samples from children with clinically-diagnosed dengue were used for RT-PCR testing. All samples were also subjected to dengue serology (NS1 antigen and anti-dengue-IgM/IgG rapid immunochromatographic assay). Nested RT-PCR was performed on viral RNA using three methods targeting 654bp C-prM, 511bp C-prM and 641bp Env regions, respectively. RT-PCR-positive samples were validated by population sequencing. Among 171 children with suspected dengue, 121 were dengue serology-positive and 50 were dengue serology-negative. Among 121 serology-positives, RT-PCR detected 91 (75.2%) by CprM654, 72 (59.5%) by CprM511, and 74 (61.1%) by Env641. Among 50 serology-negatives, 10 (20.0%) were detected by CprM654, 12 (24.0%) by CprM511, and 11 (22.0%) by Env641. Overall detection rate using three methods sequentially was 82.6% (100/121) among serology-positive and 40.0% (20/50) among serology-negative samples; 6.6% (8/120) had co-infection with multiple DENV serotypes. We conclude that detection of acute dengue was enhanced by a modified RT-PCR method targeting the 654bp C-prM region, and further improved by using all three methods sequentially.
Collapse
|
30
|
Wang C, Wang Q, Hu J, Sun H, Pu J, Liu J, Sun Y. A Multiplex RT-PCR Assay for Detection and Differentiation of Avian-Origin Canine H3N2, Equine-Origin H3N8, Human-Origin H3N2, and H1N1/2009 Canine Influenza Viruses. PLoS One 2017; 12:e0170374. [PMID: 28107507 PMCID: PMC5249048 DOI: 10.1371/journal.pone.0170374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Virological and serological surveys have documented that H1N1/2009, avian-origin canine H3N2 (cH3N2), seasonal human-origin H3N2 (hH3N2), and equine-origin H3N8 influenza viruses are consistently circulating in dogs. In the present study, a multiplex reverse-transcriptase polymerase chain reaction (mRT-PCR) assay was developed for simultaneous detection and differentiation of these influenza viruses. Four primer sets were designed to target the hemagglutinin genes of H1N1/2009, cH3N2, hH3N2, and H3N8 canine influenza viruses (CIVs). This mRT-PCR assay demonstrated high specificity and sensitivity for the four CIV subtypes. Additionally, mRT-PCR results obtained from 420 clinical samples were consistent with those obtained by the conventional virus isolation method. Our mRT-PCR assay is reliable for clinical diagnosis and rapid identification of CIVs.
Collapse
Affiliation(s)
- Chenxi Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qian Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junyi Hu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Epidemiology and Surveillance of Influenza Viruses in Uganda between 2008 and 2014. PLoS One 2016; 11:e0164861. [PMID: 27755572 PMCID: PMC5068740 DOI: 10.1371/journal.pone.0164861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/03/2016] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Influenza surveillance was conducted in Uganda from October 2008 to December 2014 to identify and understand the epidemiology of circulating influenza strains in out-patient clinic attendees with influenza-like illness and inform control strategies. METHODOLOGY Surveillance was conducted at five hospital-based sentinel sites. Nasopharyngeal and/or oropharyngeal samples, epidemiological and clinical data were collected from enrolled patients. Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to identify and subtype influenza strains. Data were double-entered into an Epi Info 3.5.3 database and exported to STATA 13.0 software for analysis. RESULTS Of the 6,628 patient samples tested, influenza virus infection was detected in 10.4% (n = 687/6,628) of the specimens. Several trends were observed: influenza circulates throughout the year with two peaks; the major one from September to November and a minor one from March to June. The predominant strains of influenza varied over the years: Seasonal Influenza A(H3) virus was predominant from 2008 to 2009 and from 2012 to 2014; Influenza A(H1N1)pdm01 was dominant in 2010; and Influenza B virus was dominant in 2011. The peaks generally coincided with times of higher humidity, lower temperature, and higher rainfall. CONCLUSION Influenza circulated throughout the year in Uganda with two major peaks of outbreaks with similar strains circulating elsewhere in the region. Data on the circulating strains of influenza and its patterns of occurrence provided critical insights to informing the design and timing of influenza vaccines for influenza prevention in tropical regions of sub-Saharan Africa.
Collapse
|
32
|
Matsubara T, Shibata R, Sato T. Binding of Hemagglutinin and Influenza Virus to a Peptide-Conjugated Lipid Membrane. Front Microbiol 2016; 7:468. [PMID: 27092124 PMCID: PMC4823272 DOI: 10.3389/fmicb.2016.00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/21/2016] [Indexed: 01/09/2023] Open
Abstract
Hemagglutinin (HA) plays an important role in the first step of influenza virus (IFV) infection because it initiates the binding of the virus to the sialylgalactose linkages of the receptors on the host cells. We herein demonstrate that a HA-binding peptide immobilized on a solid support is available to bind to HA and IFV. We previously obtained a HA-binding pentapeptide (Ala-Arg-Leu-Pro-Arg), which was identified by phage-display selection against HAs from random peptide libraries. This peptide binds to the receptor-binding site of HA by mimicking sialic acid. A peptide-conjugated lipid (pep-PE) was chemically synthesized from the peptide and a saturated phospholipid. A lipid bilayer composed of pep-PE and an unsaturated phospholipid (DOPC) was immobilized on a mica plate; and the interaction between HA and the pep-PE/DOPC membrane was investigated using atomic force microscopy. The binding of IFV to the pep-PE/DOPC membrane was detected by an enzyme-linked immunosorbent assay and real-time reverse transcription PCR. Our results indicate that peptide-conjugated lipids are a useful molecular device for the detection of HA and IFV.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University Yokohama, Japan
| | - Rabi Shibata
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University Yokohama, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University Yokohama, Japan
| |
Collapse
|
33
|
Abstract
Diagnostic tests are paramount in determining the etiology of viral infections. Direct diagnostic methods assay for the presence of the virus, while indirect methods test for effects of the virus. Cell culture is the process of growing cells or tissues in the laboratory. Cell lines can be infected with patient samples to allow viral replication within the cells; observable cytopathic effects can help to identify the identity of the virus. Infected cells can also be used for immunofluorescence assays, which use fluorescently labeled virus-specific antibodies to identify viruses in fixed cells or tissues. A variety of diagnostic immunoassays exist, including enzyme-linked immunosorbent assays/enzyme immunoassays, western blots, lateral flow immunoassays, and agglutination reactions. Assays that detect viral nucleic acids are based upon the principles of PCR or nucleic acid hybridization, are extremely sensitive, and are specific for a particular virus.
Collapse
|
34
|
Li H. Laboratory Test for Diagnosis of Influenza. RADIOLOGY OF INFLUENZA 2016. [PMCID: PMC7119988 DOI: 10.1007/978-94-024-0908-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Laboratory tests for diagnosis of influenza include 4 aspects of examinations, virus culture and isolation, serological test, immunoassay, and molecular biological examination.
Collapse
Affiliation(s)
- Hongjun Li
- Diagnostic Radiology Department, Beijing You An Hospital, Beijing, China
| |
Collapse
|
35
|
Iravathy Goud K, Matam K, Madasu AML, Vempati R, Daripalli S, Pullamula M, Narreddy S, Nutankalva L. Molecular diagnosis of H1N1 virus. APOLLO MEDICINE 2015. [DOI: 10.1016/j.apme.2015.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Wu H, Rao P, Jiang Y, Opriessnig T, Yang Z. A sensitive multiplex real-time PCR panel for rapid diagnosis of viruses associated with porcine respiratory and reproductive disorders. Mol Cell Probes 2014; 28:264-70. [DOI: 10.1016/j.mcp.2014.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/19/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
|
37
|
Whiley DM, Mackay IM, Nimmo GR, Sloots TP, Nissen MD. Enhancing influenza diagnostics to catch a shifting target. THE LANCET. INFECTIOUS DISEASES 2014; 14:923. [PMID: 25253407 DOI: 10.1016/s1473-3099(14)70916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- David M Whiley
- Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, The University of Queensland, Herston, Brisbane, Queensland 4029, Australia; Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Herston, Brisbane, Queensland 4029, Australia.
| | - Ian M Mackay
- Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, The University of Queensland, Herston, Brisbane, Queensland 4029, Australia; Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Herston, Brisbane, Queensland 4029, Australia
| | - Graeme R Nimmo
- Pathology Queensland Central Laboratory, Herston, Brisbane, Queensland, Australia; Griffith University School of Medicine, Southport, Queensland, Australia
| | - Theo P Sloots
- Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, The University of Queensland, Herston, Brisbane, Queensland 4029, Australia; Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Herston, Brisbane, Queensland 4029, Australia; Pathology Queensland Central Laboratory, Herston, Brisbane, Queensland, Australia
| | - Michael D Nissen
- Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, The University of Queensland, Herston, Brisbane, Queensland 4029, Australia; Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Herston, Brisbane, Queensland 4029, Australia; Pathology Queensland Central Laboratory, Herston, Brisbane, Queensland, Australia
| |
Collapse
|
38
|
Nunes B, Machado A, Guiomar R, Pechirra P, Conde P, Cristovão P, Falcão I. Estimates of 2012/13 influenza vaccine effectiveness using the case test-negative control design with different influenza negative control groups. Vaccine 2014; 32:4443-4449. [PMID: 24962756 DOI: 10.1016/j.vaccine.2014.06.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/22/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND In recent years several reports of influenza vaccine effectiveness (VE) have been made early for public health decision. The majority of these studies use the case test-negative control design (TND), which has been showed to provide, under certain conditions, unbiased estimates of influenza VE. Nevertheless, discussions have been taken on the best influenza negative control group to use. The present study aims to contribute to the knowledge on this field by comparing influenza VE estimates using three test-negative controls: all influenza negative, non-influenza respiratory virus and pan-negative. METHODS Incident ILI patients were prospectively selected and swabbed by a sample of general practitioners. Cases were ILI patients tested positive for influenza and controls ILI patients tested negative for influenza. The influenza negative control group was divided into non-influenza virus control group and pan-negative control group. Data were collected on vaccination status and confounding factors. Influenza VE was estimated as one minus the odds ratio of been vaccinated in cases versus controls adjusted for confounding effect by logistic regression. RESULTS Confounder adjusted influenza VE against medically attended laboratory-confirmed influenza was 68.4% (95% CI: 20.7-87.4%) using all influenza negatives controls, 82.1% (95% CI: 47.6-93.9%) using non-influenza controls and 49.4% (95% CI: -44.7% to 82.3%) using pan-negative controls. CONCLUSIONS Influenza VE estimates differed according to the influenza negative control group used. These results are in accordance with the expected under the hypothesis of differential viral interference between influenza vaccinated and unvaccinated individuals. Given the wide importance of TND study further studies should be conducted in order to clarify the observed differences.
Collapse
Affiliation(s)
- Baltazar Nunes
- Unidade de Investigação Epidemiológica, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal.
| | - Ausenda Machado
- Unidade de Investigação Epidemiológica, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Raquel Guiomar
- Laboratório Nacional de Referência para o Vírus da Gripe, Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Pedro Pechirra
- Laboratório Nacional de Referência para o Vírus da Gripe, Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Patrícia Conde
- Laboratório Nacional de Referência para o Vírus da Gripe, Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Paula Cristovão
- Laboratório Nacional de Referência para o Vírus da Gripe, Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Isabel Falcão
- Unidade de Apoio às Emergências em Saúde Pública, Direção Geral da Saúde, Lisboa, Portugal
| |
Collapse
|
39
|
Liu H, Gan Y, Wu Y, Weng H, Lei P, Shen G. Effects of different lysis buffers of nucleic acid purification kit on the stability of influenza virus RNA. Future Virol 2014. [DOI: 10.2217/fvl.14.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Aim: Under suboptimal storage and transport conditions, influenza virus (flu-v) RNA is prone to degradation and lysis buffers from RNA extraction kits have a potential to stabilize RNA. The aim of this study was to investigate the effects of different lysis buffers on the stability of flu-v RNA. Materials & methods: Aliquots of flu-v suspension were processed in parallel with two lysis buffers, and then underwent cyclic freeze–thaw or prolonged storage at 4, 22 and -20°C. The viral RNA was analyzed by using real-time and conventional RT-PCR amplifying, respectively, partial and full-length sequences of the flu-v matrix gene. Results: The viral RNA remained intact in samples treated with either of the two lysis buffers for at least 7 days at 4°C, 90 days at -20°C or following seven freeze–thaw cycles, but buffer A was superior to buffer B in protecting RNA from degradation at 4°C and 22°C, or following a further increase of freeze–thaw cycles. Conclusion: Lysis buffer preservatives provide viral RNA stabilization, whereas different lysis buffers vary in their ability to stabilize viral RNA, and thus their performance characteristics should be evaluated prior to their application in clinical practice.
Collapse
Affiliation(s)
- Hongbo Liu
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Virology Laboratory, Center for Disease Control and Prevention of Zhongshan, Zhongshan, China
| | - Yan Gan
- Neuroimmunology Laboratory, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Yanheng Wu
- Virology Laboratory, Center for Disease Control and Prevention of Zhongshan, Zhongshan, China
| | - Hui Weng
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ping Lei
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
40
|
Real-time RT-PCR assays for discriminating influenza B virus Yamagata and Victoria lineages. J Virol Methods 2014; 205:110-5. [PMID: 24797457 PMCID: PMC7172331 DOI: 10.1016/j.jviromet.2014.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
Abstract
We developed one step real-time RT-PCR assays to discriminate two lineages of influenza B viruses. The developed assays were evaluated using in vitro transcribed control RNA, clinical specimens, and clinical isolates. The assays were shown to have high sensitivity and high specificity. The results from the assays were consistent with those from a hemagglutination inhibition (HI) test, which is a standard method to define the lineage of influenza B virus. The developed assays will be useful for the diagnosis and surveillance of influenza B viruses.
Since the late 1980s, two genetically and antigenically distinct lineages of influenza B virus, namely, B/Victoria/2/87-like (B/Victoria) and B/Yamagata/16/88-like (B/Yamagata), have co-circulated. In this study, one-step real-time reverse transcription-PCR (rRT-PCR) assays were developed to differentiate B/Victoria and B/Yamagata lineages. The assays were evaluated using in vitro transcribed control RNA, isolated viruses, and other respiratory pathogenic viruses, and were shown to have high sensitivity, good linearity (R2 = 0.99), and high specificity. Using the developed rRT-PCR assays, 169 clinical specimens collected between 2010 and 2013 were then tested, resulting in the identification of 20 clinical specimens as positive for influenza B virus. Of these, 14 and 6 samples were identified as positive for the B/Victoria and B/Yamagata lineages, respectively, whereas 149 samples were negative for the influenza B virus. The rRT-PCR assays were also examined using 20 clinical isolates from 20 influenza B virus-positive specimens, revealing that there was no discrepancy between the results from the rRT-PCR assays and the hemagglutination inhibition (HI) test, with the exception that one clinical isolate with different antigenicity could not be discriminated by the HI test. The present results suggest that these highly sensitive and specific assays are useful not only for diagnosing influenza viruses but also for their surveillance.
Collapse
|
41
|
Kalthoff D, Bogs J, Harder T, Grund C, Pohlmann A, Beer M, Hoffmann B. Nucleic acid-based detection of influenza A virus subtypes H7 and N9 with a special emphasis on the avian H7N9 virus. ACTA ACUST UNITED AC 2014; 19. [PMID: 24650867 DOI: 10.2807/1560-7917.es2014.19.10.20731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 2013, a novel influenza A virus of subtype H7N9 was transmitted from avian sources to humans in China, causing severe illness and substantial mortality. Rapid and sensitive diagnostic approaches are the basis of epidemiological studies and of utmost importance for the detection of infected humans and animals. We developed various quantitative reverse transcriptase PCR (RT-qPCR) assays for (i) the generic detection of the haemagglutinin (HA) gene of H7 viruses or the neuraminidase (NA) gene of N9 viruses, and (ii) the specific detection of HA and NA of the novel avian H7N9/2013 virus. The sensitivity of the newly developed assays was compared with previously published PCRs, and the specificity of all RT-qPCRs was examined using a panel of 42 different H7 and 16 different N9 isolates. Furthermore, we analysed the performance of the RT-qPCR assays with dilution series and diagnostic samples obtained from animal experiments. Our study provides a comprehensive set of RT-qPCR assays for the reliable detection of the novel avian H7N9 virus, with high sensitivity and improved and tailored specificity values compared with published assays. Finally, we also present data about the robustness of a duplex assay for the simultaneous detection of HA and NA of the avian influenza H7N9/2013 virus.
Collapse
Affiliation(s)
- D Kalthoff
- Friedrich-Loeffler-Institute, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Prospective surveillance and molecular characterization of seasonal influenza in a university cohort in Singapore. PLoS One 2014; 9:e88345. [PMID: 24520371 PMCID: PMC3919768 DOI: 10.1371/journal.pone.0088345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/13/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Southeast Asia is believed to be a potential locus for the emergence of novel influenza strains, and therefore accurate sentinel surveillance in the region is critical. Limited information exists on sentinel surveillance of influenza-like illness (ILI) in young adults in Singapore in a University campus setting. The objective of the present study was to determine the proportion of ILI caused by influenza A and B viruses in a university cohort in Singapore. METHODOLOGY/PRINCIPAL FINDINGS We conducted a prospective surveillance study from May through October 2007, at the National University of Singapore (NUS). Basic demographic information and nasopharyngeal swabs were collected from students and staff with ILI. Reverse-transcriptase PCR (RT-PCR) and viral isolation were employed to detect influenza viruses. Sequencing of hemagglutinin (HA) and neuraminidase (NA) genes of some representative isolates was also performed. Overall proportions of influenza A and B virus infections were 47/266 (18%) and 9/266 (3%) respectively. The predominant subtype was A/H3N2 (55%) and the rest were A/H1N1 (45%). The overall sensitivity difference for detection of influenza A viruses using RT-PCR and viral isolation was 53%. Phylogenetic analyses of HA and NA gene sequences of Singapore strains showed identities higher than 98% within both the genes. The strains were more similar to strains included in the WHO vaccine recommendation for the following year (2008). Genetic markers of oseltamivir resistance were not detected in any of the sequenced Singapore isolates. CONCLUSIONS/SIGNIFICANCE HA and NA gene sequences of Singapore strains were similar to vaccine strains for the upcoming influenza season. No drug resistance was found. Sentinel surveillance on university campuses should make use of molecular methods to better detect emerging and re-emerging influenza viral threats.
Collapse
|
43
|
Gryadunov D, Dementieva E, Mikhailovich V, Nasedkina T, Rubina A, Savvateeva E, Fesenko E, Chudinov A, Zimenkov D, Kolchinsky A, Zasedatelev A. Gel-based microarrays in clinical diagnostics in Russia. Expert Rev Mol Diagn 2014; 11:839-53. [DOI: 10.1586/erm.11.73] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dmitry Gryadunov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Ekaterina Dementieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Vladimir Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Alla Rubina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Elena Savvateeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Eugeny Fesenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Alexander Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Danila Zimenkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | - Alexander Zasedatelev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| |
Collapse
|
44
|
Elizalde M, Agüero M, Buitrago D, Yuste M, Arias ML, Muñoz MJ, Lelli D, Pérez-Ramírez E, Moreno-Martin AM, Fernández-Pinero J. Rapid molecular haemagglutinin subtyping of avian influenza isolates by specific real-time RT-PCR tests. J Virol Methods 2013; 196:71-81. [PMID: 24184949 DOI: 10.1016/j.jviromet.2013.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
Abstract
Sixteen haemagglutinin (HA) subtypes of avian influenza viruses (AIV) have been described to date. Rapid subtype identification of any AIV is of major interest because of the possible serious consequences for the poultry industry and even public health. Molecular techniques currently allow immediate accurate subtype characterisation prior to virus isolation. In this study, a set of fourteen specific real-time RT-PCR methods were developed and evaluated for AIV HA subtyping (H1-H4, H6-H8, H10-H16), H5 and H9 being excluded on the basis of the current validity of the European Union (EU) recommended specific assays. Specific primers and probes sets for each HA-subtype were designed to hybridise the largest isolates range within each single subtype, considering the Eurasian lineage as a major target. The robustness and general application of the 14 HA-subtype methods were verified by the analysis of 110 AIV isolates belonging to all 16 HA-subtypes, performed in different laboratories. The developed real-time RT-PCR assays proved to be highly specific and revealed suitable sensitivity, allowing direct HA-subtyping of clinical material. In summary, this study provides for the first time a panel of molecular tests using specific hydrolysis probes for rapid and complete AIV HA-subtype identification.
Collapse
Affiliation(s)
- Maia Elizalde
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | | | | | - María Yuste
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - María Luisa Arias
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - María Jesús Muñoz
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Ana María Moreno-Martin
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| | | |
Collapse
|
45
|
Brydak LB, Wozniak-Kosek A, Nitsch-Osuch A. Influenza diagnosis and vaccination in Poland. Respir Physiol Neurobiol 2013; 187:88-93. [PMID: 23419518 PMCID: PMC7105210 DOI: 10.1016/j.resp.2013.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 11/19/2022]
Abstract
In Poland between several thousand and several million cases of influenza and suspected influenza cases are registered, depending on the epidemic season. A variety of methods are available for the detection of the influenza viruses responsible for respiratory infection starting with the isolation of the virus in chick embryos or in cell lines such as MDCK, VERO, etc., and finishing with a variety of modifications of the classical PCR molecular biology such as PCR multiplex and Real-Time. The most effective way to combat influenza is through vaccination. Regular vaccination is one of the few steps that may be taken to protect individuals, especially in high-risk groups, from the potential and serious complications of influenza. In many countries, including Poland, despite the recommendations, the rate of vaccination against influenza is still low in all age groups. In the epidemic season 2011/2012, the level of distribution of the seasonal influenza vaccines was 4.5% of the population.
Collapse
Affiliation(s)
- L B Brydak
- Department of Influenza Research, National Influenza Center, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | | | | |
Collapse
|
46
|
Abstract
In 2009, pandemic influenza A (H1N1) virus (H1N1 09) started to spread quickly in many countries. It causes respiratory infection with signs and symptoms of common infectious agents. Thus, clinicians sometimes may miss the H1N1 patient. Clinical laboratory tests are important for the diagnosis of the H1N1 infection. There are several tests available, however, the rapid test and direct fluorescence antigen test are unable to rule out the influenza virus infection and viral culture test is time consuming. Therefore, nucleic acid amplification techniques based on reverse transcription polymerase chain reaction assays are regarded as a specific diagnosis to confirm the influenza virus infection. Although the nucleic acid-based techniques are highly sensitive and specific, the high mutation rate of the influenza RNA-dependent RNA polymerase could limit the utility of the techniques. In addition, their use depends on the availability, cost and throughput of the diagnostic techniques. To overcome these drawbacks, evaluation and development of the techniques should be continued. This review provides an overview of various techniques for specific diagnosis of influenza infection.
Collapse
Affiliation(s)
- Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Barun Poudel
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
47
|
Stefańska I, Dzieciatkowski T, Brydak LB, Romanowska M. Application of three duplex real-time PCR assays for simultaneous detection of human seasonal and avian influenza viruses. Arch Virol 2013; 158:1743-53. [PMID: 23515874 PMCID: PMC7086839 DOI: 10.1007/s00705-013-1648-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/23/2013] [Indexed: 01/06/2023]
Abstract
This study was performed to develop real-time PCR (qPCR) for detection of human seasonal and avian influenza viruses in duplex format. First duplex qPCR detects haemagglutinin (HA) gene of influenza virus A(H1N1)pdm09 and HA gene of influenza virus A(H3N2), the second reaction detects neuraminidase (NA) gene of influenza virus A(H3N2) and NA gene of influenza virus A(H1N1)pdm09 and A(H5N1), and the third reaction detects HA gene of influenza A(H5N1) and nonstructural protein gene of influenza B virus. Primers and probes were designed using multiple alignments of target gene sequences of different reference strains. Assays were optimised for identical thermocycling conditions. Their specificity was confirmed by conventional PCR and monoplex qPCR with nucleic acids isolated from different influenza viruses and other respiratory pathogens. Plasmid constructs with a fragment of specific gene were used to assess sensitivity of the assay. The limit of detection ranged from 27 to 96 cDNA copies/reaction. Clinical specimens (n = 107) have been tested using new assays, immunofluorescence and monoplex qRT-PCR. It has been shown that developed assays have been capable of rapid and accurate simultaneous detection and differentiation of influenza viruses. They are more sensitive than immunofluorescence and at least as sensitive as monoplex qRT-PCR.
Collapse
Affiliation(s)
- Ilona Stefańska
- Department of Fermentation Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532, Warsaw, Poland.
| | | | | | | |
Collapse
|
48
|
Comparison of vRNA and cRNA based reporters for detection of influenza replication. Antiviral Res 2013; 98:76-84. [PMID: 23403209 DOI: 10.1016/j.antiviral.2013.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/04/2012] [Accepted: 01/06/2013] [Indexed: 11/24/2022]
Abstract
In this study, RNA polymerase I expressed replicons containing EGFP and luciferase reporter genes controlled by influenza vRNA or cRNA promoters were compared side-by-side in the ability to detect influenza RNA-dependent RNA polymerase activity as an indicator of influenza replication. Results showed the vRNA based Luc reporter was more sensitive to early detection of influenza virus at 6h post infection (p<0.05), and at 10-fold lower titer (MOI=0.001). Lower sensitivity of cRNA based Luc reporter constructs was due to its background expression, 2-fold lower expression, and around 4h delay in expression of luciferase. Despite these differences, both cRNA- and vRNA-based reporters demonstrated strong correlation between MOI and luciferase signal, and can be used for effective and early detection of influenza infection in vitro. Further, we demonstrated that these reporters can be used successfully to study the kinetics of antiviral drugs including siRNA. Our results also suggest that progeny vRNAs might participate not only in secondary transcription but also in secondary replication. The developed cRNA and vRNA reporters may help with further elucidation of the replication model of influenza A virus.
Collapse
|
49
|
Kowalczyk A, Markowska-Daniel I, Rasmussen TB. Development of a primer-probe energy transfer based real-time PCR for the detection of Swine influenza virus. J Virol Methods 2013; 187:228-33. [PMID: 22944078 DOI: 10.1016/j.jviromet.2012.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 11/24/2022]
Abstract
Swine influenza virus (SIV) causes a contagious and requiring official notification disease of pigs and humans. In this study, a real-time reverse transcription-polymerase chain reaction (RT-PCR) assay based on primer-probe energy transfer (PriProET) for the detection of SIV RNA was developed. The assay uses matrix gene-specific primers and an Oregon Green-labeled fluorescent probe and was employed for the detection of SIV in clinical samples to identify outbreaks and to monitor the prevalence of disease. The PriProET technology was used to obtain a probe melting profile for confirmation of the specific product amplification. The assay is specific for influenza virus with a sensitivity of detection limit of approximately 10 copies of RNA by PCR. Based on serial dilutions of SIV, the detection limit of the assay was approximately 0.003 TCID(50)/ml for H1N1 A/Swine/Poland/KPR9/2004 virus. The PriProET RT-PCR was suitable for the detection of SIV RNA isolated directly from clinical samples. The assay detected SIV RNA in pre-clinical swab samples as early as 2 days post-infection (dpi). The PriProET RT-PCR assay is an alternative to the existing diagnostic assays and could have enhanced applicability for clinical diagnosis.
Collapse
Affiliation(s)
- Andrzej Kowalczyk
- The National Veterinary Research Institute, 24-100 Puławy, 57 al Partyzantow, Poland.
| | | | | |
Collapse
|
50
|
Ocadiz-Delgado R, Albino-Sanchez ME, Garcia-Villa E, Aguilar-Gonzalez MG, Cabello C, Rosete D, Mejia F, Manjarrez-Zavala ME, Ondarza-Aguilera C, Rivera-Rosales RM, Gariglio P. In situ molecular identification of the influenza A (H1N1) 2009 Neuraminidase in patients with severe and fatal infections during a pandemic in Mexico City. BMC Infect Dis 2013; 13:20. [PMID: 23327529 PMCID: PMC3552683 DOI: 10.1186/1471-2334-13-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/10/2013] [Indexed: 12/22/2022] Open
Abstract
Background In April 2009, public health surveillance detected an increased number of influenza-like illnesses in Mexico City’s hospitals. The etiological agent was subsequently determined to be a spread of a worldwide novel influenza A (H1N1) triple reassortant. The purpose of the present study was to demonstrate that molecular detection of pandemic influenza A (H1N1) 2009 strains is possible in archival material such as paraffin-embedded lung samples. Methods In order to detect A (H1N1) virus sequences in archived biological samples, eight paraffin-embedded lung samples from patients who died of pneumonia and respiratory failure were tested for influenza A (H1N1) Neuraminidase (NA) RNA using in situ RT-PCR. Results We detected NA transcripts in 100% of the previously diagnosed A (H1N1)-positive samples as a cytoplasmic signal. No expression was detected by in situ RT-PCR in two Influenza-like Illness A (H1N1)-negative patients using standard protocols nor in a non-related cervical cell line. In situ relative transcription levels correlated with those obtained when in vitro RT-PCR assays were performed. Partial sequences of the NA gene from A (H1N1)-positive patients were obtained by the in situ RT-PCR-sequencing method. Sequence analysis showed 98% similarity with influenza viruses reported previously in other places. Conclusions We have successfully amplified specific influenza A (H1N1) NA sequences using stored clinical material; results suggest that this strategy could be useful when clinical RNA samples are quantity limited, or when poor quality is obtained. Here, we provide a very sensitive method that specifically detects the neuraminidase viral RNA in lung samples from patients who died from pneumonia caused by Influenza A (H1N1) outbreak in Mexico City.
Collapse
|