1
|
Kshirsagar A, Politza AJ, Guan W. Deep Learning Enabled Universal Multiplexed Fluorescence Detection for Point-of-Care Applications. ACS Sens 2024; 9:4017-4027. [PMID: 39010300 PMCID: PMC11421847 DOI: 10.1021/acssensors.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
There is a significant demand for multiplexed fluorescence sensing and detection across a range of applications. Yet, the development of portable and compact multiplexable systems remains a substantial challenge. This difficulty largely stems from the inherent need for spectrum separation, which typically requires sophisticated and expensive optical components. Here, we demonstrate a compact, lens-free, and cost-effective fluorescence sensing setup that incorporates machine learning for scalable multiplexed fluorescence detection. This method utilizes low-cost optical components and a pretrained machine learning (ML) model to enable multiplexed fluorescence sensing without optical adjustments. Its multiplexing capability can be easily scaled up through updates to the machine learning model without altering the hardware. We demonstrate its real-world application in a probe-based multiplexed Loop-Mediated Isothermal Amplification (LAMP) assay designed to simultaneously detect three common respiratory viruses within a single reaction. The effectiveness of this approach highlights the system's potential for point-of-care applications that require cost-effective and scalable solutions. The machine learning-enabled multiplexed fluorescence sensing demonstrated in this work would pave the way for widespread adoption in diverse settings, from clinical laboratories to field diagnostics.
Collapse
Affiliation(s)
- Aneesh Kshirsagar
- Department of Electrical Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Anthony J. Politza
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, The Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
2
|
Chang MM, Natoli ME, Wilkinson AF, Tubman VN, Airewele GE, Richards-Kortum RR. A multiplexed, allele-specific recombinase polymerase amplification assay with lateral flow readout for sickle cell disease detection. LAB ON A CHIP 2024; 24:4115-4127. [PMID: 39051493 PMCID: PMC11334763 DOI: 10.1039/d4lc00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Isothermal nucleic acid amplification tests have the potential to improve disease diagnosis at the point of care, but it remains challenging to develop multiplexed tests that can detect ≥3 targets or to detect point mutations that may cause disease. These capabilities are critical to enabling informed clinical decision-making for many applications, such as sickle cell disease (SCD). To address this, we describe the development of a multiplexed allele-specific recombinase polymerase amplification (RPA) assay with lateral flow readout. We first characterize the specificity of RPA using primer design strategies employed in PCR to achieve point mutation detection, and demonstrate the utility of these strategies in achieving selective isothermal amplification and detection of genomic DNA encoding for the healthy βA globin allele, or genomic DNA containing point mutations encoding for pathologic βS and βC globin alleles, which are responsible for most sickle cell disorders. We then optimize reaction conditions to achieve multiplexed amplification and identification of the three alleles in a single reaction. Finally, we perform a small pilot study with 20 extracted genomic DNA samples from SCD patients and healthy volunteers - of the 13 samples with valid results, the assay demonstrated 100% sensitivity and 100% specificity for detecting pathologic alleles, and an overall accuracy of 92.3% for genotype prediction. This multiplexed assay is rapid, minimally instrumented, and when combined with point-of-care sample preparation, could enable DNA-based diagnosis of SCD in low-resource settings. The strategies reported here could be applied to other challenges, such as detection of mutations that confer drug resistance.
Collapse
Affiliation(s)
- Megan M Chang
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Mary E Natoli
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | | | - Venée N Tubman
- Texas Children's Cancer and Hematology Centers, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Gladstone E Airewele
- Texas Children's Cancer and Hematology Centers, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
3
|
Kang Y, Wang J, Zhang W, Xu Y, Xu B, Qu G, Yu Y, Yan B, Su G. RNA extraction-free workflow integrated with a single-tube CRISPR-Cas-based colorimetric assay for rapid SARS-CoV-2 detection in different environmental matrices. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131487. [PMID: 37148798 PMCID: PMC10125216 DOI: 10.1016/j.jhazmat.2023.131487] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
On-site environmental surveillance of viruses is increasingly important for infection prevention and pandemic control. Herein, we report a facile single-tube colorimetric assay for detecting severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from environmental compartments. Using glycerol as the phase separation additive, reverse transcription recombinase polymerase amplification (RT-RPA), CRISPR-Cas system activation, G-quadruplex (G4) cleavage, and G4-based colorimetric reaction were performed in a single tube. To further simplify the test, viral RNA genomes used for the one-tube assay were obtained via acid/base treatment without further purification. The whole assay from sampling to visual readout was completed within 30 min at a constant temperature without the need for sophisticated instruments. Coupling the RT-RPA to CRISPR-Cas improved the reliability by avoiding false positive results. Non-labeled cost-effective G4-based colorimetric systems are highly sensitive to CRISPR-Cas cleavage events, and the proposed assay reached the limit of detection of 0.84 copies/µL. Moreover, environmental samples from contaminated surfaces and wastewater were analyzed using this facile colorimetric assay. Given its simplicity, sensitivity, specificity, and cost-effectiveness, our proposed colorimetric assay is highly promising for applications in on-site environmental surveillance of viruses.
Collapse
Affiliation(s)
- Yuliang Kang
- School of Pharmacy, Nantong University, Nantong 226001, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wensi Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
4
|
Roh YH, Lee CY, Lee S, Kim H, Ly A, Castro CM, Cheon J, Lee J, Lee H. CRISPR-Enhanced Hydrogel Microparticles for Multiplexed Detection of Nucleic Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206872. [PMID: 36725305 PMCID: PMC10074104 DOI: 10.1002/advs.202206872] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
CRISPR/Cas systems offer a powerful sensing mechanism to transduce sequence-specific information into amplified analytical signals. However, performing multiplexed CRISPR/Cas assays remains challenging and often requires complex approaches for multiplexed assays. Here, a hydrogel-based CRISPR/Cas12 system termed CLAMP (Cas-Loaded Annotated Micro-Particles) is described. The approach compartmentalizes the CRISPR/Cas reaction in spatially-encoded hydrogel microparticles (HMPs). Each HMP is identifiable by its face code and becomes fluorescent when target DNA is present. The assay is further streamlined by capturing HMPs inside a microfluidic device; the captured particles are then automatically recognized by a machine-learning algorithm. The CLAMP assay is fast, highly sensitive (attomolar detection limits with preamplification), and capable of multiplexing in a single-pot assay. As a proof-of-concept clinical application, CLAMP is applied to detect nucleic acid targets of human papillomavirus in cervical brushing samples.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
| | - Chang Yeol Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
| | - Sujin Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
| | - Hyunho Kim
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Amy Ly
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
- Department of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Jinwoo Cheon
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Jae‐Hyun Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
| | - Hakho Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| |
Collapse
|
5
|
Hu T, Ke X, Li W, Lin Y, Liang A, Ou Y, Chen C. CRISPR/Cas12a-Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204689. [PMID: 36442853 PMCID: PMC9839848 DOI: 10.1002/advs.202204689] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Most multiplex nucleic acids detection methods require numerous reagents and high-priced instruments. The emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas has been regarded as a promising point-of-care (POC) strategy for nucleic acids detection. However, how to achieve CRISPR/Cas multiplex biosensing remains a challenge. Here, an affordable means termed CRISPR-RDB (CRISPR-based reverse dot blot) for multiplex target detection in parallel, which possesses the advantages of high sensitivity and specificity, cost-effectiveness, instrument-free, ease to use, and visualization is reported. CRISPR-RDB integrates the trans-cleavage activity of CRISPR-Cas12a with a commercial RDB technique. It utilizes different Cas12a-crRNA complexes to separately identify multiple targets in one sample and converts targeted information into colorimetric signals on a piece of accessible nylon membrane that attaches corresponding specific-oligonucleotide probes. It has demonstrated that the versatility of CRISPR-RDB by constructing a four-channel system to simultaneously detect influenza A, influenza B, respiratory syncytial virus, and SARS-CoV-2. With a simple modification of crRNAs, the CRISPR-RDB can be modified to detect human papillomavirus, saving two-thirds of the time compared to a commercial PCR-RDB kit. Further, a user-friendly microchip system for convenient use, as well as a smartphone app for signal interpretation, is engineered. CRISPR-RDB represents a desirable option for multiplexed biosensing and on-site diagnosis.
Collapse
Affiliation(s)
- Tao Hu
- The Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiang310052China
| | - Xinxin Ke
- The Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiang310052China
| | - Wei Li
- The Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiang310052China
| | - Yu Lin
- International Peace Maternity & Child Health HospitalShanghai Municipal Key Clinical SpecialtyInstitute of Embryo‐Fetal Original Adult DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| | - Ajuan Liang
- Center of Reproductive MedicineShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghai201204China
| | - Yangjing Ou
- International Peace Maternity & Child Health HospitalShanghai Municipal Key Clinical SpecialtyInstitute of Embryo‐Fetal Original Adult DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| | - Chuanxia Chen
- School of Materials Science and EngineeringUniversity of JinanJinanShandong250022China
| |
Collapse
|
6
|
Jung S, Bong KW, Na W. Multiplex Assay for Rapid Detection and Analysis of Nucleic Acid Using Barcode Receptor Encoded Particle (BREP). Biomedicines 2022; 10:3246. [PMID: 36552002 PMCID: PMC9775236 DOI: 10.3390/biomedicines10123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Several multiplex nucleic acid assay platforms have been developed in response to the increasing importance of nucleic acid analysis, but these assays should be optimized as per the requirements of point-of-care for clinical diagnosis. To achieve rapid and accurate detection, involving a simple procedure, we propose a new concept in the field of nucleic acid multiplex assay platforms using hydrogel microparticles, called barcode receptor-encoded particles (BREPs). The BREP assay detects multiple targets in a single reaction with a single fluorophore by analyzing graphically encoded hydrogel particles. By introducing sets of artificially synthesized barcode receptor and barcode probes, the BREP assay is easily applicable in multiplexing any genetic target; sets of barcode receptors and barcode probes should be designed delicately for universal application. The performance of the BREP assay was successfully verified in a multiplex assay for the identification of different malaria species with high sensitivity, wide dynamic range, fast detection time, and multiplexibility.
Collapse
Affiliation(s)
- Semyung Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonhwi Na
- Engineering Research Center for Biofluid Biopsy, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Gu Z, Sun T, Guo Q, Wang Y, Ge Y, Gu H, Xu G, Xu H. Bead-Based Multiplexed Droplet Digital Polymerase Chain Reaction in a Single Tube Using Universal Sequences: An Ultrasensitive, Cross-Reaction-Free, and High-Throughput Strategy. ACS Sens 2022; 7:2759-2766. [PMID: 36041054 DOI: 10.1021/acssensors.2c01415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The multiplexed digital polymerase chain reaction (PCR) is widely used in molecular diagnosis owing to its high sensitivity and throughput for multiple target detection compared with the single-plexed digital PCR; however, current multiplexed digital PCR technologies lack efficient coding strategies that do not compromise the sensitivity and signal-to-noise (S/N) ratio. Hence, we propose a fluorescent-encoded bead-based multiplexed droplet digital PCR method for ultra-high coding capacity, along with the creative design of universal sequences (primer and fluorescent TaqMan probe) for ultra-sensitivity and high S/N ratios. First, pre-amplification is used to introduce universal primers and universal fluorescent TaqMan probes to reduce primer interference and background noise, as well as to enrich regions of interest in targeted analytes. Second, fluorescent-encoded beads (FEBs), coupled with the corresponding target sequence-specific capture probes through streptavidin-biotin conjugation, are used to partition amplicons via hybridization according to the Poisson distribution. Finally, FEBs mixed with digital PCR mixes are isolated into droplets generated via Sapphire chips (Naica Crystal Digital PCR system) to complete the digital PCR and result analysis. For proof of concept, we demonstrate that this method achieves high S/N ratios in a 5-plexed assay for influenza viruses and SARS-CoV-2 at concentrations below 10 copies and even close to a single molecule per reaction without cross-reaction, further verifying the possibility of clinical actual sample detection with 100% accuracy, which paves the way for the realization of digital PCR with ultrahigh coding capacity and ultra-sensitivity.
Collapse
Affiliation(s)
- Zhejia Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Tong Sun
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Qingsheng Guo
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yao Wang
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yunfei Ge
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Hongchen Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Gaolian Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
8
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
9
|
Abdou Mohamed MA, Kozlowski HN, Kim J, Zagorovsky K, Kantor M, Feld JJ, Mubareka S, Mazzulli T, Chan WCW. Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. ACS NANO 2021; 15:9379-9390. [PMID: 33970612 DOI: 10.1021/acsnano.0c09902] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens.
Collapse
Affiliation(s)
- Mohamed A Abdou Mohamed
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Hannah N Kozlowski
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Jisung Kim
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Kyryl Zagorovsky
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Melinda Kantor
- Department of Microbiology, Mount Sinai Hospital and University Health Network, Toronto, Ontario M5G 1X5, Canada
| | - Jordan J Feld
- Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Samira Mubareka
- Divisions of Microbiology and Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tony Mazzulli
- Department of Microbiology, Mount Sinai Hospital and University Health Network, Toronto, Ontario M5G 1X5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering. University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
10
|
Mitchev N, Singh R, Garrett N, Ramsuran V, Niehaus AJ, Mlisana KP. Performance of TaqMan probes for the detection of sexually transmitted infections in South African women. Afr J Lab Med 2021; 10:1124. [PMID: 33937002 PMCID: PMC8063552 DOI: 10.4102/ajlm.v10i1.1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/08/2021] [Indexed: 11/29/2022] Open
Abstract
Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis and Mycoplasma genitalium are the four main aetiologies of sexually transmitted infections responsible for vaginal discharge syndrome (VDS). Commercially available multiplex polymerase chain reaction (PCR) assays are expensive and generally not customisable. We evaluated a highly customisable singleplex PCR approach by testing it in parallel with the Anyplex™ II STI-7 detection assay in a cohort of South African women that presented with VDS between May 2016 and January 2017. Our multiple singleplex PCR strategy proved to be a simple, accurate, rapid, affordable and scalable option for diagnosing VDS.
Collapse
Affiliation(s)
- Nireshni Mitchev
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, National Health Laboratory Service, Durban, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.,Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Abraham J Niehaus
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, National Health Laboratory Service, Durban, South Africa
| | - Koleka P Mlisana
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.,Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.,Department of Academic Affairs, Research and Quality Assurance, National Health Laboratory Service, Durban, South Africa
| |
Collapse
|
11
|
Kim MY, Jung S, Kim J, Lee HJ, Jeong S, Sim SJ, Kim SK. Highly sensitive and multiplexed one-step RT-qPCR for profiling genes involved in the circadian rhythm using microparticles. Sci Rep 2021; 11:6463. [PMID: 33742035 PMCID: PMC7979730 DOI: 10.1038/s41598-021-85728-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022] Open
Abstract
Given the growing interest in molecular diagnosis, highly extensive and selective detection of genetic targets from a very limited amount of samples is in high demand. We demonstrated the highly sensitive and multiplexed one-step RT-qPCR platform for RNA analysis using microparticles as individual reactors. Those particles are equipped with a controlled release system of thermo-responsive materials, and are able to capture RNA targets inside. The particle-based assay can successfully quantify multiple target RNAs from only 200 pg of total RNA. The assay can also quantify target RNAs from a single cell with the aid of a pre-concentration process. We carried out 8-plex one-step RT-qPCR using tens of microparticles, which allowed extensive mRNA profiling. The circadian cycles were shown by the multiplex one-step RT-qPCR in human cell and human hair follicles. Reliable 24-plex one-step RT-qPCR was developed using a single operation in a PCR chip without any loss of performance (i.e., selectivity and sensitivity), even from a single hair. Many other disease-related transcripts can be monitored using this versatile platform. It can also be used non–invasively for samples obtained in clinics.
Collapse
Affiliation(s)
- Mi Yeon Kim
- Center for Molecular Recognition Research, Materials and Life Science Research Division, Korea Institute of Science and Technology(KIST), Seoul, KS013, Korea.,Department of Chemical Biological Engineering, Korea University, Seoul, KS013, Korea
| | - Seungwon Jung
- Center for Molecular Recognition Research, Materials and Life Science Research Division, Korea Institute of Science and Technology(KIST), Seoul, KS013, Korea
| | - Junsun Kim
- Center for Molecular Recognition Research, Materials and Life Science Research Division, Korea Institute of Science and Technology(KIST), Seoul, KS013, Korea.,Department of Chemical Biological Engineering, Korea University, Seoul, KS013, Korea
| | - Heon Jeong Lee
- Department of Psychiatry and Chronobiology Institute, Korea University College of Medicine, Seoul, KS013, Korea
| | - Seunghwa Jeong
- Department of Psychiatry and Chronobiology Institute, Korea University College of Medicine, Seoul, KS013, Korea
| | - Sang Jun Sim
- Department of Chemical Biological Engineering, Korea University, Seoul, KS013, Korea
| | - Sang Kyung Kim
- Center for Molecular Recognition Research, Materials and Life Science Research Division, Korea Institute of Science and Technology(KIST), Seoul, KS013, Korea.
| |
Collapse
|
12
|
Song F, Shen Y, Wei Y, Yang C, Ge X, Wang A, Li C, Wan Y, Li J. Botulinum toxin as an ultrasensitive reporter for bacterial and SARS-CoV-2 nucleic acid diagnostics. Biosens Bioelectron 2021; 176:112953. [PMID: 33418182 PMCID: PMC7836976 DOI: 10.1016/j.bios.2020.112953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023]
Abstract
The rapid identification of pathogenic microorganisms plays a crucial role in the timely diagnosis and treatment strategies during a global pandemic, especially in resource-limited area. Herein, we present a sensitive biosensor strategy depended on botulinum neurotoxin type A light chain (BoNT/A LC) activated complex assay (BACA). BoNT/A LC, the surrogate of BoNT/A which embodying the most potent biological poisons, could serve as an ultrasensitive signal reporter with high signal-to-noise ratio to avoid common strong background response, poor stability and low intensity of current biosensor methods. A nanoparticle hybridization system, involving specific binding probes that recognize pathogenic 16S rRNAs or SARS-CoV-2 gene site, was developed to measure double-stranded biotinylated target DNA containing a single-stranded overhang using Fluorescence Resonance Energy Transfer (FRET)-based assay and colorimetric method. The method is validated widely by six different bacteria strains and severe acute respiratory related coronavirus 2 (SARS-CoV-2) nucleic acid, demonstrating a single cell or 1 aM nucleic acid detecting sensitivity. This detection strategy offers a solution for general applications and has a great prospect to be a simple instrument-free colorimetric tool, especially when facing public health emergency.
Collapse
Affiliation(s)
- Fengge Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yuanyuan Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yangdao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Chunrong Yang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiaolin Ge
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Chaoyang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China; Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Hasham K, Ahmed N, Zeshan B. Circulating microRNAs in oncogenic viral infections: potential diagnostic biomarkers. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2251-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Kim YT, Moon J, Hong IS. Simultaneous Detection of Multiple Pathogenic Targets with Stem-Tagged Primer Sets. Chembiochem 2020; 21:1116-1120. [PMID: 31705704 DOI: 10.1002/cbic.201900668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 11/07/2022]
Abstract
Simultaneous multiple gene detection is indispensable for the detection of various genes in a small sample obtained by an invasive method. A typical detection method is probe-based fluorescence melting curve analysis by means of real-time PCR. It is very limited because, for each target, a probe sequence with at least a different Tm must be designed. To overcome this limitation, we developed a simultaneous multiple gene detection method based on a giant amplicon molecular beacon. PCR was performed by attaching stem sequences with different Tm values to each primer set, and the melting Tm was measured by hybridizing the stem sequences at both ends of the amplified amplicon; this generated well-separated Tm signals. The important point here is that the stem sequence that produces the Tm signal is an arbitrarily selectable sequence unrelated to the target gene. Because it is arbitrarily selectable, the desired Tm can be freely adjusted. As a result, we succeeded in the simultaneous detection of four samples with the use of only one fluorophore. Theoretically, a combination of five fluorophores could detect more than 20 multiple genes simultaneously.
Collapse
Affiliation(s)
- Yong-Tae Kim
- Department of Chemistry, College of Natural Science, Kongju National University, 56, Gongjudaehak-ro, Gongju-si, Chungnam, 32588, Republic of Korea
| | - Junhye Moon
- Research Institute, Sejong Medical Co. Ltd., 11, Sinchon 2-ro, Paju-si, Gyeonggi-do, 10880, Republic of Korea
| | - In Seok Hong
- Department of Chemistry, College of Natural Science, Kongju National University, 56, Gongjudaehak-ro, Gongju-si, Chungnam, 32588, Republic of Korea
| |
Collapse
|
15
|
Establishment of a Gene Detection System for Hotspot Mutations of Hearing Loss. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6828306. [PMID: 29707576 PMCID: PMC5863321 DOI: 10.1155/2018/6828306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/24/2018] [Indexed: 12/02/2022]
Abstract
Hearing loss is an etiologically heterogeneous trait with a high incidence in China. Though conventional newborn hearing screening program has been widely adopted, gene detection can significantly improve the means of early discovering genetic risk factors. Thus, simple and efficient methods with higher sensitivity and lower cost for detecting hotspot mutations of hearing loss are urgently requested. Here we established a mutation detection system based on multiple fluorescent probe technique, which can detect and genotype nine hotspot mutations of four prominent hearing loss-related genes in two reactions on a four-channel real-time PCR instrument, including GJB2 (rs750188782, rs80338943, rs1110333204, and rs80338939), GJB3 (rs74315319), SLC26A4 (rs111033313 and rs121908362), and mtDNA 12S rRNA (rs267606617 and rs267606619). This system is with high sensitivity that enables detecting as low as 10 DNA copies samples per reaction. A comparison study in 268 clinical samples showed that the detection system had 100% concordance to Sanger sequencing. Besides, blood and saliva samples can be directly detected without DNA extraction process, which greatly simplifies the manipulation. The new system with high sensitivity, accuracy, and specimen type compatibility can be expectedly a reliable tool in clinical application.
Collapse
|
16
|
Ravan H, Amandadi M, Esmaeili-Mahani S. DNA Domino-Based Nanoscale Logic Circuit: A Versatile Strategy for Ultrasensitive Multiplexed Analysis of Nucleic Acids. Anal Chem 2017; 89:6021-6028. [PMID: 28459545 DOI: 10.1021/acs.analchem.7b00607] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, the analytical application of logical nanodevices has attracted much attention for making accurate decisions on molecular diagnosis. Herein, a DNA domino-based nanoscale logic circuit has been constructed by integrating three logic gates (AND-AND-YES) for simultaneous analysis of multiple nucleic acid biomarkers. In the first AND gate, a chimeric target DNA comprising of four biomarkers was hybridized to three biomarker-specific oligonucleotides (TRs) via their 5'-end regions and to a capture probe-magnetic microparticle. After harvesting the complex, 3' overhang regions of the TRs were labeled with three distinct monolayer double-stranded (ds) DNA-gold nanoparticles (DNA-AuNPs). Upon gleaning the complex and addition of initiator oligonucleotide, a series of toehold-mediated strand displacement reactions, which are reminiscent of a domino chain, spontaneously occurred between the confined dsDNAs on the nanoparticles' surface in the second AND gate. The output of the second gate entered into the last gate and triggered an exponential hairpin assembly to form four-way junction nanostructures. The resulting nanostructures bear split parts of DNAzyme at each end of the four arms which, in the presence of hemin, form catalytic hemin/G-quadruplex DNAzymes with peroxidase activity. The smart biosensor has exhibited a turn-on signal when all biomarkers are present in the sample. In fact, should any of the biomarkers be nonexistent, the signal remains turned-off. The biosensor can detect the biomarkers with a LOD value of 100 aM and a noticeable capability to discriminate single-nucleotide substitutions.
Collapse
Affiliation(s)
- Hadi Ravan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| | - Mojdeh Amandadi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| |
Collapse
|
17
|
Deshpande A, McMahon B, Daughton AR, Abeyta EL, Hodge D, Anderson K, Pillai S. Surveillance for Emerging Diseases with Multiplexed Point-of-Care Diagnostics. Health Secur 2017; 14:111-21. [PMID: 27314652 DOI: 10.1089/hs.2016.0005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We present an analysis of the diagnostic technologies that were used to identify historical outbreaks of Ebola virus disease and consider systematic surveillance strategies that may greatly reduce the peak size of future epidemics. We observe that clinical signs and symptoms alone are often insufficient to recognize index cases of diseases of global concern against the considerable background infectious disease burden that is present throughout the developing world. We propose a simple sampling strategy to enrich in especially dangerous pathogens with a low background for molecular diagnostics by targeting blood-borne pathogens in the healthiest age groups. With existing multiplexed diagnostic technologies, such a system could be combined with existing public health screening and reference laboratory systems for malaria, dengue, and common bacteremia or be used to develop such an infrastructure in less-developed locations. Because the needs for valid samples and accurate recording of patient attributes are aligned with needs for global biosurveillance, local public health needs, and improving patient care, co-development of these capabilities appears to be quite natural, flexible, and extensible as capabilities, technologies, and needs evolve over time. Moreover, implementation of multiplexed diagnostic technologies to enhance fundamental clinical lab capacity will increase public health monitoring and biosurveillance as a natural extension.
Collapse
|
18
|
Song J, Liu C, Mauk MG, Rankin SC, Lok JB, Greenberg RM, Bau HH. Two-Stage Isothermal Enzymatic Amplification for Concurrent Multiplex Molecular Detection. Clin Chem 2017; 63:714-722. [PMID: 28073898 DOI: 10.1373/clinchem.2016.263665] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The wide array of pathogens responsible for infectious diseases makes it difficult to identify causative pathogens with single-plex tests. Although multiplex PCR detects multiple targets, it is restricted to centralized laboratories, which delays test results or makes multiplexing unavailable, depriving healthcare providers of critical, real-time information. METHODS To address the need for point-of-care (POC) highly multiplexed tests, we propose the 2-stage, nested-like, rapid (<40 min) isothermal amplification assay, dubbed rapid amplification (RAMP). RAMP's first-stage uses outer loop-mediated isothermal amplification (LAMP) primers to amplify all targets with recombinase polymerase amplification (RPA). First-stage amplicons are aliquoted to second stage reactors, each specialized for a specific target, to undergo LAMP. The assay is implemented in a microfluidic chip. LAMP amplicons are detected in situ with colorimetric dye or with a fluorescent dye and a smartphone. RESULTS In experiments on a benchtop and in a microfluidic format, RAMP demonstrated high level of multiplexing (≥16); high sensitivity (i.e., 1 plaque-forming unit of Zika virus) and specificity (no false positives or negatives); speed (<40 min); ease of use; and ability to cope with minimally processed samples. CONCLUSIONS RAMP is a hybrid, 2-stage, rapid, and highly sensitive and specific assay with extensive multiplexing capabilities, combining the advantages of RPA and LAMP, while circumventing their respective shortcomings. RAMP can be used in the lab, but one of its distinct advantages is amenability to simple implementation in a microfluidic format for use at the POC, providing healthcare personnel with an inexpensive, highly sensitive tool to detect multiple pathogens in a single sample, on site.
Collapse
Affiliation(s)
- Jinzhao Song
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA
| | - Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA
| | - Shelley C Rankin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Haim H Bau
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA;
| |
Collapse
|
19
|
Xu W, Chen C, Ma X, Yuan L, Liu S, Zheng K, Li J. Digitally encoded silica microparticles for multiplexed nucleic acid detection. Chem Commun (Camb) 2017; 53:5866-5869. [DOI: 10.1039/c7cc01974b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By integrating a digitally encoded suspension array with a novel multiplex nested asymmetric PCR, an efficient strategy was developed for HPV genotyping.
Collapse
Affiliation(s)
- Weiwei Xu
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Chao Chen
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Xiaodong Ma
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Lihua Yuan
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Shenquan Liu
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Kexiao Zheng
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jiong Li
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
20
|
Ma Y, Dai X, Hong T, Munk GB, Libera M. A NASBA on microgel-tethered molecular-beacon microarray for real-time microbial molecular diagnostics. Analyst 2017; 142:147-155. [DOI: 10.1039/c6an02192a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gel-tethered molecular beacons coupled with NASBA RNA amplification enable real-time microbial detection and differentiation in a bloodstream infection model.
Collapse
Affiliation(s)
- Y. Ma
- Dept of Chemical Engr & Materials Science
- Stevens Institute of Technology
- Hoboken
- USA
| | - X. Dai
- Dept of Chemical Engr & Materials Science
- Stevens Institute of Technology
- Hoboken
- USA
- Currently with Oxford Nanopore
| | - T. Hong
- Hackensack University Medical Center
- Hackensack
- USA
| | - G. B. Munk
- Hackensack University Medical Center
- Hackensack
- USA
| | - M. Libera
- Dept of Chemical Engr & Materials Science
- Stevens Institute of Technology
- Hoboken
- USA
| |
Collapse
|
21
|
Woods TA, Mendez HM, Ortega S, Shi X, Marx D, Bai J, Moxley RA, Nagaraja TG, Graves SW, Deshpande A. Development of 11-Plex MOL-PCR Assay for the Rapid Screening of Samples for Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2016; 6:92. [PMID: 27630828 PMCID: PMC5005322 DOI: 10.3389/fcimb.2016.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023] Open
Abstract
Strains of Shiga toxin-producing Escherichia coli (STEC) are a serious threat to the health, with approximately half of the STEC related food-borne illnesses attributable to contaminated beef. We developed an assay that was able to screen samples for several important STEC associated serogroups (O26, O45, O103, O104, O111, O121, O145, O157) and three major virulence factors (eae, stx1, stx2) in a rapid and multiplexed format using the Multiplex oligonucleotide ligation-PCR (MOL-PCR) assay chemistry. This assay detected unique STEC DNA signatures and is meant to be used on samples from various sources related to beef production, providing a multiplex and high-throughput complement to the multiplex PCR assays currently in use. Multiplex oligonucleotide ligation-PCR (MOL-PCR) is a nucleic acid-based assay chemistry that relies on flow cytometry/image cytometry and multiplex microsphere arrays for the detection of nucleic acid-based signatures present in target agents. The STEC MOL-PCR assay provided greater than 90% analytical specificity across all sequence markers designed when tested against panels of DNA samples that represent different STEC serogroups and toxin gene profiles. This paper describes the development of the 11-plex assay and the results of its validation. This highly multiplexed, but more importantly dynamic and adaptable screening assay allows inclusion of additional signatures as they are identified in relation to public health. As the impact of STEC associated illness on public health is explored additional information on classification will be needed on single samples; thus, this assay can serve as the backbone for a complex screening system.
Collapse
Affiliation(s)
- Travis A Woods
- Department of Chemical and Biological Engineering, University of New Mexico Albuquerque, NM, USA
| | - Heather M Mendez
- Department of Chemical and Biological Engineering, University of New MexicoAlbuquerque, NM, USA; The New Mexico ConsortiumLos Alamos, NM, USA
| | - Sandy Ortega
- Translational Biomedical Sciences, University of Rochester Rochester, NY, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - David Marx
- Department of Statistics, University of Nebraska-Lincoln Lincoln, NE, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - Rodney A Moxley
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln Lincoln, NE, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - Steven W Graves
- Department of Chemical and Biological Engineering, University of New Mexico Albuquerque, NM, USA
| | - Alina Deshpande
- Los Alamos National Laboratory, Analytics, Intelligence and Technology Division Los Alamos, NM, USA
| |
Collapse
|
22
|
Extensible Multiplex Real-time PCR of MicroRNA Using Microparticles. Sci Rep 2016; 6:22975. [PMID: 26964639 PMCID: PMC4786821 DOI: 10.1038/srep22975] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/23/2016] [Indexed: 01/08/2023] Open
Abstract
Multiplex quantitative real-time PCR (qPCR), which measures multiple DNAs in a given sample, has received significant attention as a mean of verifying the rapidly increasing genetic targets of interest in single phenotype. Here we suggest a readily extensible qPCR for the expression analysis of multiple microRNA (miRNA) targets using microparticles of primer-immobilized networks as discrete reactors. Individual particles, 200~500 μm in diameter, are identified by two-dimensional codes engraved into the particles and the non-fluorescent encoding allows high-fidelity acquisition of signal in real-time PCR. During the course of PCR, the amplicons accumulate in the volume of the particles with high reliability and amplification efficiency over 95%. In a quick assay comprising of tens of particles holding different primers, each particle brings the independent real-time amplification curve representing the quantitative information of each target. Limited amount of sample was analyzed simultaneously in single chamber through this highly multiplexed qPCR; 10 kinds of miRNAs from purified extracellular vesicles (EVs).
Collapse
|
23
|
Schuler F, Trotter M, Zengerle R, von Stetten F. Monochrome Multiplexing in Polymerase Chain Reaction by Photobleaching of Fluorogenic Hydrolysis Probes. Anal Chem 2016; 88:2590-5. [DOI: 10.1021/acs.analchem.5b02960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Friedrich Schuler
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory
for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Martin Trotter
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory
for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- BIOSS-Centre
for Biological Signalling Studies, University of Freiburg, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory
for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
24
|
Lehmusvuori A, Soikkeli M, Tuunainen E, Seppä T, Spangar A, Rantakokko-Jalava K, von Lode P, Karhunen U, Soukka T, Wittfooth S. Ready to use dry-reagent PCR assays for the four common bacterial pathogens using switchable lanthanide luminescence probe system. J Microbiol Methods 2015; 118:64-9. [DOI: 10.1016/j.mimet.2015.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 12/23/2022]
|
25
|
Engstrom-Melnyk J, Rodriguez PL, Peraud O, Hein RC. Clinical Applications of Quantitative Real-Time PCR in Virology. METHODS IN MICROBIOLOGY 2015; 42:161-197. [PMID: 38620180 PMCID: PMC7148891 DOI: 10.1016/bs.mim.2015.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Since the invention of the polymerase chain reaction (PCR) and discovery of Taq polymerase, PCR has become a staple in both research and clinical molecular laboratories. As clinical and diagnostic needs have evolved over the last few decades, demanding greater levels of sensitivity and accuracy, so too has PCR performance. Through optimisation, the present-day uses of real-time PCR and quantitative real-time PCR are enumerable. The technique, combined with adoption of automated processes and reduced sample volume requirements, makes it an ideal method in a broad range of clinical applications, especially in virology. Complementing serologic testing by detecting infections within the pre-seroconversion window period and infections with immunovariant viruses, real-time PCR provides a highly valuable tool for screening, diagnosing, or monitoring diseases, as well as evaluating medical and therapeutic decision points that allows for more timely predictions of therapeutic failures than traditional methods and, lastly, assessing cure rates following targeted therapies. All of these serve vital roles in the continuum of care to enhance patient management. Beyond this, quantitative real-time PCR facilitates advancements in the quality of diagnostics by driving consensus management guidelines following standardisation to improve patient outcomes, pushing for disease eradication with assays offering progressively lower limits of detection, and rapidly meeting medical needs in cases of emerging epidemic crises involving new pathogens that may result in significant health threats.
Collapse
Affiliation(s)
- Julia Engstrom-Melnyk
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| | - Pedro L Rodriguez
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| | - Olivier Peraud
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| | - Raymond C Hein
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Carinelli S, Martí M, Alegret S, Pividori MI. Biomarker detection of global infectious diseases based on magnetic particles. N Biotechnol 2015; 32:521-32. [PMID: 25917978 DOI: 10.1016/j.nbt.2015.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
Infectious diseases affect the daily lives of millions of people all around the world, and are responsible for hundreds of thousands of deaths, mostly in the developing world. Although most of these major infectious diseases are treatable, the early identification of individuals requiring treatment remains a major issue. The incidence of these diseases would be reduced if rapid diagnostic tests were widely available at the community and primary care level in low-resource settings. Strong research efforts are thus being focused on replacing standard clinical diagnostic methods, such as the invasive detection techniques (biopsy or endoscopy) or expensive diagnostic and monitoring methods, by affordable and sensitive tests based on novel biomarkers. The development of new methods that are needed includes solid-phase separation techniques. In this context, the integration of magnetic particles within bioassays and biosensing devices is very promising since they greatly improve the performance of a biological reaction. The diagnosis of clinical samples with magnetic particles can be easily achieved without pre-enrichment, purification or pretreatment steps often required for standard methods, simplifying the analytical procedures. The biomarkers can be specifically isolated and preconcentrated from complex biological matrixes by magnetic actuation, increasing specificity and the sensitivity of the assay. This review addresses these promising features of the magnetic particles for the detection of biomarkers in emerging technologies related with infectious diseases affecting global health, such as malaria, influenza, dengue, tuberculosis or HIV.
Collapse
Affiliation(s)
- Soledad Carinelli
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Martí
- Laboratory of Cellular Immunology, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Alegret
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Isabel Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
27
|
Yang YC, Wang DY, Cheng HF, Chuang EY, Tsai MH. A reliable multiplex genotyping assay for HCV using a suspension bead array. Microb Biotechnol 2014; 8:93-102. [PMID: 25042084 PMCID: PMC4321376 DOI: 10.1111/1751-7915.12140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 01/25/2023] Open
Abstract
The genotyping of the hepatitis C virus (HCV) plays an important role in the treatment of HCV because genotype determination has recently been incorporated into the treatment guidelines for HCV infections. Most current genotyping methods are unable to detect mixed genotypes from two or more HCV infections. We therefore developed a multiplex genotyping assay to determine HCV genotypes using a bead array. Synthetic plasmids, genotype panels and standards were used to verify the target-specific primer (TSP) design in the assay, and the results indicated that discrimination efforts using 10 TSPs in a single reaction were extremely successful. Thirty-five specimens were then tested to evaluate the assay performance, and the results were highly consistent with those of direct sequencing, supporting the reliability of the assay. Moreover, the results from samples with mixed HCV genotypes revealed that the method is capable of detecting two different genotypes within a sample. Furthermore, the specificity evaluation results suggested that the assay could correctly identify HCV in HCV/human immunodeficiency virus (HIV) co-infected patients. This genotyping platform enables the simultaneous detection and identification of more than one genotype in a same sample and is able to test 96 samples simultaneously. It could therefore provide a rapid, efficient and reliable method of determining HCV genotypes in the future.
Collapse
Affiliation(s)
- Yi-Chen Yang
- Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan; Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Reusable conductimetric array of interdigitated microelectrodes for the readout of low-density microarrays. Anal Chim Acta 2014; 832:44-50. [DOI: 10.1016/j.aca.2014.04.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/20/2022]
|
29
|
Díaz-González M, Muñoz-Berbel X, Jiménez-Jorquera C, Baldi A, Fernández-Sánchez C. Diagnostics Using Multiplexed Electrochemical Readout Devices. ELECTROANAL 2014. [DOI: 10.1002/elan.201400015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Gambari R. Peptide nucleic acids: a review on recent patents and technology transfer. Expert Opin Ther Pat 2014; 24:267-94. [PMID: 24405414 DOI: 10.1517/13543776.2014.863874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION DNA/RNA-based drugs are considered of major interest in molecular diagnosis and nonviral gene therapy. In this field, peptide nucleic acids (PNAs, DNA analogs in which the sugar-phosphate backbone is replaced by N-(2-aminoethyl)glycine units or similar building blocks) have been demonstrated to be excellent candidates as diagnostic reagents and biodrugs. AREAS COVERED Recent (2002 - 2013) patents based on studies on development of PNA analogs, delivery systems for PNAs, applications of PNAs in molecular diagnosis, and use of PNA for innovative therapeutic protocols. EXPERT OPINION PNAs are unique reagents in molecular diagnosis and have been proven to be very active and specific for alteration of gene expression, despite the fact that solubility and uptake by target cells can be limiting factors. Accordingly, patents on PNAs have taken in great consideration delivery strategies. PNAs have been proven stable and effective in vivo, despite the fact that possible long-term toxicity should be considered. For possible clinical applications, the use of PNA molecules in combination with drugs already employed in therapy has been suggested. Considering the patents available and the results on in vivo testing on animal models, we expect in the near future relevant PNA-based clinical trials.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section , Via Fossato di Mortara n.74, 44100 Ferrara , Italy +39 532 974443 ; +39 532 974500 ;
| |
Collapse
|
31
|
Dai X, Libera M. Dip-pen microarraying of molecular beacon probes on microgel thin-film substrates. Analyst 2014; 139:5568-75. [DOI: 10.1039/c4an01220h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micron-sized spots of molecular beacon probes are patterned on PEG microgel thin films using dip-pen nanolithography.
Collapse
Affiliation(s)
- Xiaoguang Dai
- Department of Chemical Engineering and Materials Science
- Stevens Institute of Technology
- Hoboken, USA
| | - Matthew Libera
- Department of Chemical Engineering and Materials Science
- Stevens Institute of Technology
- Hoboken, USA
| |
Collapse
|
32
|
Liao Y, Wang X, Sha C, Xia Z, Huang Q, Li Q. Combination of fluorescence color and melting temperature as a two-dimensional label for homogeneous multiplex PCR detection. Nucleic Acids Res 2013; 41:e76. [PMID: 23335787 PMCID: PMC3627564 DOI: 10.1093/nar/gkt004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Multiplex analytical systems that allow detection of multiple nucleic acid targets in one assay can provide rapid characterization of a sample while still saving cost and resources. However, few systems have proven to offer a solution for mid-plex (e.g. 10- to 50-plex) analysis that is high throughput and cost effective. Here we describe the combined use of fluorescence color and melting temperature (Tm) as a virtual 2D label that enables homogenous detection of one order of magnitude more targets than current strategies on real-time polymerase chain reaction platform. The target was first hybridized with a pair of ligation oligonucleotides, one of which harbored an artificial sequence that had a unique Tm when hybridized with a reporter fluorogenic probe. The ligated products were then amplified by a universal primer pair and denatured by a melting curve analysis procedure. The targets were identified by their respective Tm values in the corresponding fluorescence detection channels. The proof-of-principle of this approach was validated by genotyping 15 high-risk human papillomaviruses and 48 human single-nucleotide polymorphisms. The robustness of this method was demonstrated by analyzing a large number of clinical samples in both cases. The combined merits of multiplexity, flexibility and simplicity should make this approach suitable for a variety of applications.
Collapse
Affiliation(s)
- Yiqun Liao
- Department of Translational Medicine, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | |
Collapse
|