1
|
Li Q, Chen Y, Chen Y, Hua Z, Gong B, Liu Z, Thiele CJ, Li Z. Novel small molecule DMAMCL induces differentiation in rhabdomyosarcoma by downregulating of DLL1. Biomed Pharmacother 2024; 174:116562. [PMID: 38626518 DOI: 10.1016/j.biopha.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024] Open
Abstract
Rhabdomyosarcoma (RMS), a mesenchymal tumor occurring in the soft tissue of children, is associated with a defect in differentiation. This study unveils a novel anti-tumor mechanism of dimethylaminomicheliolide (DMAMCL), which is a water-soluble derivative of Micheliolide. First, we demonstrate that DMAMCL inhibits RMS cell growth without obvious cell death, leading to morphological alterations, enhanced expression of muscle differentiation markers, and a shift from a malignant to a more benign metabolic phenotype. Second, we detected decreased expression of DLL1 in RMS cells after DMAMCL treatment, known as a pivotal ligand in the Notch signaling pathway. Downregulation of DLL1 inhibits RMS cell growth and induces morphological changes similar to the effects of DMAMCL. Furthermore, DMAMCL treatment or loss of DLL1 expression also inhibits RMS xenograft tumor growth and augmented the expression of differentiation markers. Surprisingly, in C2C12 cells DMAMCL treatment or DLL1 downregulation also induces cell growth inhibition and an elevation in muscle differentiation marker expression. These data indicated that DMAMCL induced RMS differentiation and DLL1 is an important factor for RMS differentiation, opening a new window for the clinical use of DMAMCL as an agent for differentiation-inducing therapy for RMS treatment.
Collapse
Affiliation(s)
- Qi Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yexi Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Baocheng Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhihui Liu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Mikheil D, Prabhakar K, Ng TL, Teertam S, Longley BJ, Newton MA, Setaluri V. Notch Signaling Suppresses Melanoma Tumor Development in BRAF/Pten Mice. Cancers (Basel) 2023; 15:cancers15020519. [PMID: 36672468 PMCID: PMC9857214 DOI: 10.3390/cancers15020519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Both oncogenic and tumor suppressor roles have been assigned to Notch signaling in melanoma. In clinical trials, Notch inhibitors proved to be ineffective for melanoma treatment. Notch signaling has also been implicated in melanoma transdifferentiation, a prognostic feature in primary melanoma. In this study, we investigated the role of Notch signaling in melanoma tumor development and growth using the genetic model of mouse melanoma by crossing BRAFCA/+/Pten+/+/Tyr-CreER+ (B) and BRAFCA/+/Pten-/-/Tyr-CreER + (BP) mice with Notch1 or Notch2 floxed allele mice. The topical application of tamoxifen induced tumors in BP mice but not in B mice with or without the deletion of either Notch1 or Notch2. These data show that the loss of either Notch1 nor Notch2 can substitute the tumor suppressor function of Pten in BRAFV600E-induced melanomagenesis. However, in Pten-null background, the loss of either Notch1 or Notch2 appeared to accelerate BRAFV600E-induced tumor development, suggesting a tumor suppressor role for Notch1 and Notch2 in BRAFV600E/Pten-null driven melanomagenesis. Quantitative immunochemical analysis of a human cutaneous melanoma tissue microarray that consists of >100 primary tumors with complete clinical history showed a weak to moderate correlation between NOTCH protein levels and clinical and pathological parameters. Our data show that Notch signaling is involved during melanomagenesis and suggest that the identification of genes and signaling pathways downstream of Notch could help devise strategies for melanoma prevention.
Collapse
Affiliation(s)
- Dareen Mikheil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kirthana Prabhakar
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tun Lee Ng
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sireesh Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - B. Jack Longley
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael A. Newton
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vijayasaradhi Setaluri
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans’ Hospital, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
3
|
Jia L, Lei B, Gao H, Jia L, Luo D, Han J, Jia B. miR-130b suppresses the invasion and migration of prostate cancer via inhibiting DLL1 and regulating the PI3K/Akt pathways. Exp Ther Med 2022; 23:98. [PMID: 34976140 PMCID: PMC8674980 DOI: 10.3892/etm.2021.11021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer occurs in the prostatic epithelium and poses a threat to the health of middle-aged and older males. The objective of the present study was to explore the roles of microRNA (miRNA/miR)-130b in prostate cancer and potential molecular mechanisms in order to control the migration and invasion of prostate cancer. For this purpose, reverse transcription-PCR was performed to evaluate the mRNA levels of DLL1, phosphoinositide-3 kinase (PI3K), protein kinase B (Akt) and matrix metalloproteinase (MMP)9, and western blot analysis was carried out to detect the protein expression levels of DLL1, phosphorylated (p)-PI3K, p-Akt and MMP9. A Transwell assay was conducted to examine the invasion rate of prostate cancer cells. Furthermore, a scratch wound assay was performed to examine the migration rate of prostate cancer cells. A luciferase assay was performed to examine the interaction between miRNA and its target mRNA. The results revealed that miR-130b had abnormal (low) expression in tumor tissues compared with that in the adjacent normal tissue. An miR-130b mimic suppressed the expression of DLL1. The expression of p-PI3K, p-Akt and MMP9 in prostate cancer cells transfected with the miR-130b mimic was decreased in comparison to the negative control and control groups. Furthermore, migration and invasion were significantly suppressed in the miR-130b mimic group. In conclusion, a novel pathway interlinking miR-130b and MMP9, p-Akt and p-PI3K, which regulates the migration and invasion of prostate cancer cells, was identified. These findings provide an intriguing biomarker and treatment strategy for patients with prostate cancer.
Collapse
Affiliation(s)
- Li Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Bin Lei
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Huaijun Gao
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Lin Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Dan Luo
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Jianjun Han
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Bingxin Jia
- Department of Urology Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| |
Collapse
|
4
|
Identification of Estrogen Signaling in a Prioritization Study of Intraocular Pressure-Associated Genes. Int J Mol Sci 2021; 22:ijms221910288. [PMID: 34638643 PMCID: PMC8508848 DOI: 10.3390/ijms221910288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-β signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified β-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by β-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm’s canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17β-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17β-estradiol in AH supports a role for estrogen signaling in IOP regulation.
Collapse
|
5
|
Hamm M, Sohier P, Petit V, Raymond JH, Delmas V, Le Coz M, Gesbert F, Kenny C, Aktary Z, Pouteaux M, Rambow F, Sarasin A, Charoenchon N, Bellacosa A, Sanchez-Del-Campo L, Mosteo L, Lauss M, Meijer D, Steingrimsson E, Jönsson GB, Cornell RA, Davidson I, Goding CR, Larue L. BRN2 is a non-canonical melanoma tumor-suppressor. Nat Commun 2021; 12:3707. [PMID: 34140478 PMCID: PMC8211827 DOI: 10.1038/s41467-021-23973-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
While the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600E PtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.
Collapse
Affiliation(s)
- Michael Hamm
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Pierre Sohier
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Valérie Petit
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Jérémy H Raymond
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Véronique Delmas
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Madeleine Le Coz
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Franck Gesbert
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Colin Kenny
- Department of Anatomy and Cell biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Zackie Aktary
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Marie Pouteaux
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Florian Rambow
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Alain Sarasin
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Nisamanee Charoenchon
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Luis Sanchez-Del-Campo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Laura Mosteo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Martin Lauss
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Dies Meijer
- Centre of Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, and Department of Anatomy, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Göran B Jönsson
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Robert A Cornell
- Department of Anatomy and Cell biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Irwin Davidson
- Department of Anatomy and Cell biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch, Cedex, France
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK.
| | - Lionel Larue
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France.
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France.
- Equipes Labellisées Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
6
|
Cheng JW, Duan LX, Yu Y, Wang P, Feng JL, Feng GZ, Liu Y. Bone marrow mesenchymal stem cells promote prostate cancer cell stemness via cell-cell contact to activate the Jagged1/Notch1 pathway. Cell Biosci 2021; 11:87. [PMID: 34001269 PMCID: PMC8130143 DOI: 10.1186/s13578-021-00599-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/30/2021] [Indexed: 12/26/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) play a crucial role in cancer development and tumor resistance to therapy in prostate cancer, but the influence of MSCs on the stemness potential of PCa cells by cell–cell contact remains unclear. In this study, we investigated the effect of direct contact of PCa cells with MSCs on the stemness of PCa and its mechanisms. Methods First, the flow cytometry, colony formation, and sphere formation were performed to determine the stemness of PCaMSCs, and the expression of stemness-related molecules (Sox2, Oct4, and Nanog) was investigated by western blot analysis. Then, we used western blot and qPCR to determine the activity levels of two candidate pathways and their downstream stemness-associated pathway. Finally, we verified the role of the significantly changed pathway by assessing the key factors in this pathway via in vitro and in vivo experiments. Results We established that MSCs promoted the stemness of PCa cells by cell–cell contact. We here established that the enhanced stemness of PCaMSCs was independent of the CCL5/CCR5 pathway. We also found that PCaMSCs up-regulated the expression of Notch signaling-related genes, and inhibition of Jagged1-Notch1 signaling in PCaMSCs cells significantly inhibited MSCs-induced stemness and tumorigenesis in vitro and in vivo. Conclusions Our results reveal a novel interaction between MSCs and PCa cells in promoting tumorigenesis through activation of the Jagged1/Notch1 pathway, providing a new therapeutic target for the treatment of PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00599-0.
Collapse
Affiliation(s)
- Ji-Wen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Xia Duan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,The Fifth Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Hedi road 71, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pu Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-le Feng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guan-Zheng Feng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China. .,The Fifth Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Hedi road 71, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
7
|
Thippu Jayaprakash K, Hussein M, Shaffer R, Michael A, Nisbet A, Ajaz M. In Vitro Evaluation of Notch Inhibition to Enhance Efficacy of Radiation Therapy in Melanoma. Adv Radiat Oncol 2021; 6:100622. [PMID: 33732959 PMCID: PMC7940786 DOI: 10.1016/j.adro.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose The scope of radiation therapy is limited in melanoma. Using in vitro melanoma models, we investigated a Notch signaling inhibitor as a radiosensitizer to explore its potential to improve the efficacy of radiation therapy to widen the clinical application of radiation therapy in melanoma. Methods and Materials Melanoma cell lines A375, SKMEL28, and G361 were grown using standard tissue culture methods. Radiation was delivered with a clinical x-ray unit, and a gamma secretase inhibitor RO4929097 was used to inhibit Notch signaling. Cell viability signal was used to calculate Loewe's combination index to assess the interaction between radiation and RO4929097 and also the effect of scheduling of radiation and RO4929097 on synergy. Clonogenic assays were used to assess the clonogenic potential. An in vitro 3-dimensional culture model, γ-H2AX, and notch intracellular domain assays were used to interrogate potential underlying biological mechanisms of this approach. Scratch and transwell migration assays were used to assess cell migration. Results A375 and SKMEL28 cell lines showed consistent synergy for most single radiation doses examined, with a tendency for better synergy with the radiation-first schedule (irradiation performed 24 hours before RO4929097 exposure). Clonogenic assays showed dose-dependent reduction in colony numbers. Both radiation and RO4929097 reduced the size of melanospheres grown in 3-dimensional culture in vitro, where RO4929097 demonstrated a significant effect on the size of A375 and SKMEL28 melanospheres, indicating potential modulation of stem cell phenotype. Radiation induced γ-H2AX foci signal levels were reduced after exposure to RO4929097 with a tendency toward reduction in notch intracellular domain levels for all 3 cell lines. RO4929097 impaired both de novo and radiation-enhanced cell migration. Conclusions We demonstrate Notch signaling inhibition with RO4929097 as a promising strategy to potentially improve the efficacy of radiation therapy in melanoma. This strategy warrants further validation in vivo.
Collapse
Affiliation(s)
- Kamalram Thippu Jayaprakash
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, Manor Park, University of Surrey, Guildford, United Kingdom.,Department of Oncology, St. Luke's Cancer Centre, Royal Surrey Hospital, Egerton Road, Guildford, United Kingdom.,Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,Department of Oncology, The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, United Kingdom
| | - Mohammad Hussein
- Department of Medical Physics, St. Luke's Cancer Centre, Royal Surrey Hospital, Guildford, United Kingdom
| | - Richard Shaffer
- GenesisCare UK, Mount Alvernia Hospital, Guildford, United Kingdom
| | - Agnieszka Michael
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, Manor Park, University of Surrey, Guildford, United Kingdom.,Department of Oncology, St. Luke's Cancer Centre, Royal Surrey Hospital, Egerton Road, Guildford, United Kingdom
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, United Kingdom
| | - Mazhar Ajaz
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, Manor Park, University of Surrey, Guildford, United Kingdom.,Department of Oncology, St. Luke's Cancer Centre, Royal Surrey Hospital, Egerton Road, Guildford, United Kingdom
| |
Collapse
|
8
|
Albuquerque ADO, da Silva Junior HC, Sartori GR, Martins da Silva JH. Computationally-obtained structural insights into the molecular interactions between Pidilizumab and binding partners DLL1 and PD-1. J Biomol Struct Dyn 2021; 40:6450-6462. [PMID: 33559526 DOI: 10.1080/07391102.2021.1885492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pidilizumab is a monoclonal antibody tested against several types of malignancies, such as lymphoma and metastatic melanoma, showing promising results. In 2016, the FDA put Pidilizumab's clinical studies on partial hold due to emerging evidence pointing to the antibody target uncertainty. Although initial studies indicated an interaction with the PD-1 checkpoint receptor, recent updates assert that Pidilizumab binds primarily to Notch ligand DLL1. However, a detailed description of which interactions coordinate antibody-antigen complex formation is lacking. Therefore, this study uses computational tools to identify molecular interactions between Pidilizumab and its reported targets PD-1 and DLL1. A docking methodology was validated and applied to determine the binding modes between modeled Pidilizumab scFvs and the two antigens. We used Molecular Dynamics (MD) simulations to verify the complexes' stability and submitted the resulting trajectory files to MM/PBSA and Principal Component Analysis. A set of different prediction tools determined scFv interface hot-spots. Whereas docking and MD simulations revealed that the antibody fragments do not interact straightforwardly with PD-1, ten scFv hot-spots, including Met93 and Leu112, mediated the interaction with the DLL1 C2 domain. The interaction triggered a conformational selection-like effect on DLL1, allowing new hydrogen bonds on the β3-β4 interface loop. The unprecedented structural data on Pidilizumab's interactions provided novel evidence that its legitimate target is the DLL1 protein and offered structural insight on how these molecules interact, shedding light on the pathways that could be affected by the use of this essential immunobiological.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Geraldo Rodrigues Sartori
- Grupo para Modelagem, Simulação e Evolução, in sílico, de Biomoléculas, Fiocruz-Ceará, Eusébio, Brazil
| | | |
Collapse
|
9
|
Xiu MX, Liu YM, Kuang BH. The Role of DLLs in Cancer: A Novel Therapeutic Target. Onco Targets Ther 2020; 13:3881-3901. [PMID: 32440154 PMCID: PMC7213894 DOI: 10.2147/ott.s244860] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Delta-like ligands (DLLs) control Notch signaling. DLL1, DLL3 and DLL4 are frequently deregulated in cancer and influence tumor growth, the tumor vasculature and tumor immunity, which play different roles in cancer progression. DLLs have attracted intense research interest as anti-cancer therapeutics. In this review, we discuss the role of DLLs in cancer and summarize the emerging DLL-relevant targeting methods to aid future studies.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Yuan-Meng Liu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Bo-Hai Kuang
- Medical School of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
10
|
Sales-Dias J, Silva G, Lamy M, Ferreira A, Barbas A. The Notch ligand DLL1 exerts carcinogenic features in human breast cancer cells. PLoS One 2019; 14:e0217002. [PMID: 31107884 PMCID: PMC6527237 DOI: 10.1371/journal.pone.0217002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
CONCLUSIONS These findings provide further evidence that DLL1 exerts carcinogenic effects in BC cells. The dissimilar effects of DLL1 downregulation observed amongst MCF-7, BT474, and MDA-MB-231 cells is likely due to their distinctive genetic and biologic characteristics, suggesting that DLL1 contributes to BC through various mechanisms.
Collapse
Affiliation(s)
- Joana Sales-Dias
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB—Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - Gabriela Silva
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- * E-mail:
| | - Márcia Lamy
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Andreia Ferreira
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ana Barbas
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Bayer Portugal, Carnaxide, Portugal
| |
Collapse
|
11
|
Ding X, Li F, Zhang L. Knockdown of Delta-like 3 restricts lipopolysaccharide-induced inflammation, migration and invasion of A2058 melanoma cells via blocking Twist1-mediated epithelial-mesenchymal transition. Life Sci 2019; 226:149-155. [PMID: 30981764 DOI: 10.1016/j.lfs.2019.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
AIMS To investigate the effects and mechanisms of DLL3 in inflammation-mediated A2058 melanoma cell invasion and metastasis. MATERIALS AND METHODS Melanoma A2058 cells was stimulated with lipopolysaccharide (LPS), with or without transfection of DLL3 siRNA, or DLL3 overexpression vector, or Twist1 siRNA. Cell migration and invasion were detected by wound healing and transwell invasion assay. The production of inflammatory factors TNF-α and IL-6 was measured by ELISA. The expression of Notch signaling-related molecules was detected by PCR and western blot. The protein expression of MMP1, MMP9, VEGF, DLL3, and EMT-related molecules was tested by western blot. KEY FINDINGS LPS treatment increased migration and invasion of A2058 cells, accompanied by increased expression of TNF-α and IL-6. DLL3 was both upregulated in the LPS- or TNF-α-stimulated A2058 cells, and DLL3 knockdown inhibited LPS-induced inflammation, migration and invasion of A2058 cells, accompanied by down-regulation of MMP1, MMP9 and VEGF. Besides, DLL3 knockdown inhibits the expression of Twist1, a key EMT regulating factor, as well as the EMT hallmarks slug, N-cadherin and vimentin. Moreover, Twist1 silence inhibited EMT, and limited LPS-induced migration and invasion of A2058 cells, with decreased expression of MMP1, MMP9 and VEGF and reduced production of TNF-α and IL-6 in LPS-stimulated A2058 cells. SIGNIFICANCE Knockdown of DLL3 restricts LPS-induced inflammation, migration and invasion of A2058 melanoma cells via blocking Twist1-mediated EMT. Therefore, targeting DLL3 may be a promising therapeutic strategy against inflammation-aggravated melanoma progression.
Collapse
Affiliation(s)
- Xiaojie Ding
- Department of Dermatology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Fuyao Li
- Department of Oncology Radiotherapy, Cancer Center, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang, China
| | - Li Zhang
- Department of Dermatology, The First People's Hospital of Lanzhou City, Lanzhou 730050, Gansu, China.
| |
Collapse
|
12
|
Actin cytoskeleton regulator Arp2/3 complex is required for DLL1 activating Notch1 signaling to maintain the stem cell phenotype of glioma initiating cells. Oncotarget 2018; 8:33353-33364. [PMID: 28380416 PMCID: PMC5464873 DOI: 10.18632/oncotarget.16495] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary intracranial tumor. Actin cytoskeleton regulator Arp2/3 complex stimulates glioma cell motility and migration, and thus triggers tumor invasion. However, little is known regarding the role of actin cytoskeleton in maintaining the stem cell phenotype. Here, we showed that Arp2/3 complex improved stem cell phenotype maintenance through sustaining the activated Notch signaling. ShRNA targeting Notch ligand Delta-like 1 (DLL1) decreased CD133 and Nestin expression, and impaired the self-renewal ability of CD133+ U87-MG and U251-MG glioma cells, indicating DLL1/Notch1 signaling promoted stem cell phenotype maintenance. Interestingly, inhibiting Arp2/3 complex also induced the similar effect of shDLL1. Silencing DLL1 in the Arp2/3 inhibited CD133+ cells did not further abrogate the stem cell phenotype, suggesting DLL1 function requires Arp2/3 complex in glioma initiating cells (GICs). However, exogenous soluble DLL1 (sDLL1) instead of endogenous DLL1 rescued the Arp2/3 inhibition-induced stem cell phenotype suppression. The underlying mechanism was that Arp2/3 inhibition impeded DLL1 vesicular transport from cytoplasm to cell membrane, which resulted in DLL1 unable to activate Notch pathway. Furthermore, we illustrated that Arp2/3 inhibition abolished the tumorigenicity of CD133+ U87-MG neurosphere cells in the intracranial model. These findings suggested that cytoskeleton maintained the stem cell phenotype in GBM, which provide novel therapeutic strategy that anti-invasive targeted therapies may help eliminate GICs.
Collapse
|
13
|
Ferreira A, Lamy M, Margarida Rocha M, Silva G, Bandeiras TM, Barbas A. Production and characterization of a novel Delta-like 1 functional unit as a tool for Notch pathway activation and generation of a specific antibody. Protein Expr Purif 2018; 146:8-16. [PMID: 29366964 DOI: 10.1016/j.pep.2018.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
Abstract
Notch signalling is an evolutionary conserved cell-to-cell communication pathway crucial for development and tissue homeostasis. Abnormal Notch signalling by mutations or deregulated expression of its receptors and/or ligands can lead to cancer making it a potential therapeutic target. Delta-like1 (DLL1) is a ligand of the Notch pathway implicated in different types of cancer, including breast cancer. Herein, we produced rhDLL1-DE3, a novel soluble form of DLL1 protein, which contains the DSL domain and EGF1-3 repeats critical for Notch pathway activation. cDNA fragments of human DLL1, encoding truncated versions of DLL1 with regions required to activate Notch receptors, were cloned and expressed as histidine-fused proteins in bacterial and mammalian cells. Expression tests in mammalian cells showed almost exclusively expression of the rhDLL1-DE3 protein form comprising the minimal binding regions DSL to EGF3 to Notch receptors. The highest yield of rhDLL1-DE3 was obtained from E. coli inclusion bodies. The produced protein, with purity higher than 95% bound to human Notch1 recombinant protein, by both Biolayer interferometry and ELISA assays. Cellular assays revealed rhDLL1-DE3 was biologically active as it increased expression of Notch-dependent genes in inducible pluripotent and breast cancer cells. Moreover, rhDLL1-DE3 allowed the generation of polyclonal antibodies by immunization that efficiently recognized DLL1 proteins by immunoblot, and caused a significant decrease of Notch1 expression in MCF7 breast cancer cells. The rhDLL1-DE3 protein might thus be used for Notch pathway activation and to generate anti-DLL1 monoclonal antibodies by immunization or phage display technology to unveil the effect of DLL1 in breast cancer.
Collapse
Affiliation(s)
- Andreia Ferreira
- iBET - Instituto de Biologia Experimental e Tecnológica, Portugal
| | - Márcia Lamy
- iBET - Instituto de Biologia Experimental e Tecnológica, Portugal; FairJourney Biologics, Porto, Portugal
| | | | - Gabriela Silva
- iBET - Instituto de Biologia Experimental e Tecnológica, Portugal
| | - Tiago M Bandeiras
- iBET - Instituto de Biologia Experimental e Tecnológica, Portugal; ITQB - Instituto de Tecnologia Química e Biológica, Portugal
| | - Ana Barbas
- iBET - Instituto de Biologia Experimental e Tecnológica, Portugal; Bayer Portugal, Carnaxide, Portugal.
| |
Collapse
|
14
|
Xia J, Cheng Y, Zhang H, Li R, Hu Y, Liu B. The role of adhesions between homologous cancer cells in tumor progression and targeted therapy. Expert Rev Anticancer Ther 2017; 17:517-526. [DOI: 10.1080/14737140.2017.1322511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Shui Y, Yu X, Duan R, Bao Q, Wu J, Yuan H, Ma C. miR-130b-3p inhibits cell invasion and migration by targeting the Notch ligand Delta-like 1 in breast carcinoma. Gene 2017; 609:80-87. [PMID: 28163094 DOI: 10.1016/j.gene.2017.01.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/30/2017] [Indexed: 02/08/2023]
Abstract
Breast carcinoma is the most common malignancy in women, and the incidence rate has increased dramatically in recent years. Metastasis is responsible for most advanced breast cancer mortality, but the underlying mechanisms remain poorly understood despite extensive research. Recently, short non-coding RNA molecules, including miRNAs, which mediate changes in signalling pathways, have emerged as metastatic regulators of the breast carcinoma. Previous reports have suggested that miR-130b-3p has both oncogenic and tumour suppressor functions in a cancer type-dependent manner. However, the roles and underlying molecular mechanisms of miR-130b-3p in the development of metastasis in breast carcinoma remain unclear. Here, we reported for the first time that miR-130b-3p was differentially expressed in early-stage non-invasive MCF-7 human breast carcinoma cells and aggressive late-stage MDA-MB-231 cells. In gain-of-function and loss-of-function studies, we demonstrated that miR-130b-3p could inhibit breast carcinoma cell invasion and migration by directly targeting the Notch ligand Delta-like 1 (DLL1). Our data also indicated that MMP-9, MMP-13, and VEGF were regulated by miR-130b-3p and may be involved in the inhibition of cell invasion and migration in breast carcinoma. Collectively, our findings reveal a new regulatory mechanism of miR-130b-3p and suggest that miR-130b-3p may be a potential target against human breast cancer metastasis.
Collapse
Affiliation(s)
- Yifang Shui
- Department of Developmental Genetics, Nanjing Medical University, Longmian Road101, Nanjing 211166, P.R. China
| | - Xiaojing Yu
- Department of Developmental Genetics, Nanjing Medical University, Longmian Road101, Nanjing 211166, P.R. China
| | - Rui Duan
- Department of Developmental Genetics, Nanjing Medical University, Longmian Road101, Nanjing 211166, P.R. China
| | - Qianyi Bao
- Department of Developmental Genetics, Nanjing Medical University, Longmian Road101, Nanjing 211166, P.R. China
| | - Jiahui Wu
- Department of Developmental Genetics, Nanjing Medical University, Longmian Road101, Nanjing 211166, P.R. China
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA
| | - Changyan Ma
- Department of Developmental Genetics, Nanjing Medical University, Longmian Road101, Nanjing 211166, P.R. China.
| |
Collapse
|