1
|
Soleymani AA, Biria M, Torshabi M, Mozaffari N. Cytotoxicity and proliferation effects of cold ceramic on stem cells from human exfoliated deciduous teeth compared to MTA: an in vitro study. BMC Oral Health 2025; 25:377. [PMID: 40082877 PMCID: PMC11908088 DOI: 10.1186/s12903-025-05756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND This study aimed to assess the cytotoxicity and proliferation effects of cold ceramic (CC) on stem cells from human exfoliated deciduous teeth(SHEDs) compared to mineral trioxide aggregate(MTA). METHODS In this in vitro study, the cytotoxicity of fresh and set MTA and CC for SHEDs was assessed after 24 and 72 h using the methyl thiazolyl tetrazolium(MTT) assay. The scratch test was used to evaluate cell migration, while cell morphology and adhesion were assessed by scanning electron microscopy (SEM). Data were analyzed by one-way ANOVA and Tukey test (alpha = 0.05). RESULTS At 24 h, the cell viability percentage was higher in fresh MTA than fresh CC (P < 0.0001), and in set CC than set MTA (P = 0.0003). At 72 h, cell viability in the presence of both fresh and set MTA was similar to the control group (P = 0.871). Set CC showed significantly higher cell viability (P < 0.0001) while fresh CC decreased cell viability. The scratch was completely healed in the control group. Cell density was lower in the MTA group, and the lowest in the CC group. SHEDs preserved their natural morphology and had optimal cytoplasmic attachment to MTA and CC surfaces after 24 and 48 h. CONCLUSION Cell viability and migration in CC were comparable to those in MTA and even superior in set form after 72 h. CC caused cell proliferation in addition to migration. Cells had a normal morphology and optimal adhesion in both groups. CC may be suitable for use as an alternative to MTA in pulpotomy of primary teeth. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ali Asghar Soleymani
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Biria
- Department of Pedodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Mozaffari
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Silveira ABVD, Oliveira BLS, Bergamo MTDOP, Lourenço Neto N, Machado MAM, Oliveira TM. Cytotoxicity of dilutions of bioceramic materials in stem cells of human exfoliated deciduous teeth. J Appl Oral Sci 2024; 32:e20230462. [PMID: 39140577 PMCID: PMC11321797 DOI: 10.1590/1678-7757-2023-0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE Several materials have been developed to preserve pulp vitality. They should have ideal cytocompatibility characteristics to promote the activity of stem cells of human exfoliated deciduous teeth (SHED) and thus heal pulp tissue. OBJECTIVE To evaluate the cytotoxicity of different dilutions of bioceramic material extracts in SHED. METHODOLOGY SHED were immersed in αMEM + the material extract according to the following experimental groups: Group 1 (G1) -BBio membrane, Group 2 (G2) - Bio-C Repair, Group 3 (G3) - MTA Repair HP, Group 4 (G4) - TheraCal LC, and Group 5 (G5) - Biodentine. Positive and negative control groups were maintained respectively in αMEM + 10% FBS and Milli-Q Water. The methods to analyze cell viability and proliferation involved MTT and Alamar Blue assays at 24, 48, and 72H after the contact of the SHED with bioceramic extracts at 1:1 and 1:2 dilutions. Data were analyzed by the three-way ANOVA, followed by Tukey's test (p<0.05). RESULTS At 1:1 dilution, SHED in contact with the MTA HP Repair extract showed statistically higher cell viability than the other experimental groups and the negative control (p<0.05), except for TheraCal LC (p> 0.05). At 1:2 dilution, BBio Membrane and Bio-C showed statistically higher values in intra- and intergroup comparisons (p<0.05). BBio Membrane, Bio-C Repair, and Biodentine extracts at 1:1 dilution showed greater cytotoxicity than 1:2 dilution in all periods (p<0.05). CONCLUSION MTA HP Repair showed the lowest cytotoxicity even at a 1:1 dilution. At a 1:2 dilution, the SHED in contact with the BBio membrane extract showed high cell viability. Thus, the BBio membrane would be a new non-cytotoxic biomaterial for SHED. Results offer possibilities of biomaterials that can be indicated for use in clinical regenerative procedures of the dentin-pulp complex.
Collapse
Affiliation(s)
- Ana Beatriz Vieira da Silveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | - Bárbara Luísa Silva Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | | | - Natalino Lourenço Neto
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | - Maria Aparecida Moreira Machado
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | - Thais Marchini Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| |
Collapse
|
3
|
Phang V, Malhotra R, Chen NN, Min KS, Yu VSH, Rosa V, Dubey N. Specimen Shape and Elution Time Affect the Mineralization and Differentiation Potential of Dental Pulp Stem Cells to Biodentine. J Funct Biomater 2023; 15:1. [PMID: 38276474 PMCID: PMC10816296 DOI: 10.3390/jfb15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The liquid extract method is commonly used to evaluate the cytotoxicity and bioactivity of materials. Although ISO has recommended guidelines for test methods, variations in elution period, and shape of samples can influence the biological outcomes. The aim of this study was to investigate the influence of material form and elution period of Biodentine on dental pulp stem cells (DPSCs)' proliferation and mineralization. Biodentine (0.2 g) discs or powder were immersed in culture media (10 mL) for 1, 3 or 7 days (D1, D3 and D7). The eluents were filtered and used to treat DPSC. The calcium release profile and pH were determined. Cell proliferation was evaluated by MTS for 3 days, and mineralization and differentiation were assessed by alizarin red S staining (Ca2+/ng of DNA) and qRT-PCR (MEPE, DSPP, DMP-1, RUNX2, COL-I and OCN) for 14 days. Statistical analysis was performed with a one or two-way ANOVA and post hoc Tukey's test (pH, calcium release and proliferation) or Mann-Whitney test (α = 0.05). pH and calcium ion release of powdered eluents were significantly higher than disc eluents. Powdered eluent promoted extensive cell death, while the disc form was cytocompatible. All disc eluents significantly increased the gene expression and mineralization after 14 days compared to the untreated control. D7 induced less mineralization and differentiation compared to D1 and D3. Thus, the materials' form and elution time are critical aspects to be considered when evaluating the bioactivity of materials, since this binomial can affect positively and negatively the biological outcomes.
Collapse
Affiliation(s)
- Valene Phang
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore; (V.P.); (R.M.); (V.S.H.Y.)
- National Dental Centre Singapore, 5 Second Hospital Ave., Singapore 168938, Singapore;
| | - Ritika Malhotra
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore; (V.P.); (R.M.); (V.S.H.Y.)
| | - Nah Nah Chen
- National Dental Centre Singapore, 5 Second Hospital Ave., Singapore 168938, Singapore;
| | - Kyung-San Min
- Department of Conservative Dentistry, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Victoria Soo Hoon Yu
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore; (V.P.); (R.M.); (V.S.H.Y.)
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore; (V.P.); (R.M.); (V.S.H.Y.)
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore; (V.P.); (R.M.); (V.S.H.Y.)
| |
Collapse
|
4
|
Saber SM, Gomaa SM, Elashiry MM, El-Banna A, Schäfer E. Comparative biological properties of resin-free and resin-based calcium silicate-based endodontic repair materials on human periodontal ligament stem cells. Clin Oral Investig 2023; 27:6757-6768. [PMID: 37796335 PMCID: PMC10630253 DOI: 10.1007/s00784-023-05288-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES To investigate the effect of three different calcium silicate-based materials (CSBM) on the biological behavior of human periodontal ligament stem cells (hPDLSCs). METHODS Eluates of Biodentine, NeoPutty and TheraCal PT prepared at 1:1, 1:2, and 1:4 ratios were extracted under sterile conditions. The cytotoxicity of the extracts to the hPDLSCs was assessed using the MTT assay. Scratch wound healing assay was utilized for assessing cell migration. Scanning electron microscopy was used to detect cell attachment and morphology. Calcium ion release was measured using inductively coupled plasma-optical emission spectrometry; the pH-value was evaluated with a pH-meter. ANOVA with post hoc Tukey test was used for statistical analysis. RESULTS Cell viability was significantly higher for Biodentine and NeoPutty at day 1 with all dilutions (p < 0.05), while at day 3 and day 7 with dilutions 1:2 and 1:4; all materials showed similar behavior (p > 0.05). Biodentine had the highest percentage of cell migration into the scratched area at day 1 for all dilutions (p < 0.05). Stem cells were attached favorably on Biodentine and NeoPutty with evident spreading, and intercellular communications; however, this was not shown for TheraCal PT. Biodentine showed the highest pH values and calcium ion release (p < 0.05). CONCLUSIONS The resin-free CSBM showed better performance and favorable biological effects on hPDLSCs and were therefore considered promising for usage as endodontic repair materials. CLINICAL SIGNIFICANCE Proper selection of materials with favorable impact on the host stem cells is crucial to ensure outcome in different clinical scenarios.
Collapse
Affiliation(s)
- Shehabeldin M Saber
- Department of Endodontics, Faculty of Dentistry, The British University in Egypt (BUE), Cairo, Egypt
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), Cairo, Egypt
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Egypt, Cairo, Egypt
| | - Shaimaa M Gomaa
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed M Elashiry
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Egypt, Cairo, Egypt
- Department of Endodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ahmed El-Banna
- Department of Biomaterials, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Münster, Germany.
| |
Collapse
|
5
|
Shalaby RA, Abdel-Aziz AM, Rashed LA, Radwan MZ. The Effect of Calcium hydroxide, Glass Ionomer and light cured resin modified calcium silicate on viability, proliferation and differentiation of stem cells from human exfoliated deciduous teeth. BMC Oral Health 2023; 23:721. [PMID: 37803363 PMCID: PMC10557230 DOI: 10.1186/s12903-023-03429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Vital pulp therapy, based on the use of stem cells, has promising research and therapeutic applications in dentistry. It is essential to understand the direct effect of capping materials on the dental pulp stem cells of primary teeth, which contribute to the healing powers of the tooth. The aim of this study is to evaluate the effect of different capping materials (Calcium Hydroxide (DyCal®) - Glass Ionomer (Fuji IX®) and light-cured resin modified calcium silicate (TheraCal LC®)) on the viability, proliferation, and differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). METHODS SHEDs were isolated from extracted primary teeth, then divided into four groups and each of the capping materials were applied to the stem cells as follows: group I the controls, group II with Ca(OH)2, group III with the GIC, and group IV with the Theracal LC. For all groups assessment of viability and proliferation rate was done using the MTT cell proliferation assay. Also, Differentiation was evaluated by measuring the gene expression of Alkaline phosphatase enzyme activity (ALP) and Dentin matrix protein-1 (DMP1) through quantitative real-time PCR. Morphological assessment was conducted using Alizarin Red S staining. All evaluations were performed after 7 and 14 days of culture. RESULTS TheraCal LC showed the highest values of proliferation, which was significant only compared to the control group after 2 weeks (p = 0.012). After one week, TheraCal LC showed the highest significant values of ALP and DMP1 compared to all other groups (p < 0.001). CONCLUSION The three materials under study are biocompatible, maintain viability, and stimulate the proliferation and differentiation of SHEDs. However, TheraCal LC allows better proliferation of SHEDs than Dycal Ca(OH)2 and Fuji IX GIC.
Collapse
Affiliation(s)
- Rana Ahmed Shalaby
- Department of Pediatric Dentistry and Public Health, Zagazig University, Zagazig, Egypt
| | | | - Laila Ahmed Rashed
- Department of Medical Biochemistry and Molecular Biology, Cairo University, Cairo, Egypt
| | - Mohamed Zayed Radwan
- Department of Pediatric Dentistry and Public Health, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
ASSADIAN H, KHOJASTEH A, EBRAHIMIAN Z, AHMADINEJAD F, BOROOJENI HSH, BOHLOULI M, NEKOOFAR MH, MH DUMMER P, NOKHBATOLFOGHAHAEI H. Comparative evaluation of the effects of three hydraulic calcium silicate cements on odontoblastic differentiation of human dental pulp stem cells: an in vitro study. J Appl Oral Sci 2022; 30:e20220203. [PMID: 36350874 PMCID: PMC9651926 DOI: 10.1590/1678-7757-2022-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/02/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The study aimed to compare the response of human dental pulp stem cells (hDPSCs) towards three hydraulic calcium silicate cements (HCSCs) by measuring cytotoxicity and expression of dentinogenic genes. METHODOLOGY Dental pulps of five impacted mandibular third molars were extirpated as a source for hDPSCs. Next to culturing, hDPSCs were subjected to fluorescence-activated cell sorting after the third passage to validate stemness of the cells. Human DPSCs were exposed to diluted supernatants of OrthoMTA (OMTA), Biodentine (BD) and Calcium-Enriched Mixture (CEM) at concentrations 10, 25, 50 and 100% at the first, third and fifth day of culture. Then, cells were exposed to 10% concentrations supernatant of HCSCs to determine DSPP and DMP1 gene expression, using a quantitative polymerase-chain reaction. Data were analyzed using one-way and three-way ANOVA, followed by Tukey post hoc statistical tests. RESULTS Optimal cell proliferation was observed in all groups, regardless of concentration and time-point. HCSC supernatants were non-cytotoxic to hDPSCs at all three time-points, except for 100% Biodentine on day five. On day seven, OMTA group significantly upregulated the expression of DSPP and DMP1 genes. On day 14, expression of DMP1 and DSPP genes were significantly higher in BD and OMTA groups, respectively. CONCLUSION Biodentine significantly upregulated DMP1 gene expression over 14 days, whereas CEM was associated with only minimal expression of DSPP and DMP1 .
Collapse
Affiliation(s)
- Hadi ASSADIAN
- Tehran University of Medical SciencesSchool of DentistryDepartment of EndodonticsTehranIranTehran University of Medical Sciences, School of Dentistry, Department of Endodontics, Tehran, Iran.
| | - Arash KHOJASTEH
- Shahid Beheshti University of Medical SciencesResearch Institute of Dental SciencesDental Research CenterTehranIranShahid Beheshti University of Medical Sciences, Research Institute of Dental Sciences, Dental Research Center, Tehran, Iran.
| | | | - Fereshteh AHMADINEJAD
- Shahrekord University of Medical ScienceCellular and Molecular Research CenterShahrekordIranShahrekord University of Medical Science, Cellular and Molecular Research Center, Shahrekord, Iran.
| | - Helia Sadat Haeri BOROOJENI
- Shahid Beheshti University of Medical SciencesResearch Institute of Dental SciencesDental Research CenterTehranIranShahid Beheshti University of Medical Sciences, Research Institute of Dental Sciences, Dental Research Center, Tehran, Iran.
| | - Mahboubeh BOHLOULI
- Shahid Beheshti University of Medical SciencesSchool of Advanced Technologies in MedicineDepartment of Tissue Engineering and Applied Cell SciencesTehranIranShahid Beheshti University of Medical Sciences, School of Advanced Technologies in Medicine, Department of Tissue Engineering and Applied Cell Sciences, Tehran, Iran.
| | - Mohammad Hossein NEKOOFAR
- Tehran University of Medical SciencesSchool of DentistryDepartment of EndodonticsTehranIranTehran University of Medical Sciences, School of Dentistry, Department of Endodontics, Tehran, Iran.
| | - Paul MH DUMMER
- Cardiff UniversityCollege of Biomedical and Life SciencesSchool of DentistryCardiffUKCardiff University, College of Biomedical and Life Sciences, School of Dentistry, Cardiff, UK.
| | - Hanieh NOKHBATOLFOGHAHAEI
- Shahid Beheshti University of Medical SciencesResearch Institute of Dental SciencesDental Research CenterTehranIranShahid Beheshti University of Medical Sciences, Research Institute of Dental Sciences, Dental Research Center, Tehran, Iran.
| |
Collapse
|
7
|
Wang J, Chen Y, Zhang B, Ge X, Wang X. Clinical efficacy of Er:YAG laser application in pulpotomy of primary molars: a 2-year follow-up study. Lasers Med Sci 2022; 37:3705-3712. [DOI: 10.1007/s10103-022-03655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
|
8
|
Bioinductive and anti-inflammatory properties of Propolis and Biodentine on SHED. Saudi Dent J 2022; 34:544-552. [PMID: 36267530 PMCID: PMC9577971 DOI: 10.1016/j.sdentj.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives This study aimed to evaluate and compare the cell viability, differentiation potential and anti-inflammatory potential of propolis and Biodentine™ on stem cells isolated from human exfoliated deciduous teeth (SHED). Materials and methods SHED were segregated and cultured from the dental pulp of children after therapeutic extraction. Microculture Tetrazolium Assay (MTT) assay was carried out for assessing cell proliferation potential of propolis and Biodentine at different concentrations. As per the results from cell proliferation assay, cell differentiation potential of SHED was evaluated at concentration of 12.5 μg/ml using Alizarin Red staining. The anti-inflammatory potential of test materials was evaluated using gelatin zymography by detecting MMP-2 and MMP-9. Results The maximum cell proliferation percentage of SHED treated with propolis and Biodentine was observed at a concentration of 12.5 μg/ml, on day 7, 14 and 21 with Biodentine having maximum cell proliferation potential followed by propolis. SHED treated with Biodentine showed maximum cell differentiation on day 7 (107.16), 14 (106.29) and 21 (107.72). However, anti-inflammatory activity against MMP-2 was 95 % with propolis and 85 % with Biodentine and whereas, against MMP-9 it was 65 % for propolis and 47 % for Biodentine. Conclusion Propolis shows comparable cell viability, cell proliferation and differentiation potential on SHED when compared to Biodentine. It also exhibits better invitro anti-inflammatory activity on SHED compared to Biodentine. Further studies are warranted to validate the application of propolis as an effective and economical alternative biocompatible agent to Biodentine for vital pulp therapies.
Collapse
|
9
|
Queiroz MB, Inada RNH, Lopes CS, Guerreiro-Tanomaru JM, Sasso-Cerri E, Tanomaru-Filho M, Cerri PS. Bioactive potential of Bio-C Pulpo is evidenced by presence of birefringent calcite and osteocalcin immunoexpression in the rat subcutaneous tissue. J Biomed Mater Res B Appl Biomater 2022; 110:2369-2380. [PMID: 35583398 DOI: 10.1002/jbm.b.35083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022]
Abstract
As the biocompatibility and bioactive potential of repair materials are desired characteristics in dentistry, the tissue response of Bio-C Pulpo, a bioceramic material launched on the marked by Angelus (Brazil), was compared with Biodentine (Septodont, France) and White MTA (WMTA; Angelus, Brazil). In 32 rats, 148 polyethylene tubes filled with Bio-C Pulpo, Biodentine or WMTA, and empty (CG, control group) were implanted into subcutaneous tissues for 7, 15, 30, and 60 days. The capsule thickness, numerical density of inflammatory cells (IC) and fibroblasts (Fb), amount of collagen, immunohistochemistry detection of interleukin-6 (IL-6) and osteocalcin (OCN), von Kossa and analysis under polarized light were performed. Data were subjected to two-way ANOVA followed by Tukey's test (p ≤ 0.05). At 7 and 15 days, the capsules around Bio-C Pulpo were thicker than in WMTA while, at 30 and 60 days, significant differences were not observed among the groups. Although at 7, 15, and 30 days, a greater number of IL-6-immunostained cells was found in Bio-C Pulpo and Biodentine than in WMTA, no significant difference was detected among the groups at 60 days. In all groups, the number of Fb and collagen content increased significantly over time. The capsules around materials exhibited von Kossa-positive and birefringent structures, and OCN-immunostained cells whereas, in the CG, these structures were not observed. Bio-C Pulpo, similarly to Biodentine and WMTA, is biocompatible, allows the connective tissue repair and presents bioactive potential in connective tissue of rats.
Collapse
Affiliation(s)
- Marcela Borsatto Queiroz
- Department of Restorative Dentistry, Universidade Estadual Paulista Julio de Mesquita Filho Faculdade de Odontologia Campus de Araraquara, Araraquara, Brazil.,Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, Brazil
| | - Rafaela Nanami Handa Inada
- Department of Restorative Dentistry, Universidade Estadual Paulista Julio de Mesquita Filho Faculdade de Odontologia Campus de Araraquara, Araraquara, Brazil.,Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, Brazil
| | - Camila Soares Lopes
- Department of Restorative Dentistry, Universidade Estadual Paulista Julio de Mesquita Filho Faculdade de Odontologia Campus de Araraquara, Araraquara, Brazil.,Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, Brazil
| | - Juliane Maria Guerreiro-Tanomaru
- Department of Restorative Dentistry, Universidade Estadual Paulista Julio de Mesquita Filho Faculdade de Odontologia Campus de Araraquara, Araraquara, Brazil
| | - Estela Sasso-Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mário Tanomaru-Filho
- Department of Restorative Dentistry, Universidade Estadual Paulista Julio de Mesquita Filho Faculdade de Odontologia Campus de Araraquara, Araraquara, Brazil
| | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
10
|
de Oliveira MCG, Queiroz ÍODA, Machado T, Garrido LDMA, de Oliveira SHP, Duarte MAH. Effect of nonsteroidal anti-inflammatory drugs (NSAIDs) association on physicochemical and biological properties of tricalcium silicate-based cement. Braz Dent J 2022; 33:47-54. [PMID: 35766716 PMCID: PMC9645202 DOI: 10.1590/0103-6440202204644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the physicochemical and biological properties of an experimental tricalcium silicate-based repair cement containing diclofenac sodium (CERD). For the physicochemical test, MTA, Biodentine and CERD were mixed and cement disc were prepared to evaluate the setting time and radiopacity. Root-end cavity were performed in acrylic teeth and filled with cements to analyze the solubility up to 7 days. Polyethylene tubes containing cements were prepared and calcium ions and pH were measured at 3h, 24h, 72h and 15 days. For the biological test, SAOS-2 were cultivated, exposed to cements extracts and cell proliferation were investigated by MTT assay at 6h, 24h and 48h. Polyethylene tubes containing cements were implanted into Wistar rats. After 7 and 30 days, the tubes were removed and processed for histological analyses. Parametric and nonparametric data were performed. No difference was identified in relation to setting time, radiopacity and solubility. Biodentine released more calcium ion than MTA and CERD; however, no difference between MTA and CERD were detected. Alkaline pH was observed for all cements and Biodentine exhibited highest pH. All cements promoted a raise on cell proliferation at 24h and 48h, except CERD at 48h. Biodentine stimulated cell metabolism in relation to MTA and CERD while CERD was more cytotoxic than MTA at 48h. Besides, no difference on both inflammatory response and mineralization ability for all cement were found. CERD demonstrated similar proprieties to others endodontic cements available.
Collapse
Affiliation(s)
| | | | - Thiago Machado
- Department of Oral and Maxillofacial Surgery and Integrated Clinic,
Araçatuba Dental School, UNESP, Araçatuba, São Paulo, Brazil
| | | | | | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru
School of Dentistry, USP, Bauru, São Paulo, Brazil
| |
Collapse
|
11
|
Song W, Li S, Tang Q, Chen L, Yuan Z. In vitro biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review). Int J Mol Med 2021; 48:128. [PMID: 34013376 PMCID: PMC8136140 DOI: 10.3892/ijmm.2021.4961] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years. In addition to excellent physical and chemical properties, the biocompatibility and bioactivity of calcium silicate-based bioceramics also serve an important role in endodontics according to previous research reports. Firstly, bioceramics affect cellular behavior of cells such as stem cells, osteoblasts, osteoclasts, fibroblasts and immune cells. On the other hand, cell reaction to bioceramics determines the effect of wound healing and tissue repair following bioceramics implantation. The aim of the present review was to provide an overview of calcium silicate-based bioceramics currently applied in endodontics, including mineral trioxide aggregate, Bioaggregate, Biodentine and iRoot, focusing on their in vitro biocompatibility and bioactivity. Understanding their underlying mechanism may help to ensure these materials are applied appropriately in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
12
|
Arandi NZ, Thabet M. Minimal Intervention in Dentistry: A Literature Review on Biodentine as a Bioactive Pulp Capping Material. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5569313. [PMID: 33884264 PMCID: PMC8041541 DOI: 10.1155/2021/5569313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 11/18/2022]
Abstract
Root canal treatment has been the treatment of choice for carious pulp exposures. In the perspective of minimally invasive dentistry and preventive endodontics, a direct pulp capping procedure with a reliable bioactive material may be considered an alternative approach provided that the pulp status is favorable. However, the treatment of pulp exposure by pulp capping is still a controversial issue with no clear literature available on this topic, leaving the concerned practitioner more confused than satisfied. Biodentine is a relatively new bioactive material explored for vital pulp therapy procedures. This article discusses its role in direct pulp capping procedures. A thorough literature search of the database was done using PubMed, Google Scholar, and Scopus using the keywords preventive endodontics, calcium silicate cement, direct pulp capping, Biodentine, and vital pulp therapy. Reference mining of the articles that were identified was used to locate other papers and enrich the findings. No limits were imposed on the year of publication, but only articles in English were considered. This paper is aimed at reviewing the current literature on Biodentine as a direct pulp capping material. The review will provide a better understanding of Biodentine's properties and can aid in the decision-making process for maintaining the vitality of exposed dental pulp with minimal intervention.
Collapse
Affiliation(s)
- Naji Ziad Arandi
- Department of Conservative Dentistry and Prosthodontics, Arab American University, Jenin, State of Palestine
| | - Mohammad Thabet
- Department of Orthodontics and Pediatric Dentistry, Arab American University, Jenin, State of Palestine
| |
Collapse
|
13
|
Regeneration of pulp-dentin complex using human stem cells of the apical papilla: in vivo interaction with two bioactive materials. Clin Oral Investig 2021; 25:5317-5329. [PMID: 33630165 DOI: 10.1007/s00784-021-03840-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To compare the regenerative properties of human stem cells of the apical papilla (SCAPs) embedded in a platelet-rich plasma (PRP) scaffold, when implanted in vivo using an organotypic model composed of human root segments, with or without the presence of the bioactive cements - ProRoot MTA or Biodentine. MATERIAL AND METHODS SCAPs were isolated from third molars with incomplete rhizogenesis and expanded and characterized in vitro using stem cell and surface markers. The pluripotency of these cells was also assessed using adipogenic, chondrogenic, and osteogenic differentiation protocols. SCAPs together with a scaffold of PRP were added to the root segment lumen and the organotypic model implanted on the dorsal region of immunodeficient rats for a period of 4 months. RESULTS Presence of SCAPs induced de novo formation of dentin-like and pulp-like tissue. A barrier of either ProRoot MTA or Biodentine did not significantly affect the fraction of sections from roots segments observed to contain deposition of hard material (P > 0.05). However, the area of newly deposited dentin was significantly greater in segments containing a barrier of Biodentine compared with ProRoot MTA (P < 0.001). CONCLUSIONS AND CLINICAL RELEVANCE SCAPs offer a viable alternative to other dental stem cells (DSCs) in their regenerative properties when enclosed in the microenvironment of human tooth roots. The present study also suggests that the presence of bioactive materials does not hinder or impede the formation of new hard tissues, but the presence of Biodentine may promote greater mineralized tissue deposition.
Collapse
|
14
|
Sanz JL, Rodríguez-Lozano FJ, Lopez-Gines C, Monleon D, Llena C, Forner L. Dental stem cell signaling pathway activation in response to hydraulic calcium silicate-based endodontic cements: A systematic review of in vitro studies. Dent Mater 2021; 37:e256-e268. [PMID: 33573840 DOI: 10.1016/j.dental.2021.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To present a qualitative synthesis of in vitro studies which analyzed human dental stem cell (DSC) molecular signaling pathway activation in response to hydraulic calcium silicate-based cements (HCSCs). METHODS A systematic electronic search was performed in Medline, Scopus, Embase, Web of Science and SciELO databases on January 20 and last updated on March 20, 2020. In vitro studies assessing the implication of signaling pathways in activity related marker (gene/protein) expression and mineralization induced by HCSCs in contact with human DSCs were included. RESULTS The search identified 277 preliminary results. After discarding duplicates, and screening of titles, abstracts, and full texts, 13 articles were considered eligible. All of the materials assessed by the included studies showed positive results in cytocompatibility and/or bioactivity assays. ProRoot MTA and Biodentine were the modal HCSCs studied, hDPSCs were the modal cell variant used, and the most studied signaling pathway was MAPK. In vitro assays measuring the expression of activity-related markers and mineralized nodule formation evidenced the involvement of MAPK (and its subfamilies ERK, JNK and P38), NF-κB, Wnt/β-catenin, BMP/Smad and CAMKII pathways in the biological response of DSCs to HCSCs. SIGNIFICANCE HCSCs considered in the present review elicited a favorable biological response from a variety of DSCs in vitro, thus supporting their use in biologically-based endodontic procedures. MAPK, NF-κβ, Wnt/β-catenin, BMP/Smad and CAMKII signaling pathways have been proposed as potential mediators in the biological interaction between DSCs and HCSCs. Understanding the signaling processes involved in tissue repair could lead to the development of new biomaterial compositions targeted at enhancing these mechanisms through biologically-based procedures.
Collapse
Affiliation(s)
- José Luis Sanz
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Francisco Javier Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Concha Lopez-Gines
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Daniel Monleon
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Carmen Llena
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Leopoldo Forner
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain.
| |
Collapse
|
15
|
Brusnitsyna EV, Barabanshchikova EV, Zakirov TV, Ioshchenko ES. Modern methods for treatment of deciduous teeth pulpitis: a literature review. Pediatr Dent 2021. [DOI: 10.33925/1683-3031-2020-20-4-275-287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Knorr A, Mestieri LB, Pinheiro LS, Mendes RA, Gonzalez Hernandez PA, Barletta FB, Grecca FS. Cytotoxicity and Bioactivity of Calcium Silicate-based Cements in a Culture of Stem Cells from the Apical Papilla. IRANIAN ENDODONTIC JOURNAL 2021; 16:225-231. [PMID: 36704773 PMCID: PMC9735306 DOI: 10.22037/iej.v16i4.30747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 01/28/2023]
Abstract
Introduction The present in vitro study evaluated the cytotoxicity and bioactivity of commonly-used calcium silicate-based cements in a culture of stem cells from the apical papilla (SCAPs). Materials and Methods NeoMTA Plus (Avalon Biomed), BiodentineTM (Septodont) and MTA HP Repair (Angelus) cements were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and sulphorhodamine-B (SRB) viability assays. Cells were seeded (1*104 cells mL-1) in 96-well plates and exposed to 1:4 diluted extract in 24 h and 72 h. For the analysis of bioactivity, alkaline phosphatase (ALP) enzyme activity and Alizarin Red S (AZR) were assessed after 24 h of cell culture in 12-well plates (1*104 cells mL-1), where cells were exposed to 1:4 diluted extract on days 1 and 7. Minimum Essential Eagle's Medium alpha modification was used as control. ANOVA and Tukey's post hoc test were used to compare the different cements at each experimental time point. Results No significant differences were found between the cements and the control specimens on MTT at 24 h and 72 h (P>0.05); however, the calcium silicate-based cement materials showed higher cell viability compared to the control group (P<0.05). In the 24-h SRB, NeoMTA Plus showed lower cell viability than BiodentineTM and MTA HP Repair (P<0.05), with all groups similar to the control group (P>0.05). Compared to 24-h results, only NeoMTA Plus presented increased cell viability at 72 h (P<0.05). ALP activity was similar across the materials at 1 day (P>0.05). ALP activity was higher for BiodentineTM when compared to NeoMTA Plus (P<0.05), nevertheless, it was similar to MTA HP Repair and control groups (P>0.05) at 7 days. At 1- and 7-day periods of AZR assay, BiodentineTM presented higher levels of mineralized nodule formation (P<0.05). Conclusion All evaluated calcium silicate-based cements demonstrated cell viability and bioactivity, suggesting that these (bio)materials may be indicated for use in regenerative dentine-pulp complex procedures.
Collapse
Affiliation(s)
- Adriana Knorr
- School of Dentistry, Brazilian Lutheran University (ULBRA), Canoas, RS, Brazil;
| | - Leticia Boldrin Mestieri
- Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil;
| | - Lucas Siqueira Pinheiro
- Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil;
| | - Roberta Almeida Mendes
- Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil;
| | | | - Fernando Branco Barletta
- Department of Endodontics, School of Dentistry, Brazilian Lutheran University (ULBRA), Canoas, RS, Brazil
| | - Fabiana Soares Grecca
- Department of Endodontics, School of Dentistry, Brazilian Lutheran University (ULBRA), Canoas, RS, Brazil,Corresponding author: Fabiana Soares Grecca, Av. Ramiro Barcelos, 2492, CEP 90035-003, Porto Alegre/RS, Brazil
| |
Collapse
|
17
|
Cunha NNDO, Junqueira MA, Cosme-Silva L, Santos LDST, Oliveira GAVD, Moretti Neto RT, Nogueira DA, Brigagão MRPL, Moretti ABDS. Expression of Matrix Metalloproteinases-8 and Myeloperoxidase in Pulp Tissue after Pulpotomy with Calcium Silicate Cements. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
18
|
Babaki D, Yaghoubi S, Matin MM. The effects of mineral trioxide aggregate on osteo/odontogenic potential of mesenchymal stem cells: a comprehensive and systematic literature review. Biomater Investig Dent 2020; 7:175-185. [PMID: 33313519 PMCID: PMC7717865 DOI: 10.1080/26415275.2020.1848432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
The significance of dental materials in dentin-pulp complex tissue engineering is undeniable. The mechanical properties and bioactivity of mineral trioxide aggregate (MTA) make it a promising biomaterial for future stem cell-based endodontic therapies. There are numerous in vitro studies suggesting the low cytotoxicity of MTA towards various types of cells. Moreover, it has been shown that MTA can enhance mesenchymal stem cells' (MSCs) osteo/odontogenic ability. According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA), a literature review was conducted in the Medline, PubMed, and Scopus databases. Among the identified records, the cytotoxicity and osteo/odontoblastic potential of MTA or its extract on stem cells were investigated. Previous studies have discovered the differentiation-inducing potential of MTA on MSCs, providing a background for dentin-pulp complex cell therapies using the MTA, however, animal trials are needed before moving into clinical trials. In conclusion, MTA can be a promising candidate dental biomaterial for futuristic stem cell-based endodontic therapies.
Collapse
Affiliation(s)
- Danial Babaki
- Department of Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, USA
| | - Sanam Yaghoubi
- Visiting Scholar at Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
19
|
Sanz JL, Forner L, Llena C, Guerrero-Gironés J, Melo M, Rengo S, Spagnuolo G, Rodríguez-Lozano FJ. Cytocompatibility and Bioactive Properties of Hydraulic Calcium Silicate-Based Cements (HCSCs) on Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs): A Systematic Review of In Vitro Studies. J Clin Med 2020; 9:jcm9123872. [PMID: 33260782 PMCID: PMC7761433 DOI: 10.3390/jcm9123872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The implementation of hydraulic calcium silicate-based endodontic cements (HCSCs) in biologically based endodontic procedures for the primary dentition has been recently investigated, focusing on the biological response of stem cells from human exfoliated deciduous teeth (SHEDs) towards them. The present systematic review aimed to present a qualitative synthesis of the available literature consisting of in vitro assays, which assessed the cytocompatibility and bioactive properties of HCSCs in direct contact with SHEDs. Following the PRISMA statement, an electronic database search was carried out in Medline, Scopus, Embase, Web of Science, and SciELO on March 31st and updated on November 16th, 2020. In vitro studies evaluating the biological response of SHEDs to the treatment with HCSCs were eligible. Within the term biological response, assays assessing the cytocompatibility (i.e., cell viability, migration, proliferation), cell plasticity or differentiation (i.e., osteo/odontogenic marker expression), and bioactivity or biomineralization (i.e., mineralized nodule formation) were included. A total of seven studies were included after the selection process. The study sample comprised an extensive range of cell viability, migration, proliferation, adhesion, and bioactivity assays regarding the biological response of SHEDs towards five different commercially available HCSCs (MTA, ProRoot MTA, Biodentine, iRoot BP Plus, and Theracal LC). Biodentine, MTA, and iRoot BP Plus showed significant positive results in cytocompatibility and bioactivity assays when cultured with SHEDs. The results from in vitro assays assessing the cytocompatibility and bioactivity of the HCSCs MTA, Biodentine, and iRoot BP Plus towards SHEDs support their use in vital pulp treatment for the primary dentition.
Collapse
Affiliation(s)
- José Luis Sanz
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Leopoldo Forner
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
- Correspondence: ; Tel.: +34-963864175
| | - Carmen Llena
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Julia Guerrero-Gironés
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain; (J.G.-G.); (F.J.R.-L.)
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - María Melo
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy; (S.R.); (G.S.)
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy; (S.R.); (G.S.)
- Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Francisco Javier Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain; (J.G.-G.); (F.J.R.-L.)
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
20
|
Matichescu A, Ardelean LC, Rusu LC, Craciun D, Bratu EA, Babucea M, Leretter M. Advanced Biomaterials and Techniques for Oral Tissue Engineering and Regeneration-A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5303. [PMID: 33238625 PMCID: PMC7700200 DOI: 10.3390/ma13225303] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
The reconstruction or repair of oral and maxillofacial functionalities and aesthetics is a priority for patients affected by tooth loss, congenital defects, trauma deformities, or various dental diseases. Therefore, in dental medicine, tissue reconstruction represents a major interest in oral and maxillofacial surgery, periodontics, orthodontics, endodontics, and even daily clinical practice. The current clinical approaches involve a vast array of techniques ranging from the traditional use of tissue grafts to the most innovative regenerative procedures, such as tissue engineering. In recent decades, a wide range of both artificial and natural biomaterials and scaffolds, genes, stem cells isolated from the mouth area (dental follicle, deciduous teeth, periodontal ligament, dental pulp, salivary glands, and adipose tissue), and various growth factors have been tested in tissue engineering approaches in dentistry, with many being proven successful. However, to fully eliminate the problems of traditional bone and tissue reconstruction in dentistry, continuous research is needed. Based on a recent literature review, this paper creates a picture of current innovative strategies applying dental stem cells for tissue regeneration in different dental fields and maxillofacial surgery, and offers detailed information regarding the available scientific data and practical applications.
Collapse
Affiliation(s)
- Anamaria Matichescu
- Department of Preventive Dentistry, Community and Oral Health, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.-C.R.); (D.C.); (M.B.)
| | - Dragos Craciun
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.-C.R.); (D.C.); (M.B.)
| | - Emanuel Adrian Bratu
- Department of Implant Supported Restorations, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marius Babucea
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.-C.R.); (D.C.); (M.B.)
| | - Marius Leretter
- Department of Prosthodontics, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
21
|
Rathinam E, Govindarajan S, Rajasekharan S, Declercq H, Elewaut D, De Coster P, Martens L. Transcriptomic profiling of human dental pulp cells treated with tricalcium silicate-based cements by RNA sequencing. Clin Oral Investig 2020; 25:3181-3195. [PMID: 33108483 DOI: 10.1007/s00784-020-03647-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Tricalcium silicate (TCS)-based biomaterials induce differentiation of human dental pulp cells (hDPCs) into odontoblasts/osteoblasts, which is regulated by the interplay between various intracellular pathways and their resultant secretome. The aim of this study was to compare the transcriptome-wide effects by next-generation RNA sequencing of custom-prepared hDPCs stimulated with TCS-based biomaterials: ProRoot white MTA (WMTA) (Dentsply, Tulsa; Tulsa, OK) and Biodentine (Septodont, Saint Maur des Fosses, France). METHODS Self-isolated hDPCs were seeded in a 6-well plate at a density of 5 × 105 cells per well. ProRoot white MTA and Biodentine were then placed in transwell inserts with a pore size of 0.4 μm and inserted in the well plate. RNA sequencing was performed after 3 and 7 days treatment. For post-validation, RT-PCR analyses were done on some of the RNA samples used for RNA sequencing. RESULTS Our RNA sequencing results for the first time identified 7533 differentially expressed genes (DEGs) between different treatments and the number of DEGs in Biodentine was higher than ProRoot WMTA at both 3 and 7 days. Despite their differential gene expression, both the TCS-based biomaterial treatments showed gene expressions mainly involved in odontoblast differentiation, angiogenesis, neurogenesis, dentinogenesis, and tooth mineralization. CONCLUSIONS The results of the present study illustrate that several important signalling pathways are induced by hDPCs stimulated with TCS-based biomaterials. CLINICAL RELEVANCE The differential expression of the genes associated with odontogenesis, angiogenesis, neurogenesis, dentinogenesis, and mineralization may affect the prognosis of teeth treated with Biodentine or ProRoot white MTA.
Collapse
Affiliation(s)
- Elanagai Rathinam
- Department of Paediatric Dentistry & Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.
| | - Srinath Govindarajan
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052, Ghent, Belgium
| | - Sivaprakash Rajasekharan
- Department of Paediatric Dentistry & Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, 8500, Kortrijk, Belgium
| | - Dirk Elewaut
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052, Ghent, Belgium
| | - Peter De Coster
- Department of Reconstructive Dentistry and Oral Biology, Dental School, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Luc Martens
- Department of Paediatric Dentistry & Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| |
Collapse
|
22
|
Nam OH, Lee HS, Kim JH, Chae YK, Hong SJ, Kang SW, Lee HS, Choi SC, Kim Y. Differential Gene Expression Changes in Human Primary Dental Pulp Cells Treated with Biodentine and TheraCal LC Compared to MTA. Biomedicines 2020; 8:biomedicines8110445. [PMID: 33105546 PMCID: PMC7690278 DOI: 10.3390/biomedicines8110445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to analyze the effects of pulp capping materials on gene expression changes in primary tooth-derived dental pulp cells using next-generation sequencing. Dental pulp cells were extracted and treated with mineral trioxide aggregate (MTA), Biodentine (BD), or TheraCal LC (TC). Cell viability assays were performed. Total RNA was extracted and analyzed through mRNA sequencing. Bioinformatic analysis of differential gene expression in dental pulp cells exposed to BD or TC versus MTA was performed. MTA, BD, and TC exposure had no significant effect on pulp cell viability (p > 0.05). Gene sets associated with inflammatory response (p = 2.94 × 10−5) and tumor necrosis factor alpha (TNF-α) signaling via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway (p = 2.94 × 10−5) were enriched in all materials. In BD-treated cells, Wnt/β-catenin signaling (p = 3.15 × 10−4) gene sets were enriched, whereas enrichment of interferon gamma (IFN-γ) response (p = 3 × 10−3) was observed in TC-treated cells. In gene plot analysis, marked increases in receptor activator of nuclear factor kappa-Β ligand (RANKL) expression were seen in TC-treated cells over time. Despite the similar cell viabilities exhibited among MTA-, BD-, and TC-treated cells, patterns of gene networks differed, suggesting that diverse functional gene differences may be associated with treatment using these materials.
Collapse
Affiliation(s)
- Ok Hyung Nam
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Ho Sun Lee
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Jae-Hwan Kim
- Department of Pediatric Dentistry, School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Yong Kwon Chae
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Seoung-Jin Hong
- Department of Prosthodontics, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Sang Wook Kang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Hyo-Seol Lee
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Sung Chul Choi
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
23
|
Cosme-Silva L, Santos AFD, Lopes CS, Dal-Fabbro R, Benetti F, Gomes-Filho JE, Queiroz IODA, Ervolino E, Viola NV. Cytotoxicity, inflammation, biomineralization, and immunoexpression of IL-1β and TNF-α promoted by a new bioceramic cement. J Appl Oral Sci 2020; 28:e20200033. [PMID: 32785523 PMCID: PMC7406194 DOI: 10.1590/1678-7757-2020-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/17/2020] [Indexed: 11/21/2022] Open
Abstract
Aim To evaluate the cytotoxicity, biocompatibility and mineralization capacity of BIO-C PULPO, and MTA. Methodology L929 fibroblasts were cultured and MTT assay was used to determine the material cytotoxicity on 6, 24, and 48 h. A total of 30 male rats (Wistar) aged between 4 and 6 months, weighing between 250 and 300 g were used. Polyethylene tubes containing BIO-C PULPO, MTA, and empty tubes were implanted into dorsal connective tissue. After the experimental periods (7, 15, 30, 60, and 90 days) the tubes were histologically analyzed using hematoxylin-eosin (H&E), immunolabeling of IL-1β and TNF-α, and von Kossa staining, or without staining for polarized light analysis. The average number of inflammatory cells was quantified; the mineralization assessment was determined by the area marked in μm2 and semiquantitative immunolabeling analyses of IL-1β and TNF-α were performed. Then, data underwent statistical analysis with a 5% significance level. Results It was observed that BIO-C PULPO and MTA presented cytocompatibility at 6, 24, and 48 similar or higher than control for all evaluated period. On periods 7 and 15 days, BIO-C PULPO was the material with the highest number of inflammatory cells (p<0.05). On periods 30, 60, and 90 days, BIO-C PULPO and MTA presented similar inflammatory reactions (p>0.05). No statistical differences were found between Control, BIO-C PULPO, and MTA for immunolabeling of IL-1β and TNF-α in the different periods of analysis (p<0.05). Positive von Kossa staining and birefringent structures under polarized light were observed in all analyzed periods in contact with both materials, but larger mineralization area was found with BIO-C PULPO on day 90 (p<0.05). Conclusion BIO-C PULPO was biocompatible and induced mineralization similar to MTA.
Collapse
Affiliation(s)
- Leopoldo Cosme-Silva
- Departamento de Endodontia, Faculdade de Odontologia, Universidade Federal de Alagoas, Maceió, Alagoas, Brasil
| | - Amanda Ferreira Dos Santos
- Departamento de Clínica e Cirurgia, Faculdade de Odontologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brasil
| | - Camila Soares Lopes
- Departamento de Clínica e Cirurgia, Faculdade de Odontologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brasil
| | - Renan Dal-Fabbro
- Departamento de Endodontia, Faculdade de Odontologia, Universidade Estadual Paulista, Araçatuba, São Paulo, Brasil
| | - Francine Benetti
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - João Eduardo Gomes-Filho
- Departamento de Endodontia, Faculdade de Odontologia, Universidade Estadual Paulista, Araçatuba, São Paulo, Brasil
| | | | - Edilson Ervolino
- Departamento de Endodontia, Faculdade de Odontologia, Universidade Estadual Paulista, Araçatuba, São Paulo, Brasil
| | - Naiana Viana Viola
- Departamento de Endodontia, Faculdade de Odontologia, Universidade Federal de Alagoas, Maceió, Alagoas, Brasil
| |
Collapse
|
24
|
Eraković M, Duka M, Bekić M, Tomić S, Ismaili B, Vučević D, Čolić M. Anti‐inflammatory and immunomodulatory effects of Biodentine on human periapical lesion cells in culture. Int Endod J 2020; 53:1398-1412. [DOI: 10.1111/iej.13351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Affiliation(s)
- M. Eraković
- Clinic for Stomatology Military Medical Academy BelgradeSerbia
| | - M. Duka
- Clinic for Stomatology Military Medical Academy BelgradeSerbia
| | - M. Bekić
- Institute for the Application of Nuclear Energy Zemun Serbia
| | - S. Tomić
- Institute for the Application of Nuclear Energy Zemun Serbia
| | - B. Ismaili
- Polyclinic, Ismaili Gostivar North Macedonia
| | - D. Vučević
- Medical Faculty of the Military Medical Academy University of Defense Belgrade Serbia
| | - M. Čolić
- Institute for the Application of Nuclear Energy Zemun Serbia
- Medical Faculty of the Military Medical Academy University of Defense Belgrade Serbia
- Medical Faculty Foča University of East Sarajevo R.Srpska Bosnia and Herzegovina
| |
Collapse
|
25
|
Jung Y, Yoon JY, Dev Patel K, Ma L, Lee HH, Kim J, Lee JH, Shin J. Biological Effects of Tricalcium Silicate Nanoparticle-Containing Cement on Stem Cells from Human Exfoliated Deciduous Teeth. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1373. [PMID: 32674469 PMCID: PMC7408117 DOI: 10.3390/nano10071373] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Nanomaterials can enhance interactions with stem cells for tissue regeneration. This study aimed to investigate the biological effects of tricalcium silicate nanoparticle-containing cement (Biodentine™) during or after setting on stem cells from human exfoliated deciduous teeth (SHED) to mimic clinically relevant situations in which materials are adapted. Specimens were divided into four groups depending on the start of extraction time (during (3, 6 and 12 min) or after setting (24 h)) and extracted in culture medium for 24 h for further physicochemical and biological analysis. After cell viability in serially diluted extracts was evaluated, odontogenic differentiation on SHED was evaluated by ARS staining using nontoxic conditions. A physicochemical analysis of extracts or specimens indicated different Ca ion content, pH, and surface chemistry among groups, supporting the possibility of different biological functionalities depending on the extraction starting conditions. Compared to the 'after setting' group, all 'during setting' groups showed cytotoxicity on SHED. The during setting groups induced more odontogenic differentiation at the nontoxic concentrations compared to the control. Thus, under clinically simulated extract conditions at nontoxic concentrations, Biodentine™ seemed to be a promising odontoblast differentiating biomaterial that is helpful for dental tissue regeneration. In addition, to simulate clinical situations when nanoparticle-containing cement is adjusted, biological effects during setting need to be considered.
Collapse
Affiliation(s)
- Yoonsun Jung
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea;
| | - Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea; (J.-Y.Y.); (K.D.P.); (H.-H.L.)
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea
| | - Kapil Dev Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea; (J.-Y.Y.); (K.D.P.); (H.-H.L.)
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea
| | - Lan Ma
- Sounth China Center of Craniofacial Stem Cell Research, Sun Yat-sen University, Guangzhou 510055, China;
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea; (J.-Y.Y.); (K.D.P.); (H.-H.L.)
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea
| | - Jongbin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea;
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea; (J.-Y.Y.); (K.D.P.); (H.-H.L.)
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea
| | - Jisun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Korea; (J.-Y.Y.); (K.D.P.); (H.-H.L.)
| |
Collapse
|
26
|
Tissue Engineering Approaches for Enamel, Dentin, and Pulp Regeneration: An Update. Stem Cells Int 2020; 2020:5734539. [PMID: 32184832 PMCID: PMC7060883 DOI: 10.1155/2020/5734539] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Stem/progenitor cells are undifferentiated cells characterized by their exclusive ability for self-renewal and multilineage differentiation potential. In recent years, researchers and investigations explored the prospect of employing stem/progenitor cell therapy in regenerative medicine, especially stem/progenitor cells originating from the oral tissues. In this context, the regeneration of the lost dental tissues including enamel, dentin, and the dental pulp are pivotal targets for stem/progenitor cell therapy. The present review elaborates on the different sources of stem/progenitor cells and their potential clinical applications to regenerate enamel, dentin, and the dental pulpal tissues.
Collapse
|
27
|
Javid B, Panahandeh N, Torabzadeh H, Nazarian H, Parhizkar A, Asgary S. Bioactivity of endodontic biomaterials on dental pulp stem cells through dentin. Restor Dent Endod 2019; 45:e3. [PMID: 32110533 PMCID: PMC7030969 DOI: 10.5395/rde.2020.45.e3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/14/2019] [Indexed: 11/12/2022] Open
Abstract
Objectives This study investigated the indirect effect of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA), as 2 calcium silicate-based hydraulic cements, on human dental pulp stem cells (hDPSCs) through different dentin thicknesses. Materials and Methods Two-chamber setups were designed to simulate indirect pulp capping (IPC). Human molars were sectioned to obtain 0.1-, 0.3-, and 0.5-mm-thick dentin discs, which were placed between the 2 chambers to simulate an IPC procedure. Then, MTA and CEM were applied on one side of the discs, while hDPSCs were cultured on the other side. After 2 weeks of incubation, the cells were removed, and cell proliferation, morphology, and attachment to the discs were evaluated under scanning electron microscopy (SEM). Energy-dispersive X-ray (EDXA) spectroscopy was performed for elemental analysis. Alkaline phosphatase (ALP) activity was assessed quantitatively. The data were analyzed using the Kruskal-Wallis and Mann-Whitney tests. Results SEM micrographs revealed elongated cells, collagen fibers, and calcified nucleations in all samples. EDXA verified that the calcified nucleations consisted of calcium phosphate. The largest calcifications were seen in the 0.1-mm-thick dentin subgroups. There was no significant difference in ALP activity across the CEM subgroups; however, ALP activity was significantly lower in the 0.1-mm-thick dentin subgroup than in the other MTA subgroups (p < 0.05). Conclusions The employed capping biomaterials exerted biological activity on hDPSCs, as shown by cell proliferation, morphology, and attachment and calcific precipitations, through 0.1- to 0.5-mm-thick layers of dentin. In IPC, the bioactivity of these endodontic biomaterials is probably beneficial.
Collapse
Affiliation(s)
- Bahar Javid
- Department of Restorative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Panahandeh
- Department of Restorative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Torabzadeh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Parhizkar
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Asgary
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Cosme-Silva L, Dal-Fabbro R, Gonçalves LDO, Prado ASD, Plazza FA, Viola NV, Cintra LTA, Gomes Filho JE. Hypertension affects the biocompatibility and biomineralization of MTA, High-plasticity MTA, and Biodentine®. Braz Oral Res 2019; 33:e060. [PMID: 31365705 DOI: 10.1590/1807-3107bor-2019.vol33.0060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/14/2019] [Indexed: 12/23/2022] Open
Abstract
This study evaluated the effect of hypertension on tissue response and biomineralization capacity of white Mineral Trioxide Aggregate (MTA), High-plasticity MTA (MTA HP), and Biodentine® (BDT) in rats. Polyethylene tubes filled with MTA, MTA HP, BDT, and the control group (empty tubes) were placed into the dorsal subcutaneous tissue of 32 male rats (16 normotensive (NT) and 16 hypertensive rats - 8 per group). After 7 and 30 days, the polyethylene tubes surrounded by connective tissue were removed, fixed, and embedded in histological resin. The mean number of inflammatory cells was estimated in HE-stained sections, biomineralization was quantified as area (µm2) by Kossa (VK) staining, and examination by polarized light (LP) microscopy was performed. The differences amongst the groups were analyzed statistically by the Mann-Whitney or Student's t test, according to Shapiro-Wilk test of normality (p < 0.05). The inflammatory responses to all materials were greater in hypertensive rats than in NT rats (p < 0.05). Positive VK staining in MTA and BDT were more pronounced in NT rats at 7 and 30 days (p < 0.05). Birefringent structures in LP for MTA, MTA HP, and BDT were more pronounced in NT rats at 7 days (p<0.05). In rats, hypertension was able to increase inflammatory infiltrate and decrease biomineralization of the tested materials.
Collapse
Affiliation(s)
- Leopoldo Cosme-Silva
- Universidade Estadual Paulista - Unesp, School of Dentistry, Departament of Endodontics, Araçatuba, SP, Brazil
| | - Renan Dal-Fabbro
- Universidade Estadual Paulista - Unesp, School of Dentistry, Departament of Endodontics, Araçatuba, SP, Brazil
| | | | - Alana Sant'Ana do Prado
- Universidade Estadual Paulista - Unesp, School of Dentistry, Departament of Endodontics, Araçatuba, SP, Brazil
| | - Flávia Alfredo Plazza
- Universidade Estadual Paulista - Unesp, School of Dentistry, Departament of Endodontics, Araçatuba, SP, Brazil
| | - Naiana Viana Viola
- Universidade Federal de Alfenas - Unifal, School of Dentistry, Departament of Surgery, Alfenas, MG, Brazil
| | | | - João Eduardo Gomes Filho
- Universidade Estadual Paulista - Unesp, School of Dentistry, Departament of Endodontics, Araçatuba, SP, Brazil
| |
Collapse
|
29
|
Tu MG, Sun KT, Wang TH, He YZ, Hsia SM, Tsai BH, Shih YH, Shieh TM. Effects of mineral trioxide aggregate and bioceramics on macrophage differentiation and polarization in vitro. J Formos Med Assoc 2019; 118:1458-1465. [PMID: 31358435 DOI: 10.1016/j.jfma.2019.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/PURPOSE Mineral trioxide aggregate (Pro-Root MTA, PR-MTA) and bioceramics (iRoot® SP Injectable Root Canal Sealer, iR-BC) are used for making apical plugs used in apexification, repairing root perforations during root canal therapy, and treating internal root resorption. The purpose of the present in vitro study was to compare the biological effects of PR-MTA- and iR-BC-based dental sealers in the mouse macrophage cell line RAW 264.7. METHODS Cytotoxicity and cell proliferation were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell hemocytometer, respectively. Protein expression of biomarkers of cell proliferation, autophagy, and osteoclast differentiation was determined by western blotting. Pro-inflammatory gene expression was examined using quantitative reverse transcription-PCR. RESULTS PR-MTA induced cytotoxicity in RAW 264.7 cells in a dose-dependent manner, and iR-BC was more cytotoxic than PR-MTA. Low-dose and short-term treatments of both PR-MTA and iR-BC induced RAW 264.7 cell proliferation. PR-MTA induced autophagy, whereas iR-BC did not. Neither PR-MTA nor iR-BC induced osteoclastogenesis. Pro-inflammatory genes were activated by both materials. However, the expression of inducible nitric oxide synthase (iNOS) mRNA was upregulated by iR-BC treatment, but not by PR-MTA treatment. CONCLUSION Overall, dental PR-MTA and iR-BC induced pro-inflammatory genes but did not induce osteoclastogenesis in macrophages. PR-MTA and iR-BC induced M2 and M1 polarization, respectively, of RAW 264.7 cells.
Collapse
Affiliation(s)
- Ming-Gene Tu
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Ting Sun
- School of Dentistry, China Medical University, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Department of Pediatric Dentistry, China Medical University Hospital, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Linko, Taiwan
| | - Yun-Zhen He
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Bi-He Tsai
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung, Taiwan.
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan.
| |
Collapse
|
30
|
Youssef AR, Emara R, Taher MM, Al-Allaf FA, Almalki M, Almasri MA, Siddiqui SS. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health 2019; 19:133. [PMID: 31266498 PMCID: PMC6604301 DOI: 10.1186/s12903-019-0827-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vital pulp therapy preserves and maintains the integrity and the health of dental pulp tissue that has been injured by trauma, caries or restorative procedures. The enhancement of cells viability and formation of reparative dentine and new blood vessels are vital determinants of the success of direct pulp capping. Therefore, the aims of this study was to evaluate and compare the in vitro osteogenic, odontogenic and angiogenic effects of mineral trioxide aggregate (MTA), calcium hydroxide [Ca(OH)2], Biodentine and Emdogain on dental pulp stem cells (DPSCs) and examine the effects of the tested materials on cell viability. METHODS DPSCs were treated with MTA, Ca(OH)2, Biodentine or Emdogain. Untreated cells were used as control. The cell viability was measured by MTT assay on day 3. Real-Time PCR with SYBR green was used to quantify the gene expression levels of osteogenic markers (alkaline phosphatase and osteopontin), odontogenic marker (dentin sialophosphoprotein) and angiogenic factor (vascular endothelial growth factor) on day 7 and day 14. RESULTS All capping materials showed variable cytotoxicity against DPSCs (77% for Emdogain, 53% for MTA, 26% for Biodentine and 16% for Ca(OH)2 compared to control (P value < 0.0001). Osteopontin (OPN) and dentin sialophosphoprotein (DSPP) gene expression was increased by all four materials. However, alkaline phosphatase (ALP) was upregulated by all materials except Emdogain. Vascular endothelial growth factor (VEGF) expression was upregulated by all four tested materials except Ca(OH)2. CONCLUSIONS Our results suggest MTA, Biodentine and Emdogain exhibit similar attributes and may score better than Ca(OH)2. Emdogain could be a promising alternative to MTA and Biodentine in enhancing pulp repair capacity following dental pulp injury. However, further future research is required to assess the clinical outcomes and compare it with the in vitro findings.
Collapse
Affiliation(s)
- Abdel-Rahman Youssef
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia. .,Department of Microbiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Ramy Emara
- Department of Restorative dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mohiuddin M Taher
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia.,Science and Technology Unit Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia.,Science and Technology Unit Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Majed Almalki
- Department of Restorative dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mazen A Almasri
- Oral Maxillofacial Surgery Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Shahid S Siddiqui
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Dahake PT, Panpaliya NP, Kale YJ, Dadpe MV, Kendre SB, Bogar C. Response of stem cells from human exfoliated deciduous teeth (SHED) to three bioinductive materials - An in vitro experimental study. Saudi Dent J 2019; 32:43-51. [PMID: 31920278 PMCID: PMC6950838 DOI: 10.1016/j.sdentj.2019.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Stem cells have unmatched capacity and potential for regeneration and when used alone or in combination with scaffolds to replace or repair damaged cells, can differentiate into any mature cell. Aim To evaluate the functional differentiation potential of EMD (Enamel Matrix Derivative), MTA (Mineral Trioxide Aggregate) and Biodentine on Stem Cells from Human Exfoliated Deciduous teeth (SHED). Objective To determine functional differentiation potential (osteogenic/odontogenic) of various biomaterials on SHED. Material and method SHED derived from 5th linear passage after sub-culturing were treated with EMD, MTA and Biodentine individually and their effect on cell viability was compared and evaluated by MTT (3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay for 7 days. Alizarin red S staining was used to assess mineralization potential of these materials by the staining calcium deposits for 14 days. The results were analyzed using One-way ANOVA, Post hoc Tukey’s test for multiple comparisons. Results It was observed that EMD imparted the highest cell viability at the end of 7 days (p < 0.001) followed by Biodentine and MTA. Likewise EMD showed highest potential to enhanced mineralization and expression of dentine sialoprotein (p < 0.001) followed by Biodentine and MTA at the end of 14 days (p<0.001). Conclusion It can be concluded that all the tested materials are bioinductive to SHED. EMD can be used for various vital pulp therapies as that of Biodentine and MTA with predictable as well as enhanced success rate.
Collapse
Affiliation(s)
- Prasanna T Dahake
- Department of Pedodontics and Preventive Dentistry, MIDSR Dental College and Hospital, Latur, Maharashtra, India
| | - Nikita P Panpaliya
- Department of Pedodontics and Preventive Dentistry, MIDSR Dental College and Hospital, Latur, Maharashtra, India
| | - Yogesh J Kale
- Department of Pedodontics and Preventive Dentistry, MIDSR Dental College and Hospital, Latur, Maharashtra, India
| | - Mahesh V Dadpe
- Department of Pedodontics and Preventive Dentistry, MIDSR Dental College and Hospital, Latur, Maharashtra, India
| | - Shrikant B Kendre
- Department of Pedodontics and Preventive Dentistry, MIDSR Dental College and Hospital, Latur, Maharashtra, India
| | - Chetana Bogar
- Central Research Laboratory, MMNGH Institute of Dental Sciences, Belgaum, Karnataka, India
| |
Collapse
|
32
|
Silva LLCE, Cosme-Silva L, Sakai VT, Lopes CS, Silveira APPD, Moretti Neto RT, Gomes-Filho JE, Oliveira TM, Moretti ABDS. Comparison between calcium hydroxide mixtures and mineral trioxide aggregate in primary teeth pulpotomy: a randomized controlled trial. J Appl Oral Sci 2019; 27:e20180030. [PMID: 31116277 PMCID: PMC6534371 DOI: 10.1590/1678-7757-2018-0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 10/06/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To evaluate the effect of calcium hydroxide (CH) associated with two different vehicles as a capping material for pulp tissue in primary molars, compared with mineral trioxide aggregate (MTA). METHODOLOGY Forty-five primary mandibular molars with dental caries were treated by conventional pulpotomy using one of the following materials: MTA only (MTA group), CH with saline (CH+saline group) and CH with polyethylene glycol (CH+PEG group) (15 teeth/group). Clinical and periapical radiographic examinations of the pulpotomized teeth were performed 3, 6, and 12 months after treatment. Data were tested by chi-squared analysis and a multiple comparison post-test. RESULTS The MTA group showed both clinical and radiographic treatment success in 14/14 teeth (100%), at all follow-up appointments. By clinical evaluation, no teeth in the CH+saline and CH+PEG groups had signs of mobility, fistula, swelling or inflammation of the surrounding gingival tissue. However, in the CH+saline group, radiographic analysis detected internal resorption in up to 9/15 teeth (67%), and inter-radicular bone resorption and furcation radiolucency in up to 5/15 teeth (36%), from 3 to 12 months of follow-up. In the CH+PEG group, 2/11 teeth (18%) had internal resorption and 1/11 teeth (9%) presented bone resorption and furcation radiolucency at all follow-up appointments. CONCLUSION CH with PEG performed better than CH with saline as capping material for pulpotomy of primary teeth. However, both combinations yielded clinical and radiographic results inferior to those of MTA alone.
Collapse
Affiliation(s)
- Lidiane Lucas Costa E Silva
- Universidade Federal de Alfenas (UNIFAL), Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil
| | - Leopoldo Cosme-Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Dentística Restauradora - Endodontia, Araçatuba, São Paulo, Brasil
| | - Vivien Thiemy Sakai
- Universidade Federal de Alfenas (UNIFAL), Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil
| | - Camila Soares Lopes
- Universidade Federal de Alfenas (UNIFAL), Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil
| | - Ana Paula Pereira da Silveira
- Universidade Federal de Alfenas (UNIFAL), Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil
| | - Rafael Tobias Moretti Neto
- Universidade Federal de Alfenas (UNIFAL), Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil
| | - João Eduardo Gomes-Filho
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Dentística Restauradora - Endodontia, Araçatuba, São Paulo, Brasil
| | - Thais Marchini Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, São Paulo, Brasil
| | - Ana Beatriz da Silveira Moretti
- Universidade Federal de Alfenas (UNIFAL), Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil
| |
Collapse
|
33
|
Cosme-Silva L, Benetti F, Dal-Fabbro R, Gomes Filho JE, Sakai VT, Cintra LTA, Alvarez N, Ervolino E, Viola NV. Biocompatibility and biomineralization ability of Bio-C Pulpecto. A histological and immunohistochemical study. Int J Paediatr Dent 2019; 29:352-360. [PMID: 30620114 DOI: 10.1111/ipd.12464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 11/28/2022]
Abstract
AIM To evaluate the inflammatory response, biomineralization and production of osteocalcin (OCN), osteopontin (OPN), and bone sialoprotein (BSP) of a new root filling material for primary teeth (Bio-C Pulpecto) compared to MTA. DESIGN Polyethylene tubes containing Bio-C Pulpecto, MTA, and empty tubes were implanted into the dorsal connective tissue. After 7, 15, 30, 60, and 90 days, the tubes with surrounding tissue were removed and histologically processed to be analysed using haematoxylin and eosin, von Kossa staining, or no staining for observation under polarized light and immunohistochemistry for the detection of OCN, OPN, and BSP. The Kruskal-Wallis test was used followed by Dunn's test. The significance level was set at 5%. RESULTS The inflammatory response observed with MTA and Bio-C Pulpecto was more exacerbated until the 15th day and decreased from 30 days on. No significant difference was found between control, MTA, and Bio-C Pulpecto (P > 0.05). Bio-C Pulpecto and MTA showed positivity for von Kossa and birefringent to polarized light. The immunolabelling for OCN, OPN, and BSP was more intense for MTA and Bio-C Pulpecto on days 60 and 90 (P > 0.05). CONCLUSION Bio-C Pulpecto was biocompatible, induced biomineralization and was immunopositive for osteogenic markers such as OCN, OPN, and BSP, similarly to MTA.
Collapse
Affiliation(s)
- Leopoldo Cosme-Silva
- Department of Restorative Dentistry, Araçatuba Dental School, Endodontics, UNESP-Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Francine Benetti
- Department of Restorative Dentistry, Araçatuba Dental School, Endodontics, UNESP-Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Renan Dal-Fabbro
- Department of Restorative Dentistry, Araçatuba Dental School, Endodontics, UNESP-Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - João Eduardo Gomes Filho
- Department of Restorative Dentistry, Araçatuba Dental School, Endodontics, UNESP-Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Vivien T Sakai
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Luciano T A Cintra
- Department of Restorative Dentistry, Araçatuba Dental School, Endodontics, UNESP-Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Nathalia Alvarez
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Naiana V Viola
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| |
Collapse
|
34
|
Cosme‐Silva L, Gomes‐Filho JE, Benetti F, Dal‐Fabbro R, Sakai VT, Cintra LTA, Ervolino E, Viola NV. Biocompatibility and immunohistochemical evaluation of a new calcium silicate‐based cement, Bio‐C Pulpo. Int Endod J 2019; 52:689-700. [DOI: 10.1111/iej.13052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- L. Cosme‐Silva
- Department of Endodontics Araçatuba School of Dentisty São Paulo State University (UNESP) Araçatuba SPBrazil
| | - J. E. Gomes‐Filho
- Department of Endodontics Araçatuba School of Dentisty São Paulo State University (UNESP) Araçatuba SPBrazil
| | - F. Benetti
- Department of Endodontics Araçatuba School of Dentisty São Paulo State University (UNESP) Araçatuba SPBrazil
| | - R. Dal‐Fabbro
- Department of Endodontics Araçatuba School of Dentisty São Paulo State University (UNESP) Araçatuba SPBrazil
| | - V. T. Sakai
- Department of Clinics and Surgery School of Dentistry Federal University of Alfenas (UNIFAL‐MG) Alfenas MGBrazil
| | - L. T. A. Cintra
- Department of Endodontics Araçatuba School of Dentisty São Paulo State University (UNESP) Araçatuba SPBrazil
| | - E. Ervolino
- Department of Basic Sciences Araçatuba School of Dentisty São Paulo State University (UNESP) Araçatuba SP Brazil
| | - N. V. Viola
- Department of Clinics and Surgery School of Dentistry Federal University of Alfenas (UNIFAL‐MG) Alfenas MGBrazil
| |
Collapse
|
35
|
Javid B, Panahandeh N, Torabzadeh H, Nazarian H, Parhizkar A, Asgary S. Bioactivity of endodontic biomaterials on dental pulp stem cells through dentin. Restor Dent Endod 2019. [DOI: 10.5395/rde.2019.44.e43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Bahar Javid
- Department of Restorative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Panahandeh
- Department of Restorative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Torabzadeh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Parhizkar
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Asgary
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Harms CS, Schäfer E, Dammaschke T. Clinical evaluation of direct pulp capping using a calcium silicate cement—treatment outcomes over an average period of 2.3 years. Clin Oral Investig 2018; 23:3491-3499. [DOI: 10.1007/s00784-018-2767-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022]
|
37
|
Wang QQ, Wang CM, Cheng BH, Yang CQ, Bai B, Chen J. Signaling transduction regulated by 5-hydroxytryptamine 1A receptor and orexin receptor 2 heterodimers. Cell Signal 2018; 54:46-58. [PMID: 30481562 DOI: 10.1016/j.cellsig.2018.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/09/2022]
Abstract
As G-protein-coupled receptors (GPCRs), 5-hydroxytryptamine 1A receptor (5-HT1AR) and orexin receptor 2 (OX2R) regulate the levels of the cellular downstream molecules. The heterodimers of different GPCRs play important roles in various of neurological diseases. Moreover, 5-HT1AR and OX2R are involved in the pathogenesis of neurological diseases such as depression with deficiency of hippocampus plasticity. However, the direct interaction of the two receptors remains elusive. In the present study, we firstly demonstrated the heterodimer formation of 5-HT1AR and OX2R. Exchange protein directly activated by cAMP (Epac) cAMP bioluminescence resonance energy transfer (BRET) biosensor analysis revealed that the expression levels of cellular cAMP significantly increased in HEK293T cells transfected with the two receptors compared with the 5-HT1AR group. Additionally, the cellular level of calcium was upregulated robustly in HEK293T cells co-transfected with 5-HT1AR and OX2R group after agonist treatment. Furthermore, western blotting data showed that 5-HT1AR and OX2R heterodimer decreased the levels of phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element-binding protein (CREB). These results not only unraveled the formation of 5-HT1AR and OX2R heterodimer but also suggested that the heterodimer affected the downstream signaling pathway, which will provide new insights into the function of the two receptors in the brain.
Collapse
Affiliation(s)
- Qin-Qin Wang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Chun-Mei Wang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Bao-Hua Cheng
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Chun-Qing Yang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Bo Bai
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China.
| | - Jing Chen
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
38
|
Biological interactions of a calcium silicate based cement (Biodentine™) with Stem Cells from Human Exfoliated Deciduous teeth. Dent Mater 2018; 34:1797-1813. [PMID: 30316525 DOI: 10.1016/j.dental.2018.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the biological interactions of a calcium silicate based cement (Biodentine™) with Stem Cells from Human Exfoliated Deciduous teeth (SHED), focusing on viability/proliferation, odontogenic differentiation, biomineralization and elemental release/exchange. METHODS Biodentine™ specimens were used directly or for eluate preparation at serial dilutions (1:1-1:64). SHED cultures were established from deciduous teeth of healthy children. Viability/proliferation and morphological characteristics were evaluated by live/dead fluorescent staining, MTT assay and Scanning Electron Microscopy. Odontogenic differentiation by qRT-PCR, biomineralization by Alizarin red S staining, while ion elution by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). RESULTS SHED effectively attached within the crystalline surface of Biodentine™ specimens acquiring a spindle-shaped phenotype. Statistically significant stimulation of cell proliferation was induced at day 3 by eluates in dilutions from 1:16 to 1:64. Differential, concentration- and time-dependent expression patterns of odontogenic genes were observed under non-inductive and inductive (osteogenic) conditions, with significant up-regulation of DSPP and Runx2 at higher dilutions and a peak in expression of BMP-2, BGLAP and MSX-2 at 1:8 dilution on day 7. Progressive increase in mineralized tissue formation was observed with increasing dilutions of Biodentine™ eluates. ICP-OES indicated that Biodentine™ absorbed Ca, Mg and P ions from culture medium, while releasing Si and Sr ions from its backbone. SIGNIFICANCE Biodentine™ interacts through elemental release/uptake with the cellular microenvironment, triggering odontogenic differentiation and biomineralization in a concentration-dependent manner. These results reveal a promising strategy for application of the calcium silicate based cement (Biodentine™) for vital pulp therapies of deciduous teeth in Paediatric Dentistry.
Collapse
|
39
|
Mahmoud SH, El-Negoly SA, Zaen El-Din AM, El-Zekrid MH, Grawish LM, Grawish HM, Grawish ME. Biodentine versus mineral trioxide aggregate as a direct pulp capping material for human mature permanent teeth - A systematic review. J Conserv Dent 2018; 21:466-473. [PMID: 30294104 PMCID: PMC6161524 DOI: 10.4103/jcd.jcd_198_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/21/2018] [Accepted: 07/29/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Biodentine is comparatively a new biomaterial claimed to have properties comparable to mineral trioxide aggregate (MTA). Biodentine and MTA are effectively used for direct pulp capping (DPC), and they are capable of regenerating relatively damaged pulp and formation of hard dentine bridge. OBJECTIVES The aim of this systematic review was to test the null hypothesis of no difference between Biodentine and MTA as DPC materials for human permanent mature teeth, against the alternative hypothesis of a difference. DATA SOURCES Clinical trials were identified by electronic databases searches of Midline, CENTRAL Cochrane Library, Latin American and Caribbean Health Sciences Literature, Scopus, Scientific Electronic Library Online, evidence-based endodontics literature, KoreaMed, and Google Scholar. The literature search was performed from January 2010 to February 2018. Hand searches were also performed for relevant abstracts, books, and reference lists. Titles and abstracts of studies identified using the above-described protocol were independently screened by two authors. Full texts of studies judged by title and abstracts to be relevant were independently evaluated by two authors for stated eligibility criteria. STUDY ELIGIBILITY CRITERIA The eligibility criteria included randomized clinical trials (RCTs) and non-RCTs. PARTICIPANTS Patients with permanent mature molars indicated for surgical extraction or molars that have symptomless exposure of vital pulp tissue by caries or trauma. In both cases, the molars were subjected to DPC. INTERVENTIONS The pulp exposures were directly treated by Biodentine or MTA. STUDY APPRAISAL To assess article quality, two authors independently used the risk of bias in nonrandomized studies - of interventions. METHODS Qualitative metasynthesis was used to analyze data across qualitative studies. RESULTS The initial search identified 8725 unique references through the search process. No additional studies were identified through handsearching. After filtering, 915 references were recorded and screened. After the eligibility criteria were applied, seven unduplicated prospective and retrospective cohort studies were included in the qualitative metasynthesis. LIMITATIONS Further RCTs with much larger sample size and proper methodology with longer observational time are still in need to adequately address the questions of the present systematic review. CONCLUSION AND IMPLICATIONS OF KEY FINDINGS Within the limitations of this review, it may be concluded that Biodentine had a similar effect on dentin bridge formation likely to MTA. However, this conclusion is based on only very few well-conducted prospective and retrospective cohort studies. SYSTEMATIC REVIEW REGISTRATION NUMBER The review had been registered with PROSPERO (registration number CRD42018089302).
Collapse
Affiliation(s)
- Salah H. Mahmoud
- Department of Operative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Salwa A. El-Negoly
- Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Ahmed M. Zaen El-Din
- Department of Operative Dentistry, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - Mona H. El-Zekrid
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Lamyaa M. Grawish
- Department of Undergraduate Students, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - Hala M. Grawish
- Department of Undergraduate Students, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - Mohammed E. Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
40
|
|