1
|
Pereira PML, Fernandes BT, dos Santos VR, Cabral WRC, Lovo-Martins MI, Alonso L, Lancheros CAC, de Paula JC, Camargo PG, Suzukawa HT, Alonso A, Macedo F, Nakamura CV, Tavares ER, de Lima Ferreira Bispo M, Yamauchi LM, Pinge-Filho P, Yamada-Ogatta SF. Antiprotozoal Activity of Benzoylthiourea Derivatives against Trypanosoma cruzi: Insights into Mechanism of Action. Pathogens 2023; 12:1012. [PMID: 37623972 PMCID: PMC10457850 DOI: 10.3390/pathogens12081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
For decades, only two nitroheterocyclic drugs have been used as therapeutic agents for Chagas disease. However, these drugs present limited effectiveness during the chronic phase, possess unfavorable pharmacokinetic properties, and induce severe adverse effects, resulting in low treatment adherence. A previous study reported that N-(cyclohexylcarbamothioyl) benzamide (BTU-1), N-(tert-butylcarbamothioyl) benzamide (BTU-2), and (4-bromo-N-(3-nitrophenyl) carbamothioyl benzamide (BTU-3) present selective antiprotozoal activity against all developmental forms of Trypanosoma cruzi Y strain. In this study, we investigated the mechanism of action of these compounds through microscopy and biochemical analyses. Transmission electron microscopy analysis showed nuclear disorganization, changes in the plasma membrane with the appearance of blebs and extracellular arrangements, intense vacuolization, mitochondrial swelling, and formation of myelin-like structures. Biochemical results showed changes in the mitochondrial membrane potential, reactive oxygen species content, lipid peroxidation, and plasma membrane fluidity. In addition, the formation of autophagic vacuoles was observed. These findings indicate that BTU-1, BTU-2, and BTU-3 induced profound morphological, ultrastructural, and biochemical alterations in epimastigote forms, triggering an autophagic-dependent cell death pathway.
Collapse
Affiliation(s)
- Patrícia Morais Lopes Pereira
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Bruna Terci Fernandes
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Vitória Ribeiro dos Santos
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Weslei Roberto Correia Cabral
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Maria Isabel Lovo-Martins
- Laboratory of Experimental Immunopathology, Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina 86057-970, Brazil;
| | - Lais Alonso
- Institute of Physics, Federal University of Goiás, Goiania 74690-900, Brazil; (L.A.); (A.A.)
| | | | | | - Priscila Goes Camargo
- Laboratory of Medicinal Molecules Synthesis, Department of Chemistry, State University of Londrina, Londrina 86057-970, Brazil; (P.G.C.); (M.d.L.F.B.)
| | - Helena Tiemi Suzukawa
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Antônio Alonso
- Institute of Physics, Federal University of Goiás, Goiania 74690-900, Brazil; (L.A.); (A.A.)
| | - Fernando Macedo
- Laboratory of Medicinal Molecules Synthesis, Department of Chemistry, State University of Londrina, Londrina 86057-970, Brazil; (P.G.C.); (M.d.L.F.B.)
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, Department of Basic Health Sciences, State University of Maringá, Maringa 87020-900, Brazil;
| | - Eliandro Reis Tavares
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Marcelle de Lima Ferreira Bispo
- Laboratory of Medicinal Molecules Synthesis, Department of Chemistry, State University of Londrina, Londrina 86057-970, Brazil; (P.G.C.); (M.d.L.F.B.)
| | - Lucy Megumi Yamauchi
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| | - Phileno Pinge-Filho
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Experimental Immunopathology, Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina 86057-970, Brazil;
| | - Sueli Fumie Yamada-Ogatta
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (P.M.L.P.); (B.T.F.); (W.R.C.C.); (H.T.S.); (P.P.-F.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (V.R.d.S.); (E.R.T.)
| |
Collapse
|
2
|
Etheridge RD. Protozoan phagotrophy from predators to parasites: An overview of the enigmatic cytostome-cytopharynx complex of Trypanosoma cruzi. J Eukaryot Microbiol 2022; 69:e12896. [PMID: 35175673 PMCID: PMC11110969 DOI: 10.1111/jeu.12896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Eating is fundamental and from this basic principle, living organisms have evolved innumerable strategies to capture energy and nutrients from their environment. As part of the world's aquatic ecosystems, the expansive family of heterotrophic protozoans uses self-generated currents to funnel prokaryotic prey into an ancient, yet highly enigmatic, oral apparatus known as the cytostome-cytopharynx complex prior to digestion. Despite its near ubiquitous presence in protozoans, little is known mechanistically about how this feeding organelle functions. Intriguingly, one class of these flagellated phagotrophic predators known as the kinetoplastids gave rise to a lineage of obligate parasitic protozoa, the trypanosomatids, that can infect a wide variety of organisms ranging from plants to humans. One parasitic species of humans, Trypanosoma cruzi, has retained this ancestral organelle much like its free-living relatives and continues to use it as its primary mode of endocytosis. In this review, we will highlight foundational observations made regarding the cytostome-cytopharynx complex and examine some of the most pressing questions regarding the mechanistic basis for its function. We propose that T. cruzi has the potential to serve as an excellent model system to dissect the enigmatic process of protozoal phagotrophy and thus enhance our overall understanding of fundamental eukaryotic biology.
Collapse
Affiliation(s)
- Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Silva TRM, Ferrer-Miranda E, de Oliveira JCP, Santoro KR, Alves LC, de Barros LSS, Ramos RAN, de Carvalho GA. Infections by trypanosomatid (Kinetoplastida: Trypanosomatidae) in triatomines (Hemiptera: Triatominae): A spatiotemporal assessment in an endemic area for Chagas disease. Zoonoses Public Health 2021; 69:95-105. [PMID: 34713588 DOI: 10.1111/zph.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
Abstract
This research analysed the spatiotemporal distribution of triatomines infected by trypanosomatid parasites in an endemic region for Chagas disease, in the state of Pernambuco, Northeastern Brazil. The database included the total number of triatomines captured from intradomicile and peridomicile areas, as well as the infection rate (IR) by trypanosomatid. The G i ∗ by Getis-Ord method was used to statistically identify significant concentration clusters and the IR of triatomines by trypanosomatids. A generalized linear regression model with a binomial distribution was used to evaluate the probability of finding an IR by trypanosomatids. Overall, of 4,800 triatomines examined, trypanosomatid forms similar to Trypanosoma cruzi were detected in 10.29% of them, and the majority of positive specimens (98.17%) were collected at intradomicile. The geospatial analyses identified triatomines clusters in intradomicile and peridomicile environments. According to the logistic regression data for species (Panstrongylus lutzi, P. megistus, Triatoma brasiliensis and T. pseudomaculata), the probability of detection of T. cruzi infection remains constant in up to 50 specimens examined or more. The findings of this research revealed a scenario never studied in this area through this type of spatiotemporal analysis, which is essential to identify areas of vulnerability for the occurrence of these vectors and consequently for Chagas disease.
Collapse
Affiliation(s)
| | - Edyniesky Ferrer-Miranda
- Graduate Program in Biometrics and Applies Statistics, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Kleber Régis Santoro
- Graduate Program in Biometrics and Applies Statistics, Federal Rural University of Pernambuco, Recife, Brazil
| | - Leucio Câmara Alves
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
4
|
de Souza C, Carvalho JA, Abreu AS, de Paiva LP, Ambrósio JAR, Junior MB, de Oliveira MA, Mittmann J, Simioni AR. Polyelectrolytic gelatin nanoparticles as a drug delivery system for the promastigote form of Leishmania amazonensis treatment. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:1-21. [PMID: 32847485 DOI: 10.1080/09205063.2020.1815495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, phthalocianato[bis(dimethylaminoethanoxy)] silicon (NzPC) was loaded onto gelatin nanoparticles functionalized with polyelectrolytes (polystyrene sulfonate/polyallylamine hydrochloride) by layer-by-layer (LbL) assembly for photodynamic therapy (PDT) application in promastigote form of Leishmania amazonensis treatment. The process yield, and encapsulation efficiency were 80.0% ± 1.8 and EE = 87.0% ± 1.1, respectively. The polyelectrolytic gelatin nanoparticles (PGN) had a mean diameter of 437.4 ± 72.85 nm, narrow distribution size with a polydispersity index of 0.086. The obvious switching of zeta potential indicates successful alternating deposition of the polyanion PSS and polycation PAH directly on the gelatin nanoparticles. Photosensitizer photophysical properties were shown to be preserved after gelatin nanoparticle encapsulation. The impact of the PDT in the viability and morphology of Leishmania amazonensis promastigote in culture medium was evaluated. The PGN-NzPc presented low toxicity at the dark and the PDT was capable of decreasing the viability in more than 80% in 0.1 µmol.L-1 concentration tested. The PDT also triggered significant morphological alterations in the Leishmania promastigotes. These results reinforce the idea that the use of PGN as photosensitizers carriers is useful for PDT of Leishmania promastigotes.
Collapse
Affiliation(s)
- Catarina de Souza
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| | - Janicy A Carvalho
- Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alexandro S Abreu
- Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas P de Paiva
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| | - Jéssica A R Ambrósio
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| | - Milton Beltrame Junior
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| | - Marco A de Oliveira
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| | - Josane Mittmann
- Distance Education Coordination, Vila Velha University, Vila Velha, ES, Brazil
| | - Andreza R Simioni
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| |
Collapse
|
5
|
Resende BC, Oliveira ACS, Guañabens ACP, Repolês BM, Santana V, Hiraiwa PM, Pena SDJ, Franco GR, Macedo AM, Tahara EB, Fragoso SP, Andrade LO, Machado CR. The Influence of Recombinational Processes to Induce Dormancy in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:5. [PMID: 32117793 PMCID: PMC7025536 DOI: 10.3389/fcimb.2020.00005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/08/2020] [Indexed: 01/02/2023] Open
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects around 8 million people worldwide. Chagas disease can be divided into two stages: an acute stage with high parasitemia followed by a low parasitemia chronic stage. Recently, the importance of dormancy concerning drug resistance in T. cruzi amastigotes has been shown. Here, we quantify the percentage of dormant parasites from different T. cruzi DTUs during their replicative epimastigote and amastigote stages. For this study, cells of T. cruzi CL Brener (DTU TcVI); Bug (DTU TcV); Y (DTU TcII); and Dm28c (DTU TcI) were used. In order to determine the proliferation rate and percentage of dormancy in epimastigotes, fluorescent-labeled cells were collected every 24 h for flow cytometer analysis, and cells showing maximum fluorescence after 144 h of growth were considered dormant. For the quantification of dormant amastigotes, fluorescent-labeled trypomastigotes were used for infection of LLC-MK2 cells. The number of amastigotes per infected LLC-MK2 cell was determined, and those parasites that presented fluorescent staining after 96 h of infection were considered dormant. A higher number of dormant cells was observed in hybrid strains when compared to non-hybrid strains for both epimastigote and amastigote forms. In order to investigate, the involvement of homologous recombination in the determination of dormancy in T. cruzi, we treated CL Brener cells with gamma radiation, which generates DNA lesions repaired by this process. Interestingly, the dormancy percentage was increased in gamma-irradiated cells. Since, we have previously shown that naturally-occurring hybrid T. cruzi strains present higher transcription of RAD51—a key gene in recombination process —we also measured the percentage of dormant cells from T. cruzi clone CL Brener harboring single knockout for RAD51. Our results showed a significative reduction of dormant cells in this T. cruzi CL Brener RAD51 mutant, evidencing a role of homologous recombination in the process of dormancy in this parasite. Altogether, our data suggest the existence of an adaptive difference between T. cruzi strains to generate dormant cells, and that homologous recombination may be important for dormancy in this parasite.
Collapse
Affiliation(s)
- Bruno Carvalho Resende
- Laboratory of Biochemistry Genetics, Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anny Carolline Silva Oliveira
- Laboratory of Cellular and Molecular Biology, Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna Carolina Paganini Guañabens
- Laboratory of Cellular and Molecular Biology, Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Marçal Repolês
- Laboratory of Biochemistry Genetics, Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Verônica Santana
- Laboratory of Biochemistry Genetics, Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Priscila Mazzochi Hiraiwa
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Sérgio Danilo Junho Pena
- Laboratory of Biochemistry Genetics, Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Glória Regina Franco
- Laboratory of Biochemistry Genetics, Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrea Mara Macedo
- Laboratory of Biochemistry Genetics, Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erich Birelli Tahara
- Laboratory of Biochemistry Genetics, Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stênio Perdigão Fragoso
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Luciana Oliveira Andrade
- Laboratory of Cellular and Molecular Biology, Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Renato Machado
- Laboratory of Biochemistry Genetics, Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Cooper C, Clode PL, Peacock C, Thompson RCA. Host-Parasite Relationships and Life Histories of Trypanosomes in Australia. ADVANCES IN PARASITOLOGY 2016; 97:47-109. [PMID: 28325373 DOI: 10.1016/bs.apar.2016.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trypanosomes constitute a group of flagellate protozoan parasites responsible for a number of important, yet neglected, diseases in both humans and livestock. The most significantly studied include the causative agents of African sleeping sickness (Trypanosoma brucei) and Chagas disease (Trypanosoma cruzi) in humans. Much of our knowledge about trypanosome host-parasite relationships and life histories has come from these two human pathogens. Recent investigations into the diversity and life histories of wildlife trypanosomes in Australia highlight that there exists a great degree of biological and behavioural variation within and between trypanosomes. In addition, the genetic relationships between some Australian trypanosomes show that they are unexpectedly more closely related to species outside Australia than within it. These findings have led to a growing focus on the importance of understanding parasites occurring naturally in wildlife to (1) better document parasite biodiversity, (2) determine evolutionary relationships and degree of host specificity, (3) understand host-parasite interactions and the role of parasites in the natural ecosystem and (4) identify biosecurity issues of emerging disease in both wildlife and human populations. Here we review what is known about the diversity, life histories, host-parasite interactions and evolutionary relationships of trypanosomes in Australian wildlife. In this context, we focus upon the genetic proximity of key Australian species to the pathogenic T. cruzi and discuss similarities in their biology and behaviour that present a potential risk of human disease transmission by Australian vectors and wildlife.
Collapse
Affiliation(s)
- C Cooper
- The University of Western Australia, Crawley, WA, Australia
| | - P L Clode
- The University of Western Australia, Crawley, WA, Australia
| | - C Peacock
- The University of Western Australia, Crawley, WA, Australia; Telethon Kids Institute, Subiaco, WA, Australia
| | | |
Collapse
|
7
|
Lemos M, Fermino BR, Simas-Rodrigues C, Hoffmann L, Silva R, Camargo EP, Teixeira MMG, Souto-Padrón T. Phylogenetic and morphological characterization of trypanosomes from Brazilian armoured catfishes and leeches reveal high species diversity, mixed infections and a new fish trypanosome species. Parasit Vectors 2015; 8:573. [PMID: 26546294 PMCID: PMC4636803 DOI: 10.1186/s13071-015-1193-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/31/2015] [Indexed: 01/02/2023] Open
Abstract
Background Several Trypanosoma species transmitted by leeches infect marine and freshwater fish worldwide. To date, all South American fish trypanosome species identified have been based on unreliable morphological parameters. We recently isolated and cultured trypanosomes from the Brazilian armoured catfishes Hypostomus luetkeni and H. affinis. Here, we report the first phylogenetic analyses of South American (Brazilian) trypanosomes isolated from fish, and from leeches removed from these fish. We also analysed morphologically and morphometrically the different forms of fish, leech and cultured trypanosomes. Methods V7V8 SSU rRNA and gGAPDH sequences were used for phylogenetic analysis of Brazilian fish and leech trypanosomes. Trypanosomes from cultures, fish blood and leech samples were also characterized morphologically and morphometrically by light and electron microscopy. Results In blood smears from fish high trypanosome prevalence (90–100 %) and parasitemia (0.9-1.0x102) were observed. Phylogenetic relationships using SSU rRNA and gGAPDH showed that, despite relevant sequence divergence, all Brazilian fish (and derived cultures) and leech trypanosomes clustered together into a single clade. The Brazilian clade clustered with European, North American and African fish trypanosomes. Based on sequence analysis, we uncovered a new species of Brazilian fish trypanosome, Trypanosoma abeli n. sp. Trypanosoma abeli cultures contained pleomorphic epimastigotes, small trypomastigotes and rare sphaeromastigotes. Ultrastructural features of T. abeli included a cytostome-cytopharynx complex in epi- and trypomastigotes, a compact rod-like kinetoplast, lysosome-related organelles (LROs) and multivesicular bodies. Trypanosomes found in fish blood smears and leech samples were highly pleomorphic, in agreement with sequence data suggesting that catfishes and leeches often have mixed trypanosome infections. Conclusions Trypanosoma abeli n. sp. is the first trypanosome from South American fishes isolated in culture, positioned in phylogenetic trees and characterized at the ultrastructural level. Trypanosoma abeli n. sp. is highly prevalent in H. luetkeni and H. affinis armoured catfish from the Atlantic Forest biome, and in other catfish species from the Amazon and the Pantanal. Sequencing data suggested that Brazilian catfish often have mixed trypanosome infections, highlighting the importance of molecular characterization to identify trypanosome species in fishes and leeches. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1193-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Moara Lemos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I, sala 019. Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de janeiro, 21941-902, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, bloco I, Rio de Janeiro, Brazil.
| | - Bruno R Fermino
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | - Cíntia Simas-Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Luísa Hoffmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, Brazil.
| | - Rosane Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, Brazil.
| | - Erney P Camargo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | - Marta M G Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | - Thaïs Souto-Padrón
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I, sala 019. Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de janeiro, 21941-902, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, bloco I, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Alves LR, Guerra-Slompo EP, de Oliveira AV, Malgarin JS, Goldenberg S, Dallagiovanna B. mRNA localization mechanisms in Trypanosoma cruzi. PLoS One 2013; 8:e81375. [PMID: 24324687 PMCID: PMC3852752 DOI: 10.1371/journal.pone.0081375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 10/13/2013] [Indexed: 01/06/2023] Open
Abstract
Asymmetric mRNA localization is a sophisticated tool for regulating and optimizing protein synthesis and maintaining cell polarity. Molecular mechanisms involved in the regulated localization of transcripts are widespread in higher eukaryotes and fungi, but not in protozoa. Trypanosomes are ancient eukaryotes that branched off early in eukaryote evolution. We hypothesized that these organisms would have basic mechanisms of mRNA localization. FISH assays with probes against transcripts coding for proteins with restricted distributions showed a discrete localization of the mRNAs in the cytoplasm. Moreover, cruzipain mRNA was found inside reservosomes suggesting new unexpected functions for this vacuolar organelle. Individual mRNAs were also mobilized to RNA granules in response to nutritional stress. The cytoplasmic distribution of these transcripts changed with cell differentiation, suggesting that localization mechanisms might be involved in the regulation of stage-specific protein expression. Transfection assays with reporter genes showed that, as in higher eukaryotes, 3'UTRs were responsible for guiding mRNAs to their final location. Our results strongly suggest that Trypanosoma cruzi have a core, basic mechanism of mRNA localization. This kind of controlled mRNA transport is ancient, dating back to early eukaryote evolution.
Collapse
Affiliation(s)
- Lysangela R. Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Eloise P. Guerra-Slompo
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Arthur V. de Oliveira
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Juliane S. Malgarin
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Samuel Goldenberg
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Bruno Dallagiovanna
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
- * E-mail:
| |
Collapse
|
9
|
Oliveira MPDC, Ramos TCP, Pinheiro AMVN, Bertini S, Takahashi HK, Straus AH, Haapalainen EF. Tridimensional ultrastructure and glycolipid pattern studies of Trypanosoma dionisii. Acta Trop 2013; 128:548-56. [PMID: 23933185 DOI: 10.1016/j.actatropica.2013.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/17/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
Abstract
Trypanosoma (Schizotrypanum) dionisii is a non-pathogenic bat trypanosome closely related to Trypanosoma cruzi, the etiological agent of Chaga's disease. Both kinetoplastids present similar morphological stages and are able to infect mammalian cells in culture. In the present study we examined 3D ultrastructure aspects of the two species by serial sectioning epimastigote and trypomastigote forms, and identified common carbohydrate epitopes expressed in T. dionisii, T. cruzi and Leishmania major. A major difference in 3D morphology was that T. dionisii epimastigote forms present larger multivesicular structures, restricted to the parasite posterior region. These structures could be related to T. cruzi reservosomes and are also rich in cruzipain, the major cysteine-proteinase of T. cruzi. We analyzed the reactivity of two monoclonal antibodies: MEST-1 directed to galactofuranose residues of glycolipids purified from Paracoccidioides brasiliensis, and BST-1 directed to glycolipids purified from T. cruzi epimastigotes. Both antibodies were reactive with T. dionisii epimastigotes by indirect immunofluorescense, but we noted differences in the location and intensity of the epitopes, when compared to T. cruzi. In summary, despite similar features in cellular structure and life cycle of T. dionisii and T. cruzi, we observed a unique morphological characteristic in T. dionisii that deserves to be explored.
Collapse
Affiliation(s)
- Miriam Pires de Castro Oliveira
- Departamento de Biologia Estrutural e Funcional, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, SP, 04023-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
10
|
Ramos TCP, Freymüller-Haapalainen E, Schenkman S. Three-dimensional reconstruction of Trypanosoma cruzi epimastigotes and organelle distribution along the cell division cycle. Cytometry A 2011; 79:538-44. [PMID: 21567937 DOI: 10.1002/cyto.a.21077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/14/2011] [Accepted: 04/12/2011] [Indexed: 11/08/2022]
Abstract
Trypanosoma cruzi is the protozoan that causes Chagas disease. It divides in the insect vector gut or in the cytosol of an infected mammalian cell. T. cruzi has one mitochondrion, one Golgi complex, one flagellum, and one cytostome. Here, we provide three-dimensional (3D) models of this protozoan based on images obtained from serial sections on electron microscopy at different stages of the cell cycle. Ultrathin serial sections were obtained from Epon™ embedded parasites, photographed in a transmission electron microscope, and 3D models were generated using Reconstruct and Blender 3D modeling softwares. The localization and distribution of organelles was evaluated and attributed to specific morphological patterns and deduced by distribution of specific markers by immunofluorescence analysis. The new features found in the 3D reconstructions are (1) the electron-dense chromatin is interconnected leaving an internal space for a centrally located nucleolus; (2) The kinetoplast is accommodated within a separated branch of the tubular and single mitochondrion; (3) The disk shaped kinetoplast, which is the mitochondrial DNA, duplicates from the interior in G2 phase; (4) The mitochondrion faces the external membrane and shrinks to accommodate an enlarged number of cytosolic vesicles from G1 to G2; (5) The cytostome progress from the parasite surface toward the posterior end contouring the kinetoplast and nucleus and retracts during cell cycle. These new observations might help understanding how organelles are formed and distributed in early divergent eukaryotic cells and provides a useful method to understand the organelle distribution in small eukaryotic cells.
Collapse
Affiliation(s)
- Thiago Cesar Prata Ramos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Brigada AM, Doña R, Caviedes-Vidal E, Moretti E, Basso B. American tripanosomiasis: a study on the prevalence of Trypanosoma cruzi and Trypanosoma cruzi-like organisms in wild rodents in San Luis province, Argentina. Rev Soc Bras Med Trop 2010; 43:249-53. [DOI: 10.1590/s0037-86822010000300007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/16/2010] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION: Chagas disease is caused by Trypanosoma cruzi. Wild and perianthropic mammals maintain the infection/transmission cycle, both in their natural habitat and in the peridomestic area. The aim of this paper was to present the results from a study on wild rodents in the central and northern regions of San Luis province, Argentina, in order to evaluate the prevalence of this infection. METHODS: Sherman traps were set up in capture areas located between latitudes 32º and 33º S, and longitudes 65º and 66º W. The captured rodents were taxonomically identified and hemoflagellates were isolated. Morphological, biometric and molecular studies and in vitro cultures were performed. Infection of laboratory animals and histological examination of the cardiac muscle and inoculation area were also carried out. Parasites were detected in circulating blood in Calomys musculinus, Graomys griseoflavus, Phyllotis darwini and Akodon molinae. The parasites were identified using biological criteria. Molecular PCR studies were performed on some isolates, which confirmed the characterization of these hemoflagellates as Trypanosoma cruzi. RESULTS AND CONCLUSIONS: Forty-four percent of the 25 isolates were identified as Trypanosoma cruzi, and the remaining 56% as Trypanosoma cruzi-like. These findings provide evidence that wild rats infected with Trypanosoma cruzi and Trypanosoma cruzi-like organisms are important in areas of low endemicity.
Collapse
Affiliation(s)
- Ana María Brigada
- Universidad Nacional de San Luis, Argentina; Universidad Nacional de San Luis, Argentina
| | - Roberto Doña
- Universidad Nacional de San Luis, Argentina; Universidad Nacional de San Luis, Argentina
| | - Enrique Caviedes-Vidal
- Universidad Nacional de San Luis, Argentina; Universidad Nacional de San Luis, Argentina; CONICET, Argentina
| | | | - Beatriz Basso
- Servicio Nacional del Chagas, Argentina; Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
12
|
Lupi O, Bartlett BL, Haugen RN, Dy LC, Sethi A, Klaus SN, Machado Pinto J, Bravo F, Tyring SK. Tropical dermatology: Tropical diseases caused by protozoa. J Am Acad Dermatol 2009; 60:897-925; quiz 926-8. [PMID: 19467364 DOI: 10.1016/j.jaad.2009.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 10/05/2008] [Accepted: 03/07/2009] [Indexed: 11/18/2022]
Abstract
UNLABELLED Protozoan infections are very common among tropical countries and have an important impact on public health. Leishmaniasis is the most widely disseminated protozoan infection in the world, while the trypanosomiases are widespread in both Africa and South America. Amebiasis, a less common protozoal infection, is a cause of significant morbidity in some regions. Toxoplasmosis and pneumocystosis (formerly thought to be caused by a protozoan) are worldwide parasitic infections with a very high incidence in immunocompromised patients but are not restricted to them. In the past, most protozoan infections were restricted to specific geographic areas and natural reservoirs. There are cases in which people from other regions may have come in contact with these pathogens. A common situation involves an accidental contamination of a traveler, tourist, soldier, or worker that has contact with a reservoir that contains the infection. Protozoan infections can be transmitted by arthropods, such as sandflies in the case of leishmaniasis or bugs in the case of trypanosomiases. Vertebrates also serve as vectors as in the case of toxoplasmosis and its transmission by domestic cats. The recognition of the clinical symptoms and the dermatologic findings of these diseases, and a knowledge of the geographic distribution of the pathogen, can be critical in making the diagnosis of a protozoan infection. LEARNING OBJECTIVES After completing this learning activity, participants should be able to recognize the significance of protozoan infections worldwide, identify the dermatologic manifestations of protozoan infections, and select the best treatment for the patient with a protozoan infection.
Collapse
Affiliation(s)
- Omar Lupi
- Department of Dermatology at Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND Chagas disease is common in Central and South America and the southern United States. The causative agent is Trypanosoma cruzi (order Kinetoplastida, family Trypanosomatidae), a kinetoplastid protozoan parasite of humans and other vertebrates. It is a serious public health issue and the leading cause of heart disease and cardiovascular death in Central and South America. In 1984, a colony baboon was discovered to be infected with T. cruzi. METHODS As the initial diagnosis was made by microscopic observation of the amastigote forms of T. cruzi in myocardial fibers, T. cruzi amastigotes have been identified in three additional baboons. RESULTS The primary findings were similar in all four baboons and were congestive heart failure with edema of dependent areas, hydrothorax, hydropericardium, and multifocal to diffuse lymphoplasmacytic myocarditis. CONCLUSIONS A baboon animal model of Chagas disease could contribute significantly to the development of therapies for the disease in humans.
Collapse
Affiliation(s)
- Jeff T. Williams
- Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, Texas, 78245-0549 USA
| | - Edward J. Dick
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, Texas, 78245-0549 USA
| | - John L. VandeBerg
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, Texas, 78245-0549 USA
| | - Gene B. Hubbard
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, Texas, 78245-0549 USA
| |
Collapse
|
14
|
Alves CR, Albuquerque-Cunha JM, Mello CB, Garcia ES, Nogueira NF, Bourguingnon SC, de Souza W, Azambuja P, Gonzalez MS. Trypanosoma cruzi: attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus. Exp Parasitol 2007; 116:44-52. [PMID: 17250827 DOI: 10.1016/j.exppara.2006.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/10/2006] [Accepted: 11/20/2006] [Indexed: 11/18/2022]
Abstract
Studies were carried out to identify proteins involved in the interface of Trypanosoma cruzi with the perimicrovillar membranes (PMM) of Rhodnius prolixus. Video microscopy experiments demonstrated high level of adhesion of T. cruzi Dm 28c epimastigotes to the surface of posterior midgut cells of non-treated R. prolixus. The parasites however were unable to attach to gut cells obtained from decapitated or azadirachtin-treated insects. The influence of carbohydrates on the adhesion to insect midgut was confirmed by inhibition of parasite attachment after midgut incubation with N-acetylgalactosamine, N-acetylmannosamine, N-acetylglucosamine, D-galactose, D-mannose or sialic acid. We observed that hydrophobic proteins in the surface of epimastigotes bind to polypeptides with 47.7, 45.5, 44, 43, 40.5, 36, 31 and 13kDa from R. prolixus PMM and that pre-incubation of lectins specifically inhibited binding to 31, 40.5, 44 and 45.5kDa proteins. We suggest that glycoproteins from PMM and hydrophobic proteins from epimastigotes are important for the adhesion of the parasite to the posterior midgut cells of the vector.
Collapse
Affiliation(s)
- C R Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bourguignon SC, Mello CB, Santos DO, Gonzalez MS, Souto-Padron T. Biological aspects of the Trypanosoma cruzi (Dm28c clone) intermediate form, between epimastigote and trypomastigote, obtained in modified liver infusion tryptose (LIT) medium. Acta Trop 2006; 98:103-9. [PMID: 16574051 DOI: 10.1016/j.actatropica.2006.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 02/21/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
We describe some biological characteristics of the Trypanosoma cruzi intermediate form derived from the transformation of epimastigotes to trypomastigotes obtained from cultivation in modified liver infusion tryptose (LIT) medium. The ultrastructural analysis of the intermediate forms in this medium showed the enlargement of the kinetoplast located adjacent to the flagellate nucleus. Some biological characteristics of the intermediate form are similar to trypomastigotes and others to epimastigotes. Despite displaying a similar trypomastigote surface charge, the intermediate forms, like the epimastigotes, are not resistant to complement-mediated lysis. Moreover, the intermediate forms are unable to infect cultured fibroblasts cells but develop limited infections in macrophages.
Collapse
Affiliation(s)
- Saulo C Bourguignon
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Celular e Molecular, 24020-150 Niterói, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
16
|
De Carvalho EAB, Andrade PP, Silva NH, Pereira EC, Figueiredo RCBQ. Effect of usnic acid from the lichen Cladonia substellata on Trypanosoma cruzi in vitro: an ultrastructural study. Micron 2005; 36:155-61. [PMID: 15629646 DOI: 10.1016/j.micron.2004.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 09/16/2004] [Accepted: 09/16/2004] [Indexed: 10/26/2022]
Abstract
Chemotherapy for Chagas' disease is still unsatisfactory due to toxicity and limited effectiveness of the available drugs. In this work we have investigated the effect of usnic acid, isolated from lichen Cladonia substellata, against Trypanosoma cruzi, in vitro. Incubation of culture epimastigotes with 5-30microg/ml of this compound resulted in growth inhibition in a dosis-dependent manner. Ultrastructural analysis of treated epimastigotes showed damage to mitochondria, with a marked increase in kinetoplast volume and vacuolation of the mitochondrial matrix. Intense lysis of bloodstream trypomastigotes was observed with all drug concentrations tested. Besides mitochondrial and kinetoplast damage, trypomastigotes also presented enlargement of the flagellar pocket, as well as intense cytoplasm vacuolation. Treatment of infected macrophages with 40 or 80microg/ml usnic acid induced marked cytoplasm vacuolation in intracellular amastigote forms, with disorganization of parasite kinetoplast and mitochondria, but with no significant ultrastructural damage to the host cells.
Collapse
Affiliation(s)
- E A B De Carvalho
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
17
|
Mörking PA, Dallagiovanna BM, Foti L, Garat B, Picchi GFA, Umaki ACS, Probst CM, Krieger MA, Goldenberg S, Fragoso SP. TcZFP1: a CCCH zinc finger protein of Trypanosoma cruzi that binds poly-C oligoribonucleotides in vitro. Biochem Biophys Res Commun 2004; 319:169-77. [PMID: 15158457 DOI: 10.1016/j.bbrc.2004.04.162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Indexed: 11/29/2022]
Abstract
We have identified two zinc finger proteins of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease in humans. These proteins, named tcZFP1 and tcZFP2, share the unusual zinc finger motif (CCCH) found in a diverse range of RNA-binding proteins involved in various aspects of the control of cell homeostasis and differentiation. We report here the functional expression of a recombinant tcZFP1, and the relative affinity and stability of the specific complexes formed between the protein and synthetic oligoribonucleotides containing C-rich sequences.
Collapse
Affiliation(s)
- Patrícia A Mörking
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná 81350-010, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Peña-Diaz J, Montalvetti A, Flores CL, Constán A, Hurtado-Guerrero R, De Souza W, Gancedo C, Ruiz-Perez LM, Gonzalez-Pacanowska D. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae. Mol Biol Cell 2003; 15:1356-63. [PMID: 14699057 PMCID: PMC363142 DOI: 10.1091/mbc.e03-10-0720] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is a key enzyme in the sterol biosynthesis pathway, but its subcellular distribution in the Trypanosomatidae family is somewhat controversial. Trypanosoma cruzi and Leishmania HMGRs are closely related in their catalytic domains to bacterial and eukaryotic enzymes described but lack an amino-terminal domain responsible for the attachment to the endoplasmic reticulum. In the present study, digitonin-titration experiments together with immunoelectron microscopy were used to establish the intracellular localization of HMGR in these pathogens. Results obtained with wild-type cells and transfectants overexpressing the enzyme established that HMGR in both T. cruzi and Leishmania major is localized primarily in the mitochondrion and that elimination of the mitochondrial targeting sequence in Leishmania leads to protein accumulation in the cytosolic compartment. Furthermore, T. cruzi HMGR is efficiently targeted to the mitochondrion in yeast cells. Thus, when the gene encoding T. cruzi HMGR was expressed in a hmg1 hmg2 mutant of Saccharomyces cerevisiae, the mevalonate auxotrophy of mutant cells was relieved, and immunoelectron analysis showed that the parasite enzyme exhibits a mitochondrial localization, suggesting a conservation between the targeting signals of both organisms.
Collapse
Affiliation(s)
- Javier Peña-Diaz
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, 18001 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|