1
|
Luo H, Win CS, Lee DH, He L, Yu JM. Microbacterium azadirachtae CNUC13 Enhances Salt Tolerance in Maize by Modulating Osmotic and Oxidative Stress. BIOLOGY 2024; 13:244. [PMID: 38666856 PMCID: PMC11048422 DOI: 10.3390/biology13040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Soil salinization is one of the leading threats to global ecosystems, food security, and crop production. Plant growth-promoting rhizobacteria (PGPRs) are potential bioinoculants that offer an alternative eco-friendly agricultural approach to enhance crop productivity from salt-deteriorating lands. The current work presents bacterial strain CNUC13 from maize rhizosphere soil that exerted several PGPR traits and abiotic stress tolerance. The strain tolerated up to 1000 mM NaCl and 30% polyethylene glycol (PEG) 6000 and showed plant growth-promoting (PGP) traits, including the production of indole-3-acetic acid (IAA) and siderophore as well as phosphate solubilization. Phylogenetic analysis revealed that strain CNUC13 was Microbacterium azadirachtae. Maize plants exposed to high salinity exhibited osmotic and oxidative stresses, inhibition of seed germination, plant growth, and reduction in photosynthetic pigments. However, maize seedlings inoculated with strain CNUC13 resulted in significantly improved germination rates and seedling growth under the salt-stressed condition. Specifically, compared with the untreated control group, CNUC13-treated seedlings exhibited increased biomass, including fresh weight and root system proliferation. CNUC13 treatment also enhanced photosynthetic pigments (chlorophyll and carotenoids), reduced the accumulation of osmotic (proline) and oxidative (hydrogen peroxide and malondialdehyde) stress indicators, and positively influenced the activities of antioxidant enzymes (catalase, superoxide dismutase, and peroxidase). As a result, CNUC13 treatment alleviated oxidative stress and promoted salt tolerance in maize. Overall, this study demonstrates that M. azadirachtae CNUC13 significantly enhances the growth of salt-stressed maize seedlings by improving photosynthetic efficiency, osmotic regulators, oxidative stress resilience, and antioxidant enzyme activity. These findings emphasize the potential of utilizing M. azadirachtae CNUC13 as a bioinoculant to enhance salt stress tolerance in maize, providing an environmentally friendly approach to mitigate the negative effects of salinity and promote sustainable agriculture.
Collapse
Affiliation(s)
- Huan Luo
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Chaw Su Win
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| | - Dong Hoon Lee
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| | - Lin He
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| |
Collapse
|
2
|
Lazaridi E, Bebeli PJ. Cowpea Constraints and Breeding in Europe. PLANTS (BASEL, SWITZERLAND) 2023; 12:1339. [PMID: 36987026 PMCID: PMC10052078 DOI: 10.3390/plants12061339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is a legume with a constant rate of cultivation in Southern European countries. Consumer demand for cowpea worldwide is rising due to its nutritional content, while Europe is constantly attempting to reduce the deficit in the production of pulses and invest in new, healthy food market products. Although the climatic conditions that prevail in Europe are not so harsh in terms of heat and drought as in the tropical climates where cowpea is mainly cultivated, cowpea confronts with a plethora of abiotic and biotic stresses and yield-limiting factors in Southern European countries. In this paper, we summarize the main constraints for cowpea cultivation in Europe and the breeding methods that have been or can be used. A special mention is made of the availability plant genetic resources (PGRs) and their potential for breeding purposes, aiming to promote more sustainable cropping systems as climatic shifts become more frequent and fiercer, and environmental degradation expands worldwide.
Collapse
Affiliation(s)
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| |
Collapse
|
3
|
Lim I, Kang M, Kim BC, Ha J. Metabolomic and transcriptomic changes in mungbean ( Vigna radiata (L.) R. Wilczek) sprouts under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1030677. [PMID: 36325566 PMCID: PMC9618701 DOI: 10.3389/fpls.2022.1030677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Mungbean (Vigna radiata) sprouts are consumed globally as a healthy food with high nutritional values, having antioxidant and anticancer capacity. Under mild salinity stress, plants accumulate more secondary metabolites to alleviate oxidative stress. In this study, metabolomic and transcriptomic changes in mungbean sprouts were identified using a reference cultivar, sunhwa, to understand the regulatory mechanisms of secondary metabolites in response to salinity stress. Under salinity conditions, the contents of phenylpropanoid-derived metabolites, including catechin, chlorogenic acid, isovitexin, p-coumaric acid, syringic acid, ferulic acid, and vitexin, significantly increased. Through RNA sequencing, 728 differentially expressed genes (DEGs) were identified and 20 DEGs were detected in phenylpropanoid and flavonoid biosynthetic pathways. Among them, 11 DEGs encoding key enzymes involved in the biosynthesis of the secondary metabolites that increased after NaCl treatment were significantly upregulated, including dihydroflavonol 4-reductase (log2FC 1.46), caffeoyl-CoA O-methyltransferase (1.38), chalcone synthase (1.15), and chalcone isomerase (1.19). Transcription factor families, such as MYB, WRKY, and bHLH, were also identified as upregulated DEGs, which play a crucial role in stress responses in plants. Furthermore, this study showed that mild salinity stress can increase the contents of phenylpropanoids and flavonoids in mungbean sprouts through transcriptional regulation of the key enzymes involved in the biosynthetic pathways. Overall, these findings will provide valuable information for molecular breeders and scientists interested in improving the nutritional quality of sprout vegetables.
Collapse
|
4
|
Abdel-Farid IB, Marghany MR, Rowezek MM, Sheded MG. Effect of Salinity Stress on Growth and Metabolomic Profiling of Cucumis sativus and Solanum lycopersicum. PLANTS 2020; 9:plants9111626. [PMID: 33238519 PMCID: PMC7700630 DOI: 10.3390/plants9111626] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023]
Abstract
Seeds germination and seedlings growth of Cucumis sativus and Solanum lycopersicum were monitored in in vitro and in vivo experiments after application of different concentrations of NaCl (25, 50, 100 and 200 mM). Photosynthetic pigments content and the biochemical responses of C. sativus and S. lycopersicum were assessed. Salinity stress slightly delayed the seeds germination rate and significantly reduced the percentage of germination as well as shoot length under the highest salt concentration (200 mM) in cucumber. Furthermore, root length was decreased significantly in all treatments. Whereas, in tomato, a prominent delay in seeds germination rate, the germination percentage and seedlings growth (shoot and root lengths) were significantly influenced under all concentrations of NaCl. Fresh and dry weights were reduced prominently in tomato compared to cucumber. Photosynthetic pigments content was reduced but with pronounced decreasing in tomato compared to cucumber. Secondary metabolites profiling in both plants under stress was varied from tomato to cucumber. The content of saponins, proline and total antioxidant capacity was reduced more prominently in tomato as compared to cucumber. On the other hand, the content of phenolics and flavonoids was increased in both plants with pronounced increase in tomato particularly under the highest level of salinity stress. The metabolomic profiling in stressful plants was significantly influenced by salinity stress and some bioactive secondary metabolites was enhanced in both cucumber and tomato plants. The enhancement of secondary metabolites under salinity stress may explain the tolerance and sensitivity of cucumber and tomato under salinity stress. The metabolomic evaluation combined with multivariate data analysis revealed a similar mechanism of action of plants to mediate stress, with variant level of this response in both plant species. Based on these results, the effect of salinity stress on seeds germination, seedlings growth and metabolomic content of plants was discussed in terms of tolerance and sensitivity of plants to salinity stress.
Collapse
Affiliation(s)
- Ibrahim Bayoumi Abdel-Farid
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt; (M.R.M.); (M.G.S.)
- Correspondence: ; Tel.: +966-535-040-657
| | - Marwa Radawy Marghany
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt; (M.R.M.); (M.G.S.)
| | - Mohamed Mahmoud Rowezek
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Mohamed Gabr Sheded
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt; (M.R.M.); (M.G.S.)
| |
Collapse
|
5
|
Amorim LLB, Ferreira-Neto JRC, Bezerra-Neto JP, Pandolfi V, de Araújo FT, da Silva Matos MK, Santos MG, Kido EA, Benko-Iseppon AM. Cowpea and abiotic stresses: identification of reference genes for transcriptional profiling by qPCR. PLANT METHODS 2018; 14:88. [PMID: 30337949 PMCID: PMC6182843 DOI: 10.1186/s13007-018-0354-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Due to cowpea ability to fix nitrogen in poor soils and relative tolerance to drought and salt stresses, efforts have been directed to identifying genes and pathways that confer stress tolerance in this species. Real-time quantitative PCR (qPCR) has been widely used as the most reliable method to measure gene expression, due to its high accuracy and specificity. In the present study, nine candidate reference genes were rigorously tested for their application in normalization of qPCR data onto roots of four distinct cowpea accessions under two abiotic stresses: root dehydration and salt (NaCl, 100 mM). In addition, the regulation of four target transcripts, under the same referred conditions was also scrutinized. RESULTS geNorm, NormFinder, BestKeeper, and ΔCt method results indicated a set of three statistically validated RGs for each stress condition: (I) root dehydration (actin, ubiquitin-conjugating enzyme E2 variant 1D, and a Phaseolus vulgaris unknown gene-UNK), and (II) salt (ubiquitin-conjugating enzyme E2 variant 1D, F-box protein, and UNK). The expression profile of the target transcripts suggests that flavonoids are important players in the cowpea response to the abiotic stresses analyzed, since chalcone isomerase and chalcone synthase were up-regulated in the tolerant and sensitive accessions. A lipid transfer protein also participates in the cowpea tolerance mechanisms to root dehydration and salt stress. The referred transcript was up-regulated in the two tolerant accessions and presented no differential expression in the sensitive counterparts. Chitinase B, in turn, generally related to plant defense, was an important target transcript under salt stress, being up-regulated at the tolerant, and down-regulated in the sensitive accession. CONCLUSIONS Reference genes suitable for qPCR analyses in cowpea under root dehydration and salt stress were identified. This action will lead to a more accurate and reliable analysis of gene expression on this species. Additionally, the results obtained in this study may guide future research on gene expression in cowpea under other abiotic stress types that impose osmotic imbalance. The target genes analyzed, in turn, deserve functional evaluation due to their transcriptional regulation under stresses and biotechnological potential.
Collapse
Affiliation(s)
- Lidiane Lindinalva Barbosa Amorim
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Oeiras, Piauí Brazil
- Genetics Department, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | | | | | - Valesca Pandolfi
- Genetics Department, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | | | | | - Mauro Guida Santos
- Botany Department, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Ederson Akio Kido
- Genetics Department, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | | |
Collapse
|
6
|
E. Shareif A, A. Kandil A, A. Gad M. Effect of Salinity on Germination and Seeding Parameters of Forage Cowpea Seed. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/rjss.2017.17.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Screening of purslane (Portulaca oleracea L.) accessions for high salt tolerance. ScientificWorldJournal 2014; 2014:627916. [PMID: 25003141 PMCID: PMC4068043 DOI: 10.1155/2014/627916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1 NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.
Collapse
|
8
|
Thiam M, Champion A, Diouf D, Ourèye Sy M. NaCl Effects on In Vitro Germination and Growth of Some Senegalese Cowpea (Vigna unguiculata (L.) Walp.) Cultivars. ISRN BIOTECHNOLOGY 2013; 2013:382417. [PMID: 25937976 PMCID: PMC4393035 DOI: 10.5402/2013/382417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/27/2013] [Indexed: 11/23/2022]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important grain legumes in sub-Saharian regions. It contributes to man food security by providing a protein-rich diet. However, its production is limited by abiotic stresses such as salinity. This study aims to evaluate the salt tolerance of 15 cowpea cultivars, at germination stage. The seed germination process consisted of sowing them in agarified water (8 g·L(-1)) supplemented with 6 different concentrations of NaCl (0, 10, 50, 100, 150, and 200 mM). Results highlighted that high salt concentrations drastically reduced germination and significantly delayed the process for all varieties. A cowpea varietal effect towards the salt tolerance was noticed. Genotypes Diongoma, 58-78, and 58-191 were more salt-tolerant cultivars while Mougne and Yacine were more salt-sensitive ones as confirmed in the three groups of the dendrogram. NaCl effects on the early vegetative growth of seedlings were assessed with a tolerant (58-191) and a susceptible (Yacine) cultivar. Morphological (length and dry biomass) and physiological (chlorophyll and proline contents) parameter measurements revealed a negative effect of high (NaCl). However, 58-191 was much more salt tolerant, and the chlorophyll and proline contents were higher than those of Yacine genotype at increasing salt concentrations.
Collapse
Affiliation(s)
- Mahamadou Thiam
- Laboratoire Campus de Biotechnologies Végétales (LCBV), Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Senegal
| | - Antony Champion
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), LCM, Centre de Recherche de Bel Air, BP 1386, Dakar 18524, Senegal ; Institut de Recherche pour le Développement (IRD), UMR DIADE, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales (LCBV), Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Senegal
| | - Mame Ourèye Sy
- Laboratoire Campus de Biotechnologies Végétales (LCBV), Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Senegal
| |
Collapse
|
9
|
Mahdavi B, Sanavy SAMM. Germination and seedling growth in grasspea (Lathyrus sativus) cultivars under salinity conditions. Pak J Biol Sci 2009; 10:273-9. [PMID: 19070028 DOI: 10.3923/pjbs.2007.273.279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In four grasspea varieties include ardabil, sharekord, mashhad and zanjan, the effects of different salinity concentrations on seed germination percent, proline concentration, malondialdehyde (MDA), germination index, radicle and hypocotyl length and weight were studied. Result showed that salinity had significant effects on seed germination percentage and germination index. The most and least of germination percentage were observed in 6 and 18 dS m(-1), respectively. Salinity had significantly effect on radicle and hypocotyl length, dry and fresh weight, MDA and proline concentration of seedlings. Salinity had not effect on dry weight of seedling. Increasing salinity reduced radicle and hypocotyl length, dry and fresh weight of seedlings and enhanced proline and malondialdehyde in them. Sharkord cultivar had the most germination percentage at 18 dS m(-1) sodium chloride. Sharkord and ardabil varieties were the most tolerance and sensitive varieties to salinity stress, respectively.
Collapse
Affiliation(s)
- B Mahdavi
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modarres University, P.O. Box 14115-336, Tehran, Iran
| | | |
Collapse
|