1
|
Wang Y, Chen J, Huang Y, Wang J, Xiong Y, Xue T, Yue X, Qian F, Wang M. Associations of wildfire-derived particulate matter with hospitalization, emergency department visits and mortality: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2025; 273:121221. [PMID: 40020860 DOI: 10.1016/j.envres.2025.121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Epidemiological studies on wildfire smoke exposure and its associated disease morbidities and mortalities are rapidly accumulating in recent years. However, the findings of the existing studies have not been quantitatively evaluated with a conclusion. We conducted a systematic review and meta-analysis for the studies focused on associations of wildfire-sourced particles (PM2.5 and PM10) with cardiorespiratory diseases and mortality. We reviewed all literatures related to wildfire particles (PM2.5 and PM10) and cardiorespiratory disease morbidities [hospital admission, emergency department (ED) visits] and mortality (all-cause and cause-specific) from January 1, 2000 to August 1, 2024. Meta-analyses were conducted to summarize Relative Risks (RRs) and 95% confidence intervals (CIs) across studies when at least three studies were available for a particular exposure-outcome. All articles were assessed for risk of bias using a standard tool (Grading of Recommendations Assessment, Development and Evaluation, GRADE) for quality assurance. Studies (N = 45) were increasingly published between the years of 2020-2024 and from North America (N = 21) and Australia (N = 11) where wildfires are common. In the meta-analysis of over 124 million patients, wildfire smoke was consistently associated with increased risk of all-cause mortality (RR: 1.02, 95% CI 1.01-1.03 for PM2.5 per 10 μg/m3) and respiratory outcomes, including hospital admission (1.04, 95% CI 1.02-1.05 for wildfire PM2.5 and 1.01, 95% CI 1.00-1.02 for wildfire PM10) and ED visits (1.04, 95% CI 1.02-1.06 for wildfire PM2.5). Associations between wildfire PM2.5 and cardiovascular diseases were inconclusive (mortality: 1.02, 95% CI 1.01-1.03; hospital admission: 1.01, 95% CI 1.00-1.02; ED visit: 1.01, 95%CI: 0.98-1.04). Current studies provide evidence of an increased risk of hospitalization and ED visits for respiratory diseases and all-cause mortality due to wildfire PM2.5 and PM10 exposures worldwide. Future research is needed to explore health effects of wildfire exposure on cardiovascular diseases.
Collapse
Affiliation(s)
- Yiyi Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, China.
| | - Jie Chen
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yujia Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiaming Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yi Xiong
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA
| | - Tao Xue
- BIC-ESAT and SKL-ESPC, College of Environmental Science and Engineering, Peking University, Beijing, 100871, China
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Fuping Qian
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, China
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA; RENEW Institute, University at Buffalo, Buffalo, NY, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Xu J, Ganji A, Saeedi M, Jeong CH, Su Y, Munoz T, Lloyd M, Weichenthal S, Evans G, Hatzopoulou M. Unveiling the Impact of Wildfires on Nanoparticle Characteristics and Exposure Disparities through Mobile and Fixed-Site Monitoring in Toronto, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5621-5635. [PMID: 40070205 DOI: 10.1021/acs.est.4c08675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This study investigates the impacts of wildfires on nanoparticle characteristics and exposure disparities in Toronto, integrating data from a large-scale mobile monitoring campaign and fixed-site measurements during the unprecedented 2023 wildfire season. Our results reveal changes in particle characteristics during wildfire days, with particle number concentrations decreasing by 60% and particle diameter increasing by 30% compared to nonwildfire days. Moreover, the median lung deposited surface area (LDSA) levels rose by 31% during wildfire events. We employed gradient boosting models to estimate near-road LDSA levels on both wildfire and nonwildfire days. The LDSA ratio (wildfire/nonwildfire) exceeded 2.0 in certain areas along highways and in downtown Toronto. Furthermore, our findings show that marginalized communities faced greater LDSA increases than less marginalized ones. Under wildfire conditions, the LDSA ratio difference between the most and least marginalized groups was 16% for recent immigrants and visible minorities and 7% for seniors and children, both statistically significant. This study delivers critical insights into the spatiotemporal variations of nanoparticle characteristics during wildfire and nonwildfire periods, demonstrating the substantial health risks posed by increased LDSA levels and the inequitable distribution of these risks among Toronto's diverse population.
Collapse
Affiliation(s)
- Junshi Xu
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| | - Arman Ganji
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| | - Milad Saeedi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| | - Cheol-Heon Jeong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Yushan Su
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke M9P 3 V6 Ontario, Canada
| | - Tony Munoz
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke M9P 3 V6 Ontario, Canada
| | - Marshall Lloyd
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1G1 Quebec, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1G1 Quebec, Canada
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| |
Collapse
|
3
|
Hughes F, Parsons L, Levy JH, Shindell D, Alhanti B, Ohnuma T, Kasibhatla P, Montgomery H, Krishnamoorthy V. Impact of Wildfire Smoke on Acute Illness. Anesthesiology 2024; 141:779-789. [PMID: 39105660 DOI: 10.1097/aln.0000000000005115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Climate change increases wildfire smoke exposure. Inhaled smoke causes inflammation, oxidative stress, and coagulation, which exacerbate cardiovascular and respiratory disease while worsening obstetric and neonatal outcomes.
Collapse
Affiliation(s)
- Fintan Hughes
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Luke Parsons
- Global Science, Nature Conservancy and Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Jerrold H Levy
- Departments of Anesthesiology and Surgery (Cardiothoracic), Duke University School of Medicine, Durham, North Carolina
| | - Drew Shindell
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Brooke Alhanti
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Tetsu Ohnuma
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Prasad Kasibhatla
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Hugh Montgomery
- Department of Intensive Care Medicine, University College London, London, United Kingdom
| | - Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
4
|
Ma Y, Zang E, Liu Y, Wei J, Lu Y, Krumholz HM, Bell ML, Chen K. Long-term exposure to wildland fire smoke PM 2.5 and mortality in the contiguous United States. Proc Natl Acad Sci U S A 2024; 121:e2403960121. [PMID: 39316057 PMCID: PMC11459178 DOI: 10.1073/pnas.2403960121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/06/2024] [Indexed: 09/25/2024] Open
Abstract
Despite the substantial evidence on the health effects of short-term exposure to ambient fine particles (PM2.5), including increasing studies focusing on those from wildland fire smoke, the impacts of long-term wildland fire smoke PM2.5 exposure remain unclear. We investigated the association between long-term exposure to wildland fire smoke PM2.5 and nonaccidental mortality and mortality from a wide range of specific causes in all 3,108 counties in the contiguous United States, 2007 to 2020. Controlling for nonsmoke PM2.5, air temperature, and unmeasured spatial and temporal confounders, we found a nonlinear association between 12-mo moving average concentration of smoke PM2.5 and monthly nonaccidental mortality rate. Relative to a month with the long-term smoke PM2.5 exposure below 0.1 μg/m3, nonaccidental mortality increased by 0.16 to 0.63 and 2.11 deaths per 100,000 people per month when the 12-mo moving average of PM2.5 concentration was of 0.1 to 5 and 5+ μg/m3, respectively. Cardiovascular, ischemic heart disease, digestive, endocrine, diabetes, mental, and chronic kidney disease mortality were all found to be associated with long-term wildland fire smoke PM2.5 exposure. Smoke PM2.5 contributed to approximately 11,415 nonaccidental deaths/y (95% CI: 6,754, 16,075) in the contiguous United States. Higher smoke PM2.5-related increases in mortality rates were found for people aged 65 and above. Positive interaction effects with extreme heat were also observed. Our study identified the detrimental effects of long-term exposure to wildland fire smoke PM2.5 on a wide range of mortality outcomes, underscoring the need for public health actions and communications that span the health risks of both short- and long-term exposure.
Collapse
Affiliation(s)
- Yiqun Ma
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510
- Yale Center on Climate Change and Health, Yale School of Public Health, New Haven, CT 06510
| | - Emma Zang
- Department of Sociology, Yale University, New Haven, CT 06511
| | - Yang Liu
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA30322
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD20740
| | - Yuan Lu
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT06510
- Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT06510
| | - Harlan M. Krumholz
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT06510
- Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT06510
| | | | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510
- Yale Center on Climate Change and Health, Yale School of Public Health, New Haven, CT 06510
| |
Collapse
|
5
|
Abstract
Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.
Collapse
Affiliation(s)
| | | | | | | | - Jessica M. Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
6
|
Alahmad B, Khraishah H, Althalji K, Borchert W, Al-Mulla F, Koutrakis P. Connections Between Air Pollution, Climate Change, and Cardiovascular Health. Can J Cardiol 2023; 39:1182-1190. [PMID: 37030516 PMCID: PMC11097327 DOI: 10.1016/j.cjca.2023.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Globally, more people die from cardiovascular disease than any other cause. Climate change, through amplified environmental exposures, will promote and contribute to many noncommunicable diseases, including cardiovascular disease. Air pollution, too, is responsible for millions of deaths from cardiovascular disease each year. Although they may appear to be independent, interchangeable relationships and bidirectional cause-and-effect arrows between climate change and air pollution can eventually lead to poor cardiovascular health. In this topical review, we show that climate change and air pollution worsen each other, leading to several ecosystem-mediated effects. We highlight how increases in hot climates as a result of climate change have increased the risk of major air pollution events such as severe wildfires and dust storms. In addition, we show how altered atmospheric chemistry and changing patterns of weather conditions can promote the formation and accumulation of air pollutants: a phenomenon known as the climate penalty. We demonstrate these amplified environmental exposures and their associations to adverse cardiovascular health outcomes. The community of health professionals-and cardiologists, in particular-cannot afford to overlook the risks that climate change and air pollution bring to the public's health.
Collapse
Affiliation(s)
- Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Environmental and Occupational Health Department, College of Public Health, Kuwait University, Kuwait City, Kuwait; Dasman Diabetes Institute (DDI), Kuwait City, Kuwait.
| | - Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Khalid Althalji
- Jaber Alahmad Hospital, Ministry of Health, Kuwait City, Kuwait
| | - William Borchert
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fahd Al-Mulla
- Dasman Diabetes Institute (DDI), Kuwait City, Kuwait
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Oliveira IND, Oliveira BFAD, Silveira IHD, Machado LMG, Villardi JWR, Ignotti E. Air pollution from forest burning as environmental risk for millions of inhabitants of the Brazilian Amazon: an exposure indicator for human health. CAD SAUDE PUBLICA 2023; 39:e00131422. [PMID: 37531517 PMCID: PMC10494700 DOI: 10.1590/0102-311xen131422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/04/2023] [Accepted: 03/30/2023] [Indexed: 08/04/2023] Open
Abstract
In this study, we propose an indicator of air pollution exposure to identify potential hazardous areas for human health in the Amazon and Central-West Regions of Brazil from 2010 to 2019. This indicator aggregates both concentrations and time of exposure to fine particulate matter (PM2.5), according to the current limit recommended by the World Health Organization (WHO). We used daily PM2.5 averages obtained from the Brazilian Health Integrated Environmental Information System (SISAM) to calculate the percentages of days with PM2.5 concentrations exceeding the limit of 15µg/m³ per year and per month. From 2010 to 2019, the months from August to October presented the largest areas and the highest percentages of days with unacceptable pollution concentration values, harmful to human health. These areas were concentrated in the Arc of Deforestation. Therefore, 60% of the residents of the Amazon and Central-West regions were subjected to inadequate air quality for approximately six months per year. The proposed indicator is reproducible and appropriate to monitor areas of exposure and risk for human health.
Collapse
Affiliation(s)
- Igor Neves de Oliveira
- Programa de Pós-graduação em Ciências Ambientais, Universidade do Estado de Mato Grosso, Cáceres, Brasil
| | | | | | | | - Juliana Wotzasek Rulli Villardi
- Vice-presidência de Ambiente, Atenção e Promoção da Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
- Instituto de Estudos Avançados, Universidade de São Paulo, São Paulo, Brasil
| | - Eliane Ignotti
- Programa de Pós-graduação em Ciências Ambientais, Universidade do Estado de Mato Grosso, Cáceres, Brasil
| |
Collapse
|
8
|
Melton CC, De Fries CM, Smith RM, Mason LR. Wildfires and Older Adults: A Scoping Review of Impacts, Risks, and Interventions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6252. [PMID: 37444100 PMCID: PMC10341407 DOI: 10.3390/ijerph20136252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Climate change is leading to worsening disasters that disproportionately impact older adults. While research has begun to measure disparities, there is a gap in examining wildfire-specific disasters. To address this gap, this scoping review analyzed literature to explore the nexus of wildfires and older adults. We searched peer-reviewed literature using the following inclusion criteria: (1) published in a peer-reviewed journal; (2) available in English; (3) examines at least one topic related to wildfires; and (4) examines how criterion three relates to older adults in at least one way. Authors screened 261 titles and abstracts and 138 were reviewed in full, with 75 articles meeting inclusion criteria. Findings heavily focused on health impacts of wildfires on older adults, particularly of smoke exposure and air quality. While many articles mentioned a need for community-engaged responses that incorporate the needs of older adults, few addressed firsthand experiences of older adults. Other common topics included problems with evacuation, general health impacts, and Indigenous elders' fire knowledge. Further research is needed at the nexus of wildfires and older adults to highlight both vulnerabilities and needs as well as the unique experience and knowledge of older adults to inform wildfire response strategies and tactics.
Collapse
Affiliation(s)
| | | | | | - Lisa Reyes Mason
- Graduate School of Social Work, University of Denver, Denver, CO 80210, USA; (C.C.M.); (C.M.D.F.); (R.M.S.)
| |
Collapse
|
9
|
Gao Y, Huang W, Yu P, Xu R, Yang Z, Gasevic D, Ye T, Guo Y, Li S. Long-term impacts of non-occupational wildfire exposure on human health: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121041. [PMID: 36639044 DOI: 10.1016/j.envpol.2023.121041] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The intensity and frequency of wildfires is increasing globally. The systematic review of the current evidence on long-term impacts of non-occupational wildfire exposure on human health has not been performed yet. To provide a systematic review and identify potential knowledge gaps in the current evidence of long-term impacts of non-occupational exposure to wildfire smoke and/or wildfire impacts on human health. We conducted a systematic search of the literature via MEDLINE, Embase and Scopus from the database inception to July 05, 2022. References from the included studies and relevant reviews were also considered. The Newcastle-Ottawa Scale (NOS) and a validated quality assessment framework were used to evaluate the quality of observational studies. Study results were synthesized descriptively. A total of 36 studies were included in our systematic review. Most studies were from developed countries (11 in Australia, 9 in Canada, 7 in the United States). Studies predominantly focused on mental health (21 studies, 58.33%), while evidence on long-term impacts of wildfire exposure on health outcomes other than mental health is limited. Current evidence indicated that long-term impacts of non-occupational wildfire exposure were associated with mortality (COVID-19 mortality, cardiovascular disease mortality and acute myocardial disease mortality), morbidity (mainly respiratory diseases), mental health disorders (mainly posttraumatic stress disorder), shorter height of children, reduced lung function and poorer general health status. However, no significant associations were observed for long-term impacts of wildfire exposure on child mortality and respiratory hospitalizations. The population-based high-quality evidence with quantitative analysis on this topic is still limited. Future well-designed studies considering extensive wildfire smoke air pollutants (e.g., particulate matter, ozone, nitrogen oxides) and estimating risk coefficient values for extensive health outcomes (e.g., mortality, morbidity) are warranted to fill current knowledge gaps.
Collapse
Affiliation(s)
- Yuan Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Wenzhong Huang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Zhengyu Yang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Danijela Gasevic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia; Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
10
|
Characteristics and outcomes of severe COVID-19 in hospitalized patients with cardiovascular diseases in the Amazonian region of Brazil: a retrospective cohort. Sci Rep 2022; 12:18472. [PMID: 36323818 PMCID: PMC9628483 DOI: 10.1038/s41598-022-23365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2022] Open
Abstract
The northern region of Brazil is already vulnerable to other infectious diseases and it was no different in COVID-19. However, cardiovascular diseases still lead the causes of death. Thus, the objective of this study is to identify the clinical predictors and outcome of severe COVID-19 in hospitalized patients with and without CVD in this region of the Amazon. A retrospective cohort, referring to the notifications from January 1 to December 31, 2020, including cases confirmed by molecular testing. The study consisted of 9223 confirmed cases for COVID-19. Of these, 6011 (65.17%) did not have cardiovascular disease and 3212 (34.83%) had some cardiovascular disease. The significance of deaths was in the age group of < 1 to 59 CVD carriers (< 0.001). Predictor of mortality were invasive ventilation for patients with CVD, (OR 23,688 CI 18,180-30,866), followed by chronic kidney disease (OR 2442 CI 1568-3740), dyspnea (OR 2312 CI 1817-3941), respiratory distress (OR 1523 CI 1210-2919), cough (OR 1268 CI 1005-1599), Lower oxygen saturation 95% (OR 1281 CI 1039-1579), diabetes mellitus (OR 1267 CI 1050-1528) and age (OR 1051 CI 1044-1058). Carriers of CVD had a lower survival rate (< 0.0001). The order of the predictors of death differed among the non-carriers, as well as the high odds ratio in the predictors of CVD, only cough was an independent predictor. The age group under 59 years was associated with deaths. We also show the shorter survival in CVD carriers, as well as the higher cardiovascular morbidity rate than other studies in the literature.
Collapse
|
11
|
Koman PD, Billmire M, Baker KR, Carter JM, Thelen BJ, French NHF, Bell SA. Using wildland fire smoke modeling data in gerontological health research (California, 2007-2018). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156403. [PMID: 35660427 DOI: 10.1016/j.scitotenv.2022.156403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/06/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Widespread population exposure to wildland fire smoke underscores the urgent need for new techniques to characterize fire-derived pollution for epidemiologic studies and to build climate-resilient communities especially for aging populations. Using atmospheric chemical transport modeling, we examined air quality with and without wildland fire smoke PM2.5. In 12-km gridded output, the 24-hour average concentration of all-source PM2.5 in California (2007-2018) was 5.16 μg/m3 (S.D. 4.66 μg/m3). The average concentration of fire-PM2.5 in California by year was 1.61 μg/m3 (~30% of total PM2.5). The contribution of fire-source PM2.5 ranged from 6.8% to 49%. We define a "smokewave" as two or more consecutive days with modeled levels above 35 μg/m3. Based on model-derived fire-PM2.5, 99.5% of California's population lived in a county that experienced at least one smokewave from 2007 to 2018, yet understanding of the impact of smoke on the health of aging populations is limited. Approximately 2.7 million (56%) of California residents aged 65+ years lived in counties representing the top 3 quartiles of fire-PM2.5 concentrations (2007-2018). For each year (2007-2018), grid cells containing skilled nursing facilities had significantly higher mean concentrations of all-source PM2.5 than cells without those facilities, but they also had generally lower mean concentrations of wildland fire-specific PM2.5. Compared to rural monitors in California, model predictions of wildland fire impacts on daily average PM2.5 carbon (organic and elemental) performed well most years but tended to overestimate wildland fire impacts for high-fire years. The modeling system isolated wildland fire PM2.5 from other sources at monitored and unmonitored locations, which is important for understanding exposures for aging population in health studies.
Collapse
Affiliation(s)
- Patricia D Koman
- University of Michigan, School of Public Health, Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Michael Billmire
- Michigan Technological University, Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105, USA.
| | - Kirk R Baker
- U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning & Standards, Research Triangle Park, NC 27709, USA.
| | - Julie M Carter
- University of Michigan, School of Public Health, Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109, USA; Michigan Technological University, Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105, USA.
| | - Brian J Thelen
- Michigan Technological University, Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105, USA.
| | - Nancy H F French
- Michigan Technological University, Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105, USA.
| | - Sue Anne Bell
- University of Michigan, School of Nursing, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Abstract
Wildfire smoke is a rapidly growing threat to global cardiovascular health. We review the literature linking wildfire smoke exposures to cardiovascular effects. We find substantial evidence that short-term exposures are associated with key cardiovascular outcomes, including mortality, hospitalization, and acute coronary syndrome. Wildfire smoke exposures will continue to increase over the majority of Earth's surface. For example, the United States alone has experienced a 5-fold increase in annual area burned since 1972, with 82 million individuals estimated to be exposed to wildfire smoke by midcentury. The associated rise in excess morbidity and mortality constitutes a growing global public health crisis. Fortunately, the effect of wildfire smoke on cardiovascular health is modifiable at the individual and population levels through specific interventions. Health systems therefore have an opportunity to help safeguard patients from smoke exposures. We provide a roadmap of evidence-based interventions to reduce risk and protect cardiovascular health. Key interventions include preparing health systems for smoke events; identifying and educating vulnerable patients; reducing outdoor activities; creating cleaner air environments; using air filtration devices and personal respirators; and aggressive management of chronic diseases and traditional risk factors. Further research is needed to test the efficacy of interventions on reducing cardiovascular outcomes.
Collapse
Affiliation(s)
| | - Sarah B Henderson
- British Columbia Centre for Disease Control, Vancouver, Canada (S.B.H.).,University of British Columbia, Vancouver, Canada (S.B.H., M.B.)
| | - Michael Brauer
- University of British Columbia, Vancouver, Canada (S.B.H., M.B.).,Institute for Health Metrics and Evaluation, University of Washington, Seattle (M.B.)
| | | |
Collapse
|
13
|
Peterson JR, Howell BM, Hahn MB. Utilizing the "One Health" Model to Study Human Aging in Urban Environments. Gerontol Geriatr Med 2022; 8:23337214221116946. [PMID: 36046575 PMCID: PMC9421012 DOI: 10.1177/23337214221116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
The "One Health" concept has resulted in a rich research literature that integrates human and animal systems, with a focus on zoonotic diseases; however, this narrow focus is at the expense of one of the leading causes of global human mortality: non-infectious, chronic diseases. Here, we provide a viewpoint that applying the integrated One Health framework to public health issues such as the impact of stressful urban environments on the process of human aging has the potential to elucidate potential causal mechanisms that have previously gone unnoticed. Given the success of the One Health paradigm in studying human health in rural areas, we posit that this model would be a useful tool for studying human, animal, and environmental interactions in urban settings.
Collapse
|
14
|
Ye T, Guo Y, Chen G, Yue X, Xu R, Coêlho MDSZS, Saldiva PHN, Zhao Q, Li S. Risk and burden of hospital admissions associated with wildfire-related PM 2·5 in Brazil, 2000-15: a nationwide time-series study. Lancet Planet Health 2021; 5:e599-e607. [PMID: 34508681 DOI: 10.1016/s2542-5196(21)00173-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In the context of climate change and deforestation, Brazil is facing more frequent and unprecedented wildfires. Wildfire-related PM2·5 is associated with multiple adverse health outcomes; however, the magnitude of these associations in the Brazilian context is unclear. We aimed to estimate the association between daily exposure to wildfire-related PM2·5 and cause-specific hospital admission and attributable health burden in the Brazilian population using a nationwide dataset from 2000 to 2015. METHODS In this nationwide time-series analysis, data for daily all-cause, cardiovascular, and respiratory hospital admissions were collected through the Brazilian Unified Health System from 1814 municipalities in Brazil between Jan 1, 2000, and Dec 31, 2015. Daily concentrations of wildfire-related PM2·5 were estimated using the 3D chemical transport model GEOS-Chem at a 2·0° latitude by 2·5° longitude resolution. A time-series analysis was fitted using quasi-Poisson regression to quantify municipality-specific effect estimates, which were then pooled at the regional and national levels using random-effects meta-analyses. Analyses were stratified by sex and ten age groups. The attributable fraction and attributable cases of hospital admissions due to wildfire-related PM2·5 were also calculated. FINDINGS At the national level, a 10 μg/m3 increase in wildfire-related PM2·5 was associated with a 1·65% (95% CI 1·51-1·80) increase in all-cause hospital admissions, a 5·09% (4·73-5·44) increase in respiratory hospital admissions, and a 1·10% (0·78-1·42) increase in cardiovascular hospital admissions, over 0-1 days after the exposure. The effect estimates for all-cause hospital admission did not vary by sex, but were particularly high in children aged 4 years or younger (4·88% [95% CI 4·47-5·28]), children aged 5-9 years (2·33% [1·77-2·90]), and people aged 80 years and older (3·70% [3·20-4·20]) compared with other age groups. We estimated that 0·53% (95% CI 0·48-0·58) of all-cause hospital admissions were attributable to wildfire-related PM2·5, corresponding to 35 cases (95% CI 32-38) per 100 000 residents annually. The attributable rate was greatest for municipalities in the north, south, and central-west regions, and lowest in the northeast region. Results were consistent for all-cause and respiratory diseases across regions, but remained inconsistent for cardiovascular diseases. INTERPRETATION Short-term exposure to wildfire-related PM2·5 was associated with increased risks of all-cause, respiratory, and cardiovascular hospital admissions, particularly among children (0-9 years) and older people (≥80 years). Greater attention should be paid to reducing exposure to wildfire smoke, particularly for the most susceptible populations. FUNDING Australian Research Council and Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; School of Public Health and Management, Binzhou Medical University, Yantai, China.
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | | | | | - Qi Zhao
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Karanasiou A, Alastuey A, Amato F, Renzi M, Stafoggia M, Tobias A, Reche C, Forastiere F, Gumy S, Mudu P, Querol X. Short-term health effects from outdoor exposure to biomass burning emissions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146739. [PMID: 33798874 DOI: 10.1016/j.scitotenv.2021.146739] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 05/28/2023]
Abstract
Biomass burning (BB) including forest, bush, prescribed fires, agricultural fires, residential wood combustion, and power generation has long been known to affect climate, air quality and human health. With this work we supply a systematic review on the health effects of BB emissions in the framework of the WHO activities on air pollution. We performed a literature search of online databases (PubMed, ISI, and Scopus) from year 1980 up to 2020. A total of 81 papers were considered as relevant for mortality and morbidity effects. High risk of bias was related with poor estimation of BB exposure and lack of adjustment for important confounders. PM10 and PM2.5 concentrations originating from BB were associated with all-cause mortality: the meta-analytical estimate was equal to 1.31% (95% CI 0.71, 1.71) and 1.92% (95% CI -1.19, 5.03) increased mortality per each 10 μg m-3 increase of PM10 and PM2.5, respectively. Regarding cardiovascular mortality 8 studies reported quantitative estimates. For smoky days and for each 10 μg m-3 increase in PM2.5 concentrations, the risk of cardiovascular mortality increased by 4.45% (95% CI 0.96, 7.95) and by 3.30% (95% CI -1.97, 8.57), respectively. Fourteen studies evaluated whether respiratory morbidity was adversely related to PM2.5 (9 studies) or PM10 (5 studies) originating from BB. All found positive associations. The pooled effect estimates were 4.10% (95% CI 2.86, 5.34) and 4.83% (95% CI 0.06, 9.60) increased risk of total respiratory admissions/emergency visits, per 10 μg m-3 increases in PM2.5 and PM10, respectively. Regarding cardiovascular morbidity, sixteen studies evaluated whether this was adversely related to PM2.5 (10 studies) or PM10 (6 studies) originating from BB. They found both positive and negative results, with summary estimates equal to 3.68% (95% CI -1.73, 9.09) and 0.93% (95% CI -0.18, 2.05) increased risk of total cardiovascular admissions/emergency visits, per 10 μg m-3 increases in PM2.5 and PM10, respectively. To conclude, a significant number of studies indicate that BB exposure is associated with all-cause and cardiovascular mortality and respiratory morbidity.
Collapse
Affiliation(s)
- Angeliki Karanasiou
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain.
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Matteo Renzi
- Department of Epidemiology of the Lazio Region/ASL, Roma 1, Italy
| | | | - Aurelio Tobias
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Francesco Forastiere
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - Sophie Gumy
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - Pierpaolo Mudu
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| |
Collapse
|
16
|
Sorensen C, House JA, O'Dell K, Brey SJ, Ford B, Pierce JR, Fischer EV, Lemery J, Crooks JL. Associations Between Wildfire-Related PM 2.5 and Intensive Care Unit Admissions in the United States, 2006-2015. GEOHEALTH 2021; 5:e2021GH000385. [PMID: 33977181 PMCID: PMC8095362 DOI: 10.1029/2021gh000385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 05/29/2023]
Abstract
Wildfire smoke is a growing public health concern in the United States. Numerous studies have documented associations between ambient smoke exposure and severe patient outcomes for single-fire seasons or limited geographic regions. However, there are few national-scale health studies of wildfire smoke in the United States, few studies investigating Intensive Care Unit (ICU) admissions as an outcome, and few specifically framed around hospital operations. This study retrospectively examined the associations between ambient wildfire-related PM2.5 at a hospital ZIP code with total hospital ICU admissions using a national-scale hospitalization data set. Wildfire smoke was characterized using a combination of kriged PM2.5 monitor observations and satellite-derived plume polygons from National Oceanic and Atmospheric Administration's Hazard Mapping System. ICU admissions data were acquired from Premier, Inc. and encompass 15%-20% of all U.S. ICU admissions during the study period. Associations were estimated using a distributed-lag conditional Poisson model under a time-stratified case-crossover design. We found that a 10 μg/m3 increase in daily wildfire PM2.5 was associated with a 2.7% (95% CI: 1.3, 4.1; p = 0.00018) increase in ICU admissions 5 days later. Under stratification, positive associations were found among patients aged 0-20 and 60+, patients living in the Midwest Census Region, patients admitted in the years 2013-2015, and non-Black patients, though other results were mixed. Following a simulated severe 7-day 120 μg/m3 smoke event, our results predict ICU bed utilization peaking at 131% (95% CI: 43, 239; p < 10-5) over baseline. Our work suggests that hospitals may need to preposition vital critical care resources when severe smoke events are forecast.
Collapse
Affiliation(s)
- Cecilia Sorensen
- University of Colorado School of MedicineDepartment of Emergency MedicineAuroraCOUSA
- Center for Health, Work & EnvironmentColorado School of Public HealthAuroraCOUSA
| | | | - Katelyn O'Dell
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Steven J. Brey
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Bonne Ford
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Jeffrey R. Pierce
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Emily V. Fischer
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Jay Lemery
- University of Colorado School of MedicineDepartment of Emergency MedicineAuroraCOUSA
| | - James L. Crooks
- Division of Biostatistics and Bioinformatics and Department of Immunology and Genomic MedicineNational Jewish HealthDenverCOUSA
- Department of EpidemiologyColorado School of Public HealthAuroraCOUSA
| |
Collapse
|
17
|
Chen H, Samet JM, Bromberg PA, Tong H. Cardiovascular health impacts of wildfire smoke exposure. Part Fibre Toxicol 2021; 18:2. [PMID: 33413506 PMCID: PMC7791832 DOI: 10.1186/s12989-020-00394-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, wildland fires have occurred more frequently and with increased intensity in many fire-prone areas. In addition to the direct life and economic losses attributable to wildfires, the emitted smoke is a major contributor to ambient air pollution, leading to significant public health impacts. Wildfire smoke is a complex mixture of particulate matter (PM), gases such as carbon monoxide, nitrogen oxide, and volatile and semi-volatile organic compounds. PM from wildfire smoke has a high content of elemental carbon and organic carbon, with lesser amounts of metal compounds. Epidemiological studies have consistently found an association between exposure to wildfire smoke (typically monitored as the PM concentration) and increased respiratory morbidity and mortality. However, previous reviews of the health effects of wildfire smoke exposure have not established a conclusive link between wildfire smoke exposure and adverse cardiovascular effects. In this review, we systematically evaluate published epidemiological observations, controlled clinical exposure studies, and toxicological studies focusing on evidence of wildfire smoke exposure and cardiovascular effects, and identify knowledge gaps. Improving exposure assessment and identifying sensitive cardiovascular endpoints will serve to better understand the association between exposure to wildfire smoke and cardiovascular effects and the mechanisms involved. Similarly, filling the knowledge gaps identified in this review will better define adverse cardiovascular health effects of exposure to wildfire smoke, thus informing risk assessments and potentially leading to the development of targeted interventional strategies to mitigate the health impacts of wildfire smoke.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
18
|
Ballesteros-González K, Sullivan AP, Morales-Betancourt R. Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139755. [PMID: 32758934 DOI: 10.1016/j.scitotenv.2020.139755] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Biomass burning (BB) emissions significantly deteriorate air quality in many regions worldwide, impact human health and perturbing Earth's radiation budget and climate. South America is one of largest contributors to BB emissions globally. After Amazonia, BB emissions from open and agricultural fires of Northern South America (NSA) are the most significant. Recent evidence shows a strong correlation between fire counts in NSA and Brown Carbon in some Colombian cities, suggesting a substantial seasonal contribution of regional BB sources to air pollution levels in the densely populated areas of NSA. In this work we use the atmospheric regional chemical transport model WRF-Chem to assess the contribution of open BB events to pollutant concentration and to estimate potential health impacts associated with wildfire events in NSA. Three nested domains are used to simulate atmospheric composition in the Northern part of South America and the Caribbean. Simulations included biogenic and anthropogenic emissions from a global emission inventory merged with local emissions for the city of Bogotá. Two modelling scenarios were considered, a base case without BB emissions (NO_FIRE) and a sensitivity scenario with BB emissions. Simulations were carried out for periods of strong BB activity in NSA. In the NO_FIRE scenario, aerosol concentrations are unrealistically low. When BB emissions are is included background PM2.5 concentrations increase 80%. The increment in aerosol concentrations is mainly driven by Secondary Organic Aerosols. In the case of Bogotá, the most densely populated city in the domain, monthly mean increase in PM2.5 is 3.3 μg m-3 and 4.3 ppb for O3. Modeled meteorological and air pollution fields are in better agreement with observations when high spatial resolution (3 × 3 km) is used in the simulations. The total estimated short-term all-cause mortality associated to BB during February in the region is 171 cases, 88 PM2.5-related and 83 O3-related mortality.
Collapse
Affiliation(s)
| | - Amy P Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
19
|
Woo SHL, Liu JC, Yue X, Mickley LJ, Bell ML. Air pollution from wildfires and human health vulnerability in Alaskan communities under climate change. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2020; 15:094019. [PMID: 34413900 PMCID: PMC8372693 DOI: 10.1088/1748-9326/ab9270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alaskan wildfires are becoming more frequent and severe, but very little is known regarding exposure to wildfire smoke, a risk factor for respiratory and cardiovascular illnesses. We estimated long-term, present-day and future exposure to wildfire-related fine particulate matter (PM2.5) across Alaska for the general population and subpopulations to assess vulnerability using observed data for the present day (1997-2010), modelled estimates for the present day (1997-2001), and modelled estimates for the future (2047-2051). First, we assessed wildfire-PM2.5 exposure by estimating monthly-average wildfire-specific PM2.5 levels across 1997-2010 for 158 Alaskan census tracts, using atmospheric transport modelling based on observed area-burned data. Second, we estimated changes in future (2047-2051) wildfire-PM2.5 exposure compared to the present-day (1997-2001) by estimating the monthly-average wildfire-specific PM2.5 levels for 29 boroughs/census areas (county-equivalent areas), under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario from an ensemble of 13 climate models. Subpopulation risks for present and future exposure levels were estimated by summing area-weighted exposure levels utilizing the 2000 Census and State of Alaska's population projections. We assessed vulnerability by several subpopulation characteristics (e.g. race/ethnicity, urbanicity). Wildfire-PM2.5 exposure levels during 1997-2010 were highest in interior Alaska during July. Among subpopulations, average summer (June-August) exposure levels for urban dwellers and African-American/Blacks were highest at 9.1 μg m-3 and 10 μg m-3, respectively. Estimated wildfire-PM2.5 varied by Native American tribe, ranging from average summer levels of 2.4 μg m-3 to 13 μg m-3 for Tlingit-Haida and Alaskan Athabascan tribes, respectively. Estimates indicate that by the mid-21st century, under climate change, almost all of Alaska could be exposed to increases of 100% or more in levels of wildfire-specific PM2.5 levels. Exposure to wildfire-PM2.5 likely presents a substantial public health burden in the present day for Alaska communities, with different impacts by subpopulation. Under climate change, wildfire smoke could pose an even greater public health risks for most Alaskans.
Collapse
Affiliation(s)
- Seung Hyun Lucia Woo
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, United States of America
| | - Jia Coco Liu
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, United States of America
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Xu Yue
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Loretta J Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Michelle L Bell
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, United States of America
| |
Collapse
|
20
|
Doubleday A, Schulte J, Sheppard L, Kadlec M, Dhammapala R, Fox J, Busch Isaksen T. Mortality associated with wildfire smoke exposure in Washington state, 2006-2017: a case-crossover study. Environ Health 2020; 19:4. [PMID: 31931820 PMCID: PMC6958692 DOI: 10.1186/s12940-020-0559-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Wildfire events are increasing in prevalence in the western United States. Research has found mixed results on the degree to which exposure to wildfire smoke is associated with an increased risk of mortality. METHODS We tested for an association between exposure to wildfire smoke and non-traumatic mortality in Washington State, USA. We characterized wildfire smoke days as binary for grid cells based on daily average PM2.5 concentrations, from June 1 through September 30, 2006-2017. Wildfire smoke days were defined as all days with assigned monitor concentration above a PM2.5 value of 20.4 μg/m3, with an additional set of criteria applied to days between 9 and 20.4 μg/m3. We employed a case-crossover study design using conditional logistic regression and time-stratified referent sampling, controlling for humidex. RESULTS The odds of all-ages non-traumatic mortality with same-day exposure was 1.0% (95% CI: - 1.0 - 4.0%) greater on wildfire smoke days compared to non-wildfire smoke days, and the previous day's exposure was associated with a 2.0% (95% CI: 0.0-5.0%) increase. When stratified by cause of mortality, odds of same-day respiratory mortality increased by 9.0% (95% CI: 0.0-18.0%), while the odds of same-day COPD mortality increased by 14.0% (95% CI: 2.0-26.0%). In subgroup analyses, we observed a 35.0% (95% CI: 9.0-67.0%) increase in the odds of same-day respiratory mortality for adults ages 45-64. CONCLUSIONS This study suggests increased odds of mortality in the first few days following wildfire smoke exposure. It is the first to examine this relationship in Washington State and will help inform local and state risk communication efforts and decision-making during future wildfire smoke events.
Collapse
Affiliation(s)
- Annie Doubleday
- Department of Environmental and Occupational Health Sciences, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| | - Jill Schulte
- Air Quality Program, Washington State Department of Ecology, PO Box 47600, Olympia, WA, 98504, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
- Department of Biostatistics, University of Washington, 1705 NE Pacific St, Seattle, WA, 98195, USA
| | - Matt Kadlec
- Air Quality Program, Washington State Department of Ecology, PO Box 47600, Olympia, WA, 98504, USA
| | - Ranil Dhammapala
- Air Quality Program, Washington State Department of Ecology, PO Box 47600, Olympia, WA, 98504, USA
| | - Julie Fox
- Office of Environmental Public Health Sciences, Washington State Department of Health, 243 Israel Road SE, Tumwater, WA, 98501, USA
| | - Tania Busch Isaksen
- Department of Environmental and Occupational Health Sciences, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| |
Collapse
|
21
|
Koman PD, Billmire M, Baker KR, de Majo R, Anderson FJ, Hoshiko S, Thelen BJ, French NH. Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California. ATMOSPHERE 2019; 10:308. [PMID: 31803514 PMCID: PMC6892473 DOI: 10.3390/atmos10060308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Wildland fire smoke exposure affects a broad proportion of the U.S. population and is increasing due to climate change, settlement patterns and fire seclusion. Significant public health questions surrounding its effects remain, including the impact on cardiovascular disease and maternal health. Using atmospheric chemical transport modeling, we examined general air quality with and without wildland fire smoke PM2.5. The 24-h average concentration of PM2.5 from all sources in 12-km gridded output from all sources in California (2007-2013) was 4.91 μg/m3. The average concentration of fire-PM2.5 in California by year was 1.22 μg/m3 (~25% of total PM2.5). The fire-PM2.5 daily mean was estimated at 4.40 μg/m3 in a high fire year (2008). Based on the model-derived fire-PM2.5 data, 97.4% of California's population lived in a county that experienced at least one episode of high smoke exposure ("smokewave") from 2007-2013. Photochemical model predictions of wildfire impacts on daily average PM2.5 carbon (organic and elemental) compared to rural monitors in California compared well for most years but tended to over-estimate wildfire impacts for 2008 (2.0 μg/m3 bias) and 2013 (1.6 μg/m3 bias) while underestimating for 2009 (-2.1 μg/m3 bias). The modeling system isolated wildfire and PM2.5 from other sources at monitored and unmonitored locations, which is important for understanding population exposure in health studies. Further work is needed to refine model predictions of wildland fire impacts on air quality in order to increase confidence in the model for future assessments. Atmospheric modeling can be a useful tool to assess broad geographic scale exposure for epidemiologic studies and to examine scenario-based health impacts.
Collapse
Affiliation(s)
- Patricia D. Koman
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Billmire
- Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, MI, 48105 USA
| | - Kirk R. Baker
- Office of Air Quality Planning & Standards, Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709 USA
| | - Ricardo de Majo
- Health Behavior Health Education, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Frank J. Anderson
- Obstetrics and Gynecology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Sumi Hoshiko
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA 94804,USA
| | - Brian J. Thelen
- Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, MI, 48105 USA
| | - Nancy H.F. French
- Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, MI, 48105 USA
| |
Collapse
|
22
|
Rodrigues PCDO, Pinheiro SDL, Junger W, Ignotti E, Hacon SDS. Climatic variability and morbidity and mortality associated with particulate matter. Rev Saude Publica 2017; 51:91. [PMID: 29020123 PMCID: PMC5676767 DOI: 10.11606/s1518-8787.2017051006952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/02/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The objective of this study has been to analyze whether fine particulate matter (PM2.5), as well as its synergistic effect with maximum temperature, humidity, and seasons, is associated with morbidity and mortality from cardiovascular diseases. METHODS This is an ecological study of time series. We have used as outcomes the daily death and hospitalization records of adults aged 45 years and over from 2009 to 2011 of the municipalities of Cuiabá and Várzea Grande, State of Mato Grosso, Brazil. We have used Poisson regression using generalized additive models, assuming a significance level of 5%. The model has been controlled for temporal trend, seasonality, average temperature, humidity, and season effects. Daily concentrations of PM2.5 (particulate material with aerodynamic diameter less than 2.5 micrometers) have been obtained by converting the values of optical aerosol thickness. Maximum temperature, humidity, and seasons have been separately included in the model as dummy variables for the analysis of the synergistic effect of PM2.5 with morbidity and mortality from cardiovascular disease. We have calculated the percentage increase of relative risk (%RR) of deaths and hospitalizations for the linear increase of 10 μg/m3 of PM2.5. RESULTS Between 2009 and 2011, the increase in PM2.5 was associated with a %RR 2.28 (95%CI 0.53–4.06) for hospitalizations on the same day of exposure and RR% 3.57 (95%CI 0.82–6.38) for deaths with a lag of three days. On hot days, %RR 4.90 (95%CI -0.61–9.38) was observed for deaths. No modification of the effect of PM2.5 was observed for maximum temperature in relation to hospitalizations. On days with low humidity, %RR was 5.35 (95%CI -0.20–11.22) for deaths and 2.71 (95%CI -0.39–5.92) for hospitalizations. In the dry season, %RR was 2.35 (95%CI 0.59–4.15) for hospitalizations and 3.43 (95%CI 0.58–6.35) for deaths. CONCLUSIONS The PM2.5 is associated with morbidity and mortality from cardiovascular diseases and its effects may be potentiated by heat and low humidity and during the dry season.
Collapse
Affiliation(s)
| | | | - Washington Junger
- Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil
| | - Eliane Ignotti
- Universidade do Estado de Mato Grosso. Cáceres, MT, Brasil
| | | |
Collapse
|
23
|
Rodrigues PCDO, Santos ESD, Hacon SDS, Ignotti E. Fatores de risco para mortalidade por doenças cardiovasculares associados à alta exposição ao tráfego veicular. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2017; 20:423-434. [DOI: 10.1590/1980-5497201700030006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/13/2017] [Indexed: 11/22/2022] Open
Abstract
RESUMO: Objetivo: Identificar áreas e fatores de risco para a mortalidade causada por doenças cardiovasculares (DC) associados à poluição do ar proveniente da alta exposição ao tráfego. Métodos: Estudo transversal da mortalidade por DC em 2.617 indivíduos de 45 a 85 anos residentes na zona urbana de Cuiabá e Várzea Grande, Mato Grosso, entre 2009 e 2011. Utilizou-se a proximidade residencial de até 150 metros de uma via de grande fluxo de veículos como proxy da alta exposição à poluição atmosférica proveniente do tráfego. A associação entre idade, sexo, renda e intensidade do trânsito com a exposição ao tráfego foi avaliada por meio de regressão logística múltipla. Foram realizadas análises estratificadas para observar a influência das estações do ano e dos grupos de causas. Utilizou-se modelo espacial de probabilidade de Bernoulli para identificação de áreas de risco. Resultados: Os principais fatores de risco para mortalidade por DC associados à alta exposição ao tráfego foram: residir em setores censitários com renda muito desigual (OR = 1,78; IC95% 1,36 - 2,33), trânsito intenso (OR = 1,20; IC95% 1,01 - 1,43) e sexo feminino (OR = 1,18; IC95% 1,01 - 1,38). O risco de mortalidade por DC aumenta cerca de 10% no período de seca. Foram identificadas nove áreas de risco. Conclusão: A alta exposição ao tráfego está associada à mortalidade por DC em Cuiabá e Várzea Grande. A desigualdade de renda, a intensidade do trânsito e o sexo feminino apresentaram-se como os principais determinantes dessa exposição, além da estação seca potencializá-la.
Collapse
|
24
|
Burroughs Peña MS, Rollins A. Environmental Exposures and Cardiovascular Disease: A Challenge for Health and Development in Low- and Middle-Income Countries. Cardiol Clin 2017; 35:71-86. [PMID: 27886791 DOI: 10.1016/j.ccl.2016.09.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Environmental exposures in low- and middle-income countries lie at the intersection of increased economic development and the rising public health burden of cardiovascular disease. Increasing evidence suggests an association of exposure to ambient air pollution, household air pollution from biomass fuel, lead, arsenic, and cadmium with multiple cardiovascular disease outcomes, including hypertension, coronary heart disease, stroke, and cardiovascular mortality. Although populations in low- and middle-income countries are disproportionately exposed to environmental pollution, evidence linking these exposures to cardiovascular disease is derived from populations in high-income countries. More research is needed to further characterize the extent of environmental exposures.
Collapse
Affiliation(s)
- Melissa S Burroughs Peña
- Division of Cardiology, Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, 11th Floor, Room 1180D, San Francisco, CA 94143, USA.
| | - Allman Rollins
- Department of Medicine, University of California, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Andrade VSD, Artaxo PE, Hacon SDS, Carmo CND. [Spatial distribution of biomass burning and mortality among the elderly in a Brazilian Amazon region, 2001 - 2012]. CIENCIA & SAUDE COLETIVA 2017; 22:245-253. [PMID: 28076547 DOI: 10.1590/1413-81232017221.09622015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
The burning of biomass has a significant impact on the Amazon ecosystem in the dry season due to the emissions of air pollutants. The effects on the health of the population, especially in the region of the arc of deforestation, has been the subject of recent studies. The scope of this study was to evaluate the spatial distribution of biomass burning and mortality from respiratory and cardiovascular diseases among the elderly in the state of Rondônia in the period from 2001 to 2012. Mortality data were obtained through the Mortality Information System of the Ministry of Health. Biomass burning data were provided by the National Institute for Space Research. The Kernel estimator was used. The highest mortality rates were observed in the central-east and south-east of Rondônia. The focuses of the fires were concentrated in the northern part of the state, though with a significant amount in other regions. The spatial distribution of the hot areas of mortality and fires were not directly associated. However, fires were observed in all municipalities in the state. Pollutants emitted from biomass burning can be transported thousands of kilometers from the source areas and influence the health of the elderly.
Collapse
Affiliation(s)
- Valdir Soares de Andrade
- Universidade do Estado do Amazonas. Av. Djalma Batista 2470, Chapada. 69050-010 Manaus AM Brasil.
| | | | - Sandra de Souza Hacon
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública, Fiocruz. Rio de Janeiro RJ Brasil
| | - Cleber Nascimento do Carmo
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública, Fiocruz. Rio de Janeiro RJ Brasil
| |
Collapse
|
26
|
Silva PRDS, Ignotti E, Oliveira BFAD, Junger WL, Morais F, Artaxo P, Hacon S. High risk of respiratory diseases in children in the fire period in Western Amazon. Rev Saude Publica 2017; 50:S0034-89102016000100217. [PMID: 27305405 PMCID: PMC4902659 DOI: 10.1590/s1518-8787.2016050005667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To analyze the toxicological risk of exposure to ozone (O3) and fine particulate matter (PM2.5) among schoolchildren.. METHODS Toxicological risk assessment was used to evaluate the risk of exposure to O3 and PM2.5 from biomass burning among schoolchildren aged six to 14 years, residents of Rio Branco, Acre, Southern Amazon, Brazil. We used Monte Carlo simulation to estimate the potential intake dose of both pollutants. RESULTS During the slash-and-burn periods, O3 and PM2.5 concentrations reached 119.4 µg/m3 and 51.1 µg/m3, respectively. The schoolchildren incorporated medium potential doses regarding exposure to O3 (2.83 μg/kg.day, 95%CI 2.72–2.94). For exposure to PM2.5, we did not find toxicological risk (0.93 μg/kg.day, 95%CI 0.86–0.99). The toxicological risk for exposure to O3 was greater than 1 for all children (QR = 2.75; 95%CI 2.64–2.86). CONCLUSIONS Schoolchildren were exposed to high doses of O3 during the dry season of the region. This posed a toxicological risk, especially to those who had previous diseases.
Collapse
Affiliation(s)
- Pãmela Rodrigues de Souza Silva
- Universidade Federal do Mato Grosso, Instituto de Saúde Coletiva, Universidade Federal do Mato Grosso, Cuiabá MT , Brasil, Programa de Pós-Graduação em Saúde Coletiva. Instituto de Saúde Coletiva. Universidade Federal do Mato Grosso. Cuiabá, MT, Brasil
| | - Eliane Ignotti
- Universidade do Estado de Mato Grosso, Faculdade de Ciências da Saúde, Universidade do Estado de Mato Grosso, Cáceres MT , Brasil, Faculdade de Ciências da Saúde. Universidade do Estado de Mato Grosso. Cáceres, MT, Brasil
| | - Beatriz Fátima Alves de Oliveira
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro RJ , Brasil, Escola Nacional de Saúde Pública. Fundação Oswaldo Cruz. Rio de Janeiro, RJ, Brasil
| | - Washington Leite Junger
- Universidade do Estado do Rio de Janeiro, Instituto de Medicina Social, Universidade Estadual do Rio de Janeiro, Rio de Janeiro RJ , Brasil, Instituto de Medicina Social. Universidade Estadual do Rio de Janeiro. Rio de Janeiro, RJ, Brasil
| | - Fernando Morais
- Universidade de São Paulo, Instituto de Física, Universidade de São Paulo, São Paulo SP , Brasil, Instituto de Física. Universidade de São Paulo. São Paulo, SP, Brasil
| | - Paulo Artaxo
- Universidade de São Paulo, Instituto de Física, Universidade de São Paulo, São Paulo SP , Brasil, Instituto de Física. Universidade de São Paulo. São Paulo, SP, Brasil
| | - Sandra Hacon
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro RJ , Brasil, Escola Nacional de Saúde Pública. Fundação Oswaldo Cruz. Rio de Janeiro, RJ, Brasil
| |
Collapse
|
27
|
Kollanus V, Tiittanen P, Niemi JV, Lanki T. Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. ENVIRONMENTAL RESEARCH 2016; 151:351-358. [PMID: 27525668 DOI: 10.1016/j.envres.2016.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/05/2016] [Accepted: 08/03/2016] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Fine particulate matter (PM2.5) emissions from vegetation fires can be transported over long distances and may cause significant air pollution episodes far from the fires. However, epidemiological evidence on health effects of vegetation-fire originated air pollution is limited, particularly for mortality and cardiovascular outcomes. OBJECTIVE We examined association between short-term exposure to long-range transported PM2.5 from vegetation fires and daily mortality due to non-accidental, cardiovascular, and respiratory causes and daily hospital admissions due to cardiovascular and respiratory causes in the Helsinki metropolitan area, Finland. METHODS Days significantly affected by smoke from vegetation fires between 2001 and 2010 were identified using air quality measurements at an urban background and a regional background monitoring station, and modelled data on surface concentrations of vegetation-fire smoke. Associations between daily PM2.5 concentration and health outcomes on i) smoke-affected days and ii) all other days (i.e. non-smoke days) were analysed using Poisson time series regression. All statistical models were adjusted for daily temperature and relative humidity, influenza, pollen, and public holidays. RESULTS On smoke-affected days, 10µg/m3 increase in PM2.5 was associated with a borderline statistically significant increase in cardiovascular mortality among total population at a lag of three days (12.4%, 95% CI -0.2% to 26.5%), and among the elderly (≥65 years) following same-day exposure (13.8%, 95% CI -0.6% to 30.4%) and at a lag of three days (11.8%, 95% CI -2.2% to 27.7%). Smoke day PM2.5 was not associated with non-accidental mortality or hospital admissions due to cardiovascular causes. However, there was an indication of a positive association with hospital admissions due to respiratory causes among the elderly, and admissions due to chronic obstructive pulmonary disease or asthma among the total population. In contrast, on non-smoke days PM2.5 was generally not associated with the health outcomes, apart from suggestive small positive effects on non-accidental mortality at a lag of one day among the elderly and hospital admissions due to all respiratory causes following same-day exposure among the total population. CONCLUSIONS Our research provides suggestive evidence for an association of exposure to long-range transported PM2.5 from vegetation fires with increased cardiovascular mortality, and to a lesser extent with increased hospital admissions due to respiratory causes. Hence, vegetation-fire originated air pollution may have adverse effects on public health over a distance of hundreds to thousands of kilometres from the fires.
Collapse
Affiliation(s)
- Virpi Kollanus
- Department of Health Protection, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - Pekka Tiittanen
- Department of Health Protection, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority, P.O. Box 100, FI-00066 HSY, Helsinki, Finland; Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 University of Helsinki, Helsinki, Finland
| | - Timo Lanki
- Department of Health Protection, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland; Unit of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
28
|
Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. Critical Review of Health Impacts of Wildfire Smoke Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1334-43. [PMID: 27082891 PMCID: PMC5010409 DOI: 10.1289/ehp.1409277] [Citation(s) in RCA: 571] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 09/14/2015] [Accepted: 03/10/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Wildfire activity is predicted to increase in many parts of the world due to changes in temperature and precipitation patterns from global climate change. Wildfire smoke contains numerous hazardous air pollutants and many studies have documented population health effects from this exposure. OBJECTIVES We aimed to assess the evidence of health effects from exposure to wildfire smoke and to identify susceptible populations. METHODS We reviewed the scientific literature for studies of wildfire smoke exposure on mortality and on respiratory, cardiovascular, mental, and perinatal health. Within those reviewed papers deemed to have minimal risk of bias, we assessed the coherence and consistency of findings. DISCUSSION Consistent evidence documents associations between wildfire smoke exposure and general respiratory health effects, specifically exacerbations of asthma and chronic obstructive pulmonary disease. Growing evidence suggests associations with increased risk of respiratory infections and all-cause mortality. Evidence for cardiovascular effects is mixed, but a few recent studies have reported associations for specific cardiovascular end points. Insufficient research exists to identify specific population subgroups that are more susceptible to wildfire smoke exposure. CONCLUSIONS Consistent evidence from a large number of studies indicates that wildfire smoke exposure is associated with respiratory morbidity with growing evidence supporting an association with all-cause mortality. More research is needed to clarify which causes of mortality may be associated with wildfire smoke, whether cardiovascular outcomes are associated with wildfire smoke, and if certain populations are more susceptible. CITATION Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. 2016. Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect 124:1334-1343; http://dx.doi.org/10.1289/ehp.1409277.
Collapse
Affiliation(s)
- Colleen E. Reid
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Harvard Center for Population and Development Studies, Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts, USA
- Address correspondence to C.E. Reid, Harvard Center for Population and Development Studies, 9 Bow St., Cambridge, MA 02138 USA. Telephone: (617) 495-8108. E-mail:
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fay H. Johnston
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Environmental Health Services, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Michael Jerrett
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - John R. Balmes
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Catherine T. Elliott
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Office of the Chief Medical Officer of Health, Yukon Health and Social Services, Whitehorse, Yukon, Canada
| |
Collapse
|
29
|
Mantovani KCC, Nascimento LFC, Moreira DS, Vieira LCPFDS, Vargas NP. Poluentes do ar e internações devido a doenças cardiovasculares em São José do Rio Preto, Brasil. CIENCIA & SAUDE COLETIVA 2016; 21:509-15. [DOI: 10.1590/1413-81232015212.16102014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/23/2015] [Indexed: 11/22/2022] Open
Abstract
Resumo O presente estudo teve como objetivo estimar os efeitos de poluentes ambientais sobre o número de internações por doenças cardiovasculares. Foi um estudo ecológico com dados de internações hospitalares de residentes em São José do Rio Preto, São Paulo, Brasil, com diagnóstico nas categorias de I-00 a I-99, entre 01/10/11 e 30/09/12. Os poluentes analisados foram partículas finas (PM2,5), ozônio, monóxido de carbono, óxido de nitrogênio e dióxido de nitrogênio. Foram estimados pelo modelo CCATT-BRAMS. O uso do modelo aditivo de regressão de Poisson foi utilizado para estimar associação entre a exposição ao PM2,5 e internação por doença cardiovascular. Foram calculados os excessos de internação e os gastos por estas doenças. Observou-se que a exposição ao PM2,5 no quinto dia após a exposição (lag 5) foi significativo para internação e aumentou em 15 ppts segundo incremento de 10µg /m3 na concentração de PM2,5. Foram identificadas 650 internações evitáveis com custos da ordem de R$ 1,9 milhão. Desse modo, foi possível identificar associação entre exposição ao PM2,5 e internações devido a doenças cardiovasculares em cidades de médio porte como São José do Rio Preto fornecendo subsídios aos gestores municipal e regional de Saúde.
Collapse
|
30
|
Space-Time Analysis to Identify Areas at Risk of Mortality from Cardiovascular Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:841645. [PMID: 26504836 PMCID: PMC4609383 DOI: 10.1155/2015/841645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/31/2015] [Indexed: 01/04/2023]
Abstract
This study aimed at identifying areas that were at risk of mortality due to cardiovascular disease in residents aged 45 years or older of the cities of Cuiabá and Várzea Grande between 2009 and 2011. We conducted an ecological study of mortality rates related to cardiovascular disease. Mortality rates were calculated for each census tract by the Local Empirical Bayes estimator. High- and low-risk clusters were identified by retrospective space-time scans for each year using the Poisson probability model. We defined the year and month as the temporal analysis unit and the census tracts as the spatial analysis units adjusted by age and sex. The Mann-Whitney U test was used to compare the socioeconomic and environmental variables by risk classification. High-risk clusters showed higher income ratios than low-risk clusters, as did temperature range and atmospheric particulate matter. Low-risk clusters showed higher humidity than high-risk clusters. The Eastern region of Várzea Grande and the central region of Cuiabá were identified as areas at risk of mortality due to cardiovascular disease in individuals aged 45 years or older. High mortality risk was associated with socioeconomic and environmental factors. More high-risk clusters were observed at the end of the dry season.
Collapse
|
31
|
Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. ENVIRONMENTAL RESEARCH 2015; 136:120-32. [PMID: 25460628 PMCID: PMC4262561 DOI: 10.1016/j.envres.2014.10.015] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Climate change is likely to increase the threat of wildfires, and little is known about how wildfires affect health in exposed communities. A better understanding of the impacts of the resulting air pollution has important public health implications for the present day and the future. METHOD We performed a systematic search to identify peer-reviewed scientific studies published since 1986 regarding impacts of wildfire smoke on health in exposed communities. We reviewed and synthesized the state of science of this issue including methods to estimate exposure, and identified limitations in current research. RESULTS We identified 61 epidemiological studies linking wildfire and human health in communities. The U.S. and Australia were the most frequently studied countries (18 studies on the U.S., 15 on Australia). Geographic scales ranged from a single small city (population about 55,000) to the entire globe. Most studies focused on areas close to fire events. Exposure was most commonly assessed with stationary air pollutant monitors (35 of 61 studies). Other methods included using satellite remote sensing and measurements from air samples collected during fires. Most studies compared risk of health outcomes between 1) periods with no fire events and periods during or after fire events, or 2) regions affected by wildfire smoke and unaffected regions. Daily pollution levels during or after wildfire in most studies exceeded U.S. EPA regulations. Levels of PM10, the most frequently studied pollutant, were 1.2 to 10 times higher due to wildfire smoke compared to non-fire periods and/or locations. Respiratory disease was the most frequently studied health condition, and had the most consistent results. Over 90% of these 45 studies reported that wildfire smoke was significantly associated with risk of respiratory morbidity. CONCLUSION Exposure measurement is a key challenge in current literature on wildfire and human health. A limitation is the difficulty of estimating pollution specific to wildfires. New methods are needed to separate air pollution levels of wildfires from those from ambient sources, such as transportation. The majority of studies found that wildfire smoke was associated with increased risk of respiratory and cardiovascular diseases. Children, the elderly and those with underlying chronic diseases appear to be susceptible. More studies on mortality and cardiovascular morbidity are needed. Further exploration with new methods could help ascertain the public health impacts of wildfires under climate change and guide mitigation policies.
Collapse
Affiliation(s)
- Jia C Liu
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA.
| | - Gavin Pereira
- Center for Perinatal Pediatric and Environmental Epidemiology, School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - Sarah A Uhl
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA.
| | - Mercedes A Bravo
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA.
| | - Michelle L Bell
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA.
| |
Collapse
|