1
|
Zhou L, Jin Y, Wu D, Cun Y, Zhang C, Peng Y, Chen N, Yang X, Zhang S, Ning R, Kuang P, Wang Z, Zhang P. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front Neurosci 2023; 17:1177283. [PMID: 37534033 PMCID: PMC10390744 DOI: 10.3389/fnins.2023.1177283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation technique that can be used as one of the adjunctive treatment techniques for neurological recovery after stroke. Animal studies have shown that TMS treatment of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct volume and improved neurological dysfunction in model rats. In addition, clinical case reports have also shown that TMS treatment has positive neuroprotective effects in stroke patients, improving a variety of post-stroke neurological deficits such as motor function, swallowing, cognitive function, speech function, central post-stroke pain, spasticity, and other post-stroke sequelae. However, even though numerous studies have shown a neuroprotective effect of TMS in stroke patients, its possible neuroprotective mechanism is not clear. Therefore, in this review, we describe the potential mechanisms of TMS to improve neurological function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, and anti-apoptosis, and provide insight into the current clinical application of TMS in multiple neurological dysfunctions in stroke. Finally, some of the current challenges faced by TMS are summarized and some suggestions for its future research directions are made.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yicheng Peng
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xichen Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rong Ning
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng Kuang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zuhong Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Morofuji Y, Nakagawa S. Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Curr Pharm Des 2020; 26:1466-1485. [PMID: 32091330 PMCID: PMC7499354 DOI: 10.2174/1381612826666200224112534] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
An important goal of biomedical research is to translate basic research findings into practical clinical implementation. Despite the advances in the technology used in drug discovery, the development of drugs for central nervous system diseases remains challenging. The failure rate for new drugs targeting important central nervous system diseases is high compared to most other areas of drug discovery. The main reason for the failure is the poor penetration efficacy across the blood-brain barrier. The blood-brain barrier represents the bottleneck in central nervous system drug development and is the most important factor limiting the future growth of neurotherapeutics. Meanwhile, drug repositioning has been becoming increasingly popular and it seems a promising field in central nervous system drug development. In vitro blood-brain barrier models with high predictability are expected for drug development and drug repositioning. In this review, the recent progress of in vitro BBB models and the drug repositioning for central nervous system diseases will be discussed.
Collapse
Affiliation(s)
- Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Amaro S, Jiménez-Altayó F, Chamorro Á. Uric acid therapy for vasculoprotection in acute ischemic stroke. Brain Circ 2019; 5:55-61. [PMID: 31334357 PMCID: PMC6611195 DOI: 10.4103/bc.bc_1_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/18/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Uric acid (UA) is a product of the catabolism of purine nucleotides, the principal constituents of DNA, RNA, and cellular energy stores, such as adenosine triphosphate. The main properties of UA include scavenging of hydroxyl radicals, superoxide anion, hydrogen peroxide, and peroxynitrite that make this compound to be the most potent antioxidant in the human plasma. As the result of two silencing mutations in the gene of the hepatic enzyme uricase which degrades UA to allantoin, humans have higher levels of UA than most mammals. However, these levels rapidly decrease following an acute ischemic stroke (AIS), and this decrement has been associated to worse stroke outcomes. This review highlights the safety and potential clinical value of UA therapy in AIS, particularly in patients more exposed to redox-mediated mechanism following the onset of ischemia, such as women, hyperglycemic patients, or patients treated with mechanical thrombectomy. The clinical findings are supported by preclinical data gathered in different laboratories, and in assorted animal species which include male and female individuals or animals harboring comorbidities frequently encountered in patients with AIS, such as hyperglycemia or hypertension. A remarkable finding in these studies is that UA targets its main effects in the brain vasculature since available evidence suggests that does not seem to cross the blood–brain barrier. Altogether, the available data with UA therapy extend the importance of vasculoprotection for effective neuroprotection at the bedside and reinforce the role of endothelial cells after brain ischemia for an increased survival of the whole neurovascular unit.
Collapse
Affiliation(s)
- Sergi Amaro
- Comprehensive Stroke Center, Hospital Clínic, University of Barcelona, Barcelona, Spain.,Department of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Jiménez-Altayó
- Department de Farmacologia, de Terapèutica i de Toxicologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ángel Chamorro
- Comprehensive Stroke Center, Hospital Clínic, University of Barcelona, Barcelona, Spain.,Department of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
A Bioactive Chemical Markers Based Strategy for Quality Assessment of Botanical Drugs: Xuesaitong Injection as a Case Study. Sci Rep 2017; 7:2410. [PMID: 28546540 PMCID: PMC5445085 DOI: 10.1038/s41598-017-02305-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/10/2017] [Indexed: 01/01/2023] Open
Abstract
Current chemical markers based quality assessment methods largely fail to reflect intrinsic chemical complexity and multiple mechanisms of action of botanical drugs (BD). The development of novel quality markers is greatly needed. Here we propose bioactive chemical markers (BCM), defined as a group of chemo-markers that exhibit similar pharmacological activities comparable to the whole BD, which can therefore be used to effectively assess the quality of BD. As a proof-of-concept, a BCM-based strategy was developed and applied to Xuesaitong Injection (XST) for assessing the efficacy and consistency of different batches. Firstly, systemic characterization of chemical profile of XST revealed a total number of 97 compounds. Secondly, notoginsenoside R1, ginsenoside Rg1, Re, Rb1 and Rd were identified as BCM of XST on treating cardiovascular and cerebrovascular diseases according to Adjusted Efficacy Score following an in vivo validation. Analytical method for quantification of BCM was then developed to ensure the efficacy of XST. Finally, chemical fingerprinting was developed and used to evaluate the batch-to-batch consistency. Our present case study on XST demonstrates that BCM-based strategy offers a rational approach for quality assessment of BD and provides a workflow for chemistry, manufacturing, and controls (CMC) study of BD required by regulatory authority.
Collapse
|
5
|
|
6
|
Fouda AY, Kozak A, Alhusban A, Switzer JA, Fagan SC. Anti-inflammatory IL-10 is upregulated in both hemispheres after experimental ischemic stroke: Hypertension blunts the response. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2013; 5:12. [PMID: 24499655 PMCID: PMC3843530 DOI: 10.1186/2040-7378-5-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Background Exogenous administration of the anti-inflammatory cytokine, interleukin 10 (IL-10), is known to promote neuroprotection and mitigate neuroinflammation after ischemia. However, endogenous expression and localization of IL-10 and its receptor (IL-10R) in the post-ischemic brain are still to be elucidated. In this investigation we aimed at determining the temporospatial expression of IL-10 in the rat brain relative to its systemic levels after ischemic stroke. Methods Wistar rats were subjected to either permanent (pMCAO) or 3-h temporary (tMCAO) middle cerebral artery occlusion and euthanized at either 24 or 72 h. IL-10/IL-10R levels were quantified in ischemic and contralesional hemispheres and compared to shams using multiplex bead array and Western blotting, respectively. Localization of IL-10/IL-10R with markers for neurons, microglia, astrocytes & endothelial cells were examined using double labeling immunofluorescence. IL-10 was also quantified in the brain tissue of spontaneously hypertensive rats (SHRs) at 24 h after tMCAO. Results After both pMCAO and tMCAO in Wistars, IL-10 was significantly upregulated in both hemispheres by ≈ 50% at 24 h while IL-10R expression was significantly decreased only at 72 h in the ischemic hemisphere. IL-10 and IL-10R expression highly co-localized with viable neurons in the ischemic penumbra and contralesional hemisphere. In hypertensive rats, IL-10 showed no significant contralesional upregulation and declined significantly in the ischemic side at 24 h post-ischemia. Conclusion Our data highlights the involvement of the ischemic and contralesional neurons in the endogenous anti-inflammatory response after ischemic stroke through increased production of IL-10. This increase in IL-10 is blunted in hypertensive animals and may contribute to worse outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Susan C Fagan
- Charlie Norwood VA Medical Center , College of Pharmacy, University of Georgia and Center for Pharmacy and Experimental Therapeutics, Augusta, GA, USA.
| |
Collapse
|
7
|
Candesartan reduces the hemorrhage associated with delayed tissue plasminogen activator treatment in rat embolic stroke. Neurochem Res 2013; 38:2668-77. [PMID: 24194350 DOI: 10.1007/s11064-013-1185-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/28/2022]
Abstract
We have previously reported that angiotensin receptor blockade reduces reperfusion hemorrhage in a suture occlusion model of stroke, despite increasing matrix metalloproteinase (MMP-9) activity. We hypothesized that candesartan will also decrease hemorrhage associated with delayed (6 h) tissue plasminogen activator (tPA) administration after embolic stroke, widening the therapeutic time window of tPA. Adult male Wistar rats were subjected to embolic middle cerebral artery occlusion (eMCAO) and treated with either candesartan (1 mg/kg) alone early at 3 h, delayed tPA (10 mg/kg) alone at 6 h, the combination of candesartan and tPA, or vehicle control. Rats were sacrificed at 24 and 48 h post-eMCAO and brains perfused for evaluation of neurological deficits, cerebral hemorrhage in terms of hemoglobin content, occurrence rate of hemorrhage, infarct size, tissue MMP activity and protein expression. The combination therapy of candesartan and tPA after eMCAO reduced the brain hemorrhage, and improved neurological outcome compared with rats treated with tPA alone. Further, candesartan in combination with tPA increased activity of MMP-9 but decreased MMP-3, nuclear factor kappa-B and tumor necrosis factor-α expression and enhanced activation of endothelial nitric oxide synthase. An activation of MMP-9 alone is insufficient to cause increased hemorrhage in embolic stroke. Combination therapy with acute candesartan plus tPA may be beneficial in ameliorating tPA-induced hemorrhage after embolic stroke.
Collapse
|
8
|
Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:297357. [PMID: 23691263 PMCID: PMC3649699 DOI: 10.1155/2013/297357] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment.
Collapse
|
9
|
Ishrat T, Soliman S, Guan W, Saler M, Fagan SC. Vascular protection to increase the safety of tissue plasminogen activator for stroke. Curr Pharm Des 2012; 18:3677-84. [PMID: 22574982 DOI: 10.2174/138161212802002779] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/24/2012] [Indexed: 12/22/2022]
Abstract
Thrombolytic therapy with tissue plasminogen activator (tPA) remains the most effective treatment for acute ischemic stroke, but can cause vascular damage leading to edema formation and hemorrhagic transformation (HT). In this review, we discuss how tPA contributes to the pathogenesis of vascular damage and highlight evidence to support combination therapy of tPA with pharmacological agents that are vascular protective. There is an unmet need to develop therapeutic interventions which target the underlying mechanisms of vascular damage after acute ischemic stroke in order to prevent HT and improve the safety and impact of tPA.
Collapse
Affiliation(s)
- Tauheed Ishrat
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, 1120 15th St., Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
10
|
Angiotensin receptor blockers and angiogenesis: clinical and experimental evidence. Clin Sci (Lond) 2011; 120:307-19. [PMID: 21488224 DOI: 10.1042/cs20100389] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Angiotensin II type 1 receptor antagonists [ARBs (angiotensin receptor blockers)] are indicated for BP (blood pressure)-lowering, renal protection and cardioprotection in patients unable to tolerate ACEIs (angiotensin-converting enzyme inhibitors). A recent meta-analysis revealed an association between ARBs and tumour development, possibly due to enhancement of angiogenesis. However, published evidence is conflicting on the effects of ARBs on angiogenesis or the expansion of the existing vascular network. ARBs have been shown to exert primarily anti-angiogenic effects in basic science studies of cancer, retinopathy, peripheral artery disease and some models of cardiovascular disease. In animal and cellular models of myocardial infarction and stroke, however, ARB administration has been associated with robust increases in vascular density and improved recovery. The aim of the present review is to examine the angiogenic effects of ARBs in animal and cellular models of relevant disease states, including proposed molecular mechanisms of action of ARBs and the clinical consequences of ARB use.
Collapse
|
11
|
Guan W, Kozak A, Fagan SC. Drug repurposing for vascular protection after acute ischemic stroke. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:295-8. [PMID: 21725771 PMCID: PMC3166853 DOI: 10.1007/978-3-7091-0693-8_49] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The attempts to develop new treatments for acute ischemic stroke have been fraught with costly and spectacularly disappointing failures. Repurposing of safe, older drugs provides a lower risk alternative. Vascular protection is a novel strategy for improving stroke outcome. Promising targets for vascular protection after stroke have been identified, and several of these targets can be approached with "repurposed" old drugs, including statins, angiotensin receptor blockers (ARBs), and minocycline. We tested the vascular protection (ability to reduce hemorrhagic transformation) of three marketed drugs (candesartan, minocycline, and atorvastatin) in the experimental stroke model using three different rat strains [Wistar, spontaneously hypertensive rats (SHR) and type 2 diabetic Goto-Kakizaki (GK) rats]. All agents decreased the infarct size, improved the neurological outcome and decreased bleeding. Mechanisms identified include inhibition of MMP-9, activation of Akt, and increased expression of proangiogenic growth factors. Premorbid vascular damage (presence of either diabetes or hypertension) increased the likelihood of vascular injury after ischemia and reperfusion and improved the response to vascular protection.
Collapse
Affiliation(s)
- Weihua Guan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | | | | |
Collapse
|
12
|
Freedman JE, Vitseva O, Tanriverdi K. The role of the blood transcriptome in innate inflammation and stroke. Ann N Y Acad Sci 2010; 1207:41-5. [PMID: 20955424 DOI: 10.1111/j.1749-6632.2010.05731.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cerebrovascular disease is a major cause of death and disability, with a poorer outcome in patients having select risk factors including diabetes and hypertension. Risk factors and the state of cerebral ischemia-reperfusion associated with cerebrovascular occlusion are known to cause inflammatory changes. These events and the inflammatory state are reflected by transcript changes in various components of the blood and can be specifically measured. By defining these changes, new insight into cerebrovascular disease and its therapeutics is being achieved.
Collapse
Affiliation(s)
- Jane E Freedman
- Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
13
|
|
14
|
Elewa HF, Kozak A, El-Remessy AB, Frye RF, Johnson MH, Ergul A, Fagan SC. Early atorvastatin reduces hemorrhage after acute cerebral ischemia in diabetic rats. J Pharmacol Exp Ther 2009; 330:532-40. [PMID: 19478137 PMCID: PMC2713088 DOI: 10.1124/jpet.108.146951] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 05/26/2009] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a leading cause of death in the United States, and diabetes mellitus is a major risk factor for stroke. Our previous work showed that type II diabetic rats [Goto-Kakizaki (GK)] have more bleeding after stroke than their normoglycemic controls (Wistar). Our aim was to evaluate the vascular protective properties of acute atorvastatin therapy after experimental ischemic stroke in diabetes and to explore the effect of stroke in GK rats compared with their normoglycemic controls. Fifty male Wistar and 40 GK rats (270-305 g) underwent 3 h of middle cerebral artery occlusion followed by reperfusion for 21 h. Animals received atorvastatin (5 mg/kg), atorvastatin (15 mg/kg), or vehicle, administered by oral gavage, one dose 5 min after reperfusion and a second dose after 12 h. At 24 h, functional outcome was measured, and brain tissue was analyzed for infarct volume, hemoglobin content, and molecular biomarkers. Plasma was collected for analysis of atorvastatin concentrations. Atorvastatin-treated groups had significantly lower bleeding rates (p = 0.0011) and infarct volume (p = 0.0007) compared with controls. There was a significant reduction in hemoglobin content and infarct volume only in the higher dose group (15 mg/kg) (p < 0.05), and these benefits were more than 4 times greater in the diabetic animals. Atorvastatin (15 mg/kg) improved neurological outcome in both Wistar and GK rats (p = 0.029) at a peak concentration of 27 to 77 ng/ml and was associated with an increase in Akt phosphorylation (p = 0.0007). We concluded that atorvastatin is a vascular protective agent after experimental ischemic stroke, especially in diabetes.
Collapse
Affiliation(s)
- Hazem F Elewa
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912-2450, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kikuchi K, Kawahara KI, Tancharoen S, Matsuda F, Morimoto Y, Ito T, Biswas KK, Takenouchi K, Miura N, Oyama Y, Nawa Y, Arimura N, Iwata M, Tajima Y, Kuramoto T, Nakayama K, Shigemori M, Yoshida Y, Hashiguchi T, Maruyama I. The free radical scavenger edaravone rescues rats from cerebral infarction by attenuating the release of high-mobility group box-1 in neuronal cells. J Pharmacol Exp Ther 2009; 329:865-74. [PMID: 19293391 DOI: 10.1124/jpet.108.149484] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Edaravone, a potent free radical scavenger, is clinically used for the treatment of cerebral infarction in Japan. Here, we examined the effects of edaravone on the dynamics of high-mobility group box-1 (HMGB1), which is a key mediator of ischemic-induced brain damage, during a 48-h postischemia/reperfusion period in rats and in oxygen-glucose-deprived (OGD) PC12 cells. HMGB1 immunoreactivity was observed in both the cytoplasm and the periphery of cells in the cerebral infarction area 2 h after reperfusion. Intravenous administration of 3 and 6 mg/kg edaravone significantly inhibited nuclear translocation and HMGB1 release in the penumbra area and caused a 26.5 +/- 10.4 and 43.8 +/- 0.5% reduction, respectively, of the total infarct area at 24 h after reperfusion. Moreover, edaravone also decreased plasma HMGB1 levels. In vitro, edaravone dose-dependently (1-10 microM) suppressed OGD- and H(2)O(2)-induced HMGB1 release in PC12 cells. Furthermore, edaravone (3-30 microM) blocked HMGB1-triggered apoptosis in PC12 cells. Our findings suggest a novel neuroprotective mechanism for edaravone that abrogates the release of HMGB1.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Science, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim YR, Tejima E, Huang S, Atochin DN, Dai G, Lo EH, Huang PL, Bogdanov A, Rosen BR. In vivo quantification of transvascular water exchange during the acute phase of permanent stroke. Magn Reson Med 2008; 60:813-21. [PMID: 18816832 PMCID: PMC2727619 DOI: 10.1002/mrm.21708] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 04/29/2008] [Indexed: 11/07/2022]
Abstract
Mechanisms that underlie early ischemic damages to the blood-brain-barrier (BBB) are not well understood. This study presents a novel magnetic resonance imaging (MRI) technique using a widely available pulse sequence and a long-circulating intravascular contrast agent to quantify water movements across the BBB at early stages of stroke progression. We characterized the integrity of the BBB by measuring the flip angle dependence of the water exchange-affected MRI signal intensity, to generate an efficient quantitative index of vascular permeability (WEI, or water exchange index). We performed in vivo MRI experiments to measure the transvascular WEI immediately after the permanent filament occlusion of the middle cerebral artery of mice (n = 5), in which we monitored changes in blood volume (V(b)), apparent diffusion coefficient (ADC), and intra-/extravascular WEI for 4 hours. Statistically significant elevations (P < 0.05) of WEI in the ischemic tissue were observed as early as 1 hour after ischemic onset. Initial reduction of the apparent blood volume (V(app)) in the infarct cortex was followed by a continuous increase of V(app) over time. Although the measured ADC in the ipsilesional cortex continuously decreased, the abnormally high intra-/extravascular WEI remained constant at a significantly elevated level, indicating apparent BBB injury at this early stage of stroke.
Collapse
Affiliation(s)
- Y R Kim
- Athinoula A. Martinos Center for Biomedical Imaging/Radiology, Massachusetts General Hospital, Charleston, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jadhav V, Solaroglu I, Obenaus A, Zhang JH. Neuroprotection against surgically induced brain injury. ACTA ACUST UNITED AC 2007; 67:15-20; discussion 20. [PMID: 17210286 PMCID: PMC1852449 DOI: 10.1016/j.surneu.2006.07.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 07/22/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neurosurgical procedures are carried out routinely in health institutions across the world. A key issue to be considered during neurosurgical interventions is that there is always an element of inevitable brain injury that results from the procedure itself because of the unique nature of the nervous system. Brain tissue at the periphery of the operative site is at risk of injury by various means, including incisions and direct trauma, electrocautery, hemorrhage, and retractor stretch. METHODS/RESULTS In the present review, we will elaborate upon this surgically induced brain injury and also present a novel animal model to study it. In addition, we will summarize preliminary results obtained by pretreatment with PP1, an Src tyrosine kinase inhibitor reported to have neuroprotective properties in in vivo experimental studies. Any form of pretreatment to limit the damage to the susceptible functional brain tissue during neurosurgical procedures may have a significant impact on patient recovery. CONCLUSION This brief review is intended to raise the question of 'neuroprotection against surgically induced brain injury' in the neurosurgical scientific community and stimulate discussions.
Collapse
Affiliation(s)
- Vikram Jadhav
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Ihsan Solaroglu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | | | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
- Division of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA
| |
Collapse
|
18
|
Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 2007; 38:1345-53. [PMID: 17332467 DOI: 10.1161/01.str.0000259709.16654.8f] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE The chemokine, monocyte chemoattractant protein-1 (CCL2), is a major factor driving leukocyte infiltration into the brain parenchyma in a variety of neuropathologic conditions associated with inflammation, including stroke. In addition, recent studies indicate that CCL2 and its receptor (CCR2) could have an important role in regulating blood-brain barrier (BBB) permeability. This study evaluated the role of the CCL2/CCR2 axis in regulating postischemic inflammation, BBB breakdown, and vasogenic edema formation. METHODS CCR2(-/-) and CCR2(+/+) mice were subjected to focal transient cerebral ischemia. BBB permeability and brain edema formation were observed at days 1 and 5 of reperfusion by evaluating the product surface area for fluorescein isothiocyanate-albumin and measuring water and electrolyte contents. Immunohistochemistry was used to assess leukocyte infiltration. cDNA gene and protein arrays for inflammatory cytokines were used to assess inflammatory profiles in CCR2(+/+) and CCR2(-/-) mice. RESULTS CCR2(-/-) mice had reduced infarct sizes and significantly reduced BBB permeability and brain edema formation in the affected ischemic hemisphere compared with CCR2(+/+) mice. This reduction in injury was closely associated with reduced infiltration of not only monocytes but also neutrophils (7- and 4-fold decreases, respectively). In addition, CCR2(-/-) mice had reduced expression/production of inflammatory cytokines during reperfusion. CONCLUSIONS These data suggest that inhibiting the CCL2/CCR2 axis affects brain reperfusion outcome by reducing brain edema, leukocyte infiltration, and inflammatory mediator expression.
Collapse
Affiliation(s)
- Oliver B Dimitrijevic
- Department of Pathology, University of Michigan, Medical School, Ann Arbor, MI 48109-0532, USA
| | | | | | | |
Collapse
|
19
|
Sicard KM, Henninger N, Fisher M, Duong TQ, Ferris CF. Differential recovery of multimodal MRI and behavior after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2006; 26:1451-62. [PMID: 16538230 PMCID: PMC2962954 DOI: 10.1038/sj.jcbfm.9600299] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The association between recovery of brain function and behavior after transient cerebral ischemia in animals and humans is incompletely characterized. Quantitative diffusion- (DWI), perfusion- (PWI), T(2)-weighted (T(2)WI), and functional magnetic resonance imaging (fMRI) were performed before, during, and up to 1 day after 20-mins transient middle cerebral artery occlusion (tMCAO; n=6) or sham operation (n=6) in male Sprague-Dawley rats. Viability thresholds were employed to calculate diffusion, perfusion, and T(2) lesion volumes. Region of interest analysis was used to evaluate structural and functional MR signal changes within the sensorimotor network, which were then related to corresponding behavioral measures. Post-mortem 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed 24 h after ischemia. Transient middle cerebral artery occlusion produced lesions on DWI and PWI, which fully recovered by 30 mins after reperfusion. Ipsilesional fMRI responses to hypercapnia and forepaw stimulation were significantly impaired after ischemia and did not fully normalize until 3 and 24 h after tMCAO, respectively. No abnormalities were observed on imaging or TTC at 24 h despite significant behavioral dysfunctions including contralesional forelimb impairment and ipsilesional neglect. No MRI, behavioral, or TTC anomalies were observed in sham-operated rats. There were no significant correlations between MRI parameters, behavior, and TTC in either group. Together, these results suggest that normal findings on diffusion, perfusion, and T(2) imaging shortly after transient ischemia may not indicate normal tissue status as indicated by fMRI and behavior, which may help explain the persistence of neurologic deficits in patients with normal conventional MRI after cerebral ischemia.
Collapse
Affiliation(s)
- Kenneth M Sicard
- Department of Psychiatry, Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
There is a compelling need to develop cell and pharmacological therapeutic approaches to be administered beyond the hyperacute phase of stroke. These therapies capitalize on the capacity of the brain for neuroregeneration and neuroplasticity and are designed to reduce neurological deficits after stroke. This review provides an update of bone marrow-derived mesenchymal stem cells (MSCs) and select pharmacological agents in clinical use for other indications that promote the recovery process in the subacute and chronic phases after stroke. Among these agents are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), erythropoietin (EPO), and phosphodiesterase type 5 (PDE-5) inhibitors and nitric oxide (NO) donors. Both the MSCs and the pharmacologic agents potentiate brain plasticity and neurobehavioral recovery after stroke.
Collapse
Affiliation(s)
- Jieli Chen
- />Department of Neurology, Henry Ford Health Sciences Center, Detroit, Michigan
| | - Michael Chopp
- />Department of Neurology, Henry Ford Health Sciences Center, Detroit, Michigan
- />Department of Physics, Oakland University, Rochester, Michigan
| |
Collapse
|
21
|
Fear G, Komarnytsky S, Raskin I. Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol Ther 2006; 113:354-68. [PMID: 17098288 PMCID: PMC7112583 DOI: 10.1016/j.pharmthera.2006.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 09/05/2006] [Indexed: 01/28/2023]
Abstract
Precise spatial and temporal regulation of proteolytic activity is essential to human physiology. Modulation of protease activity with synthetic peptidomimetic inhibitors has proven to be clinically useful for treating human immunodeficiency virus (HIV) and hypertension and shows potential for medicinal application in cancer, obesity, cardiovascular, inflammatory, neurodegenerative diseases, and various infectious and parasitic diseases. Exploration of natural inhibitors and synthesis of peptidomimetic molecules has provided many promising compounds performing successfully in animal studies. Several protease inhibitors are undergoing further evaluation in human clinical trials. New research strategies are now focusing on the need for improved comprehension of protease-regulated cascades, along with precise selection of targets and improved inhibitor specificity. It remains to be seen which second generation agents will evolve into approved drugs or complementary therapies.
Collapse
Affiliation(s)
- Georgie Fear
- Biotech Center, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|
22
|
Temkin SM, Hellmann M, Serur E, Lee YC, Abulafia O. Erythropoietin administration during primary treatment for locally advanced cervical carcinoma is associated with poor response to radiation. Int J Gynecol Cancer 2006; 16:1855-61. [PMID: 17009982 DOI: 10.1111/j.1525-1438.2006.00709.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study was to determine whether the use of recombinant erythropoietin (r-EPO) during treatment for locally invasive carcinoma of the cervix affects recurrence rates, disease-free survival, and overall survival. Retrospective analysis of outcomes of patients with locally advanced cervical cancer treated with radiation and concurrent chemotherapy between January 1997 and July 2004 was performed. Recurrence rates, disease-free survival, and overall survival were calculated using SPSS statistical software. Throughout P < 0.05 was considered significant. Of 68 patients included in this study, 18 patients received erythropoietin during treatment and 50 did not. Patient age, stage, hemoglobin at presentation, and average weekly hemoglobin (AWH) were similar in both groups of patients. The recurrence rate among patients who received r-EPO was 61% compared with 30% among patients who did not receive r-EPO (P = 0.014). Eight of 18 patients (44%) who received r-EPO were alive at last known follow-up compared to 36 of 50 (72%) who did not receive the medication (P = 0.045). Disease-free survival and overall survival were significantly shorter in patients who received r-EPO during treatment (P = 0.028, 0.032). The administration of r-EPO during primary treatment of patients with locally advanced cervical cancer is associated with increased recurrence rate, increased risk of death due to disease, and decreased disease-free and overall survivals.
Collapse
Affiliation(s)
- S M Temkin
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | | | | | | | |
Collapse
|
23
|
Mack WJ, Sughrue ME, Ducruet AF, Mocco J, Sosunov SA, Hassid BG, Silverberg JZ, Ten VS, Pinsky DJ, Connolly ES. Temporal pattern of C1q deposition after transient focal cerebral ischemia. J Neurosci Res 2006; 83:883-9. [PMID: 16447284 DOI: 10.1002/jnr.20775] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies have focused on elucidating the contribution of individual complement proteins to post-ischemic cellular injury. As the timing of complement activation and deposition after cerebral ischemia is not well understood, our study investigates the temporal pattern of C1q accumulation after experimental murine stroke. Brains were harvested from mice subjected to transient focal cerebral ischemia at 3, 6, 12, and 24 hr post reperfusion. Western blotting and light microscopy were employed to determine the temporal course of C1q protein accumulation and correlate this sequence with infarct evolution observed with TTC staining. Confocal microscopy was utilized to further characterize the cellular localization and characteristics of C1q deposition. Western Blot analysis showed that C1q protein begins to accumulate in the ischemic hemisphere between 3 and 6 hr post-ischemia. Light microscopy confirmed these findings, showing concurrent C1q protein staining of neurons. Confocal microscopy demonstrated co-localization of C1q protein with neuronal cell bodies as well as necrotic cellular debris. These experiments demonstrate the accumulation of C1q protein on neurons during the period of greatest infarct evolution. This data provides information regarding the optimal time window during which a potentially neuroprotective anti-C1q strategy is most likely to achieve therapeutic success.
Collapse
Affiliation(s)
- William J Mack
- Department of Neurological Surgery, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Focal permanent or transient cerebral artery occlusion produces massive cell death in the central core of the infarction, whereas in the peripheral zone (penumbra) nerve cells are subjected to various determining survival and death signals. Cell death in the core of the infarction and in the adult brain is usually considered a passive phenomenon, although events largely depend on the partial or complete disruption of crucial metabolic pathways. Cell death in the penumbra is currently considered an active process largely dependent on the activation of cell death programs leading to apoptosis. Yet cell death in the penumbra includes apoptosis, necrosis, intermediate and other forms of cell death. A rather simplistic view implies poor prospects regarding cell survival in the core of the infarction and therapeutic expectations in the control of cell death and cell survival in the penumbra. However, the capacity for neuroprotection depends on multiple factors, primarily the use of the appropriate agent, at the appropriate time and during the appropriate interval. Understanding the mechanisms commanding cell death and survival area is as important as delimiting the therapeutic time window and the facility of a drug to effectively impact on specific targets. Moreover, the detrimental effects of homeostasis and the activation of multiple pathways with opposing signals following ischemic stroke indicate that better outcome probably does not depend on a single compound but on several drugs acting in combination at the optimal time in a particular patient.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Hospitalet de Llobregat, Spain.
| |
Collapse
|
25
|
Rodríguez-Yáñez M, Castellanos M, Blanco M, Mosquera E, Castillo J. Vascular protection in brain ischemia. Cerebrovasc Dis 2006; 21 Suppl 2:21-9. [PMID: 16651811 DOI: 10.1159/000091700] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular damage occurring after cerebral ischemia may lead to a worse outcome in patients with ischemic stroke, as it facilitates edema formation and hemorrhagic transformation. There are several phases in the development of vascular injury (acute, subacute and chronic) and different mediators act in each one. Therapeutic options to avoid vascular injury must be focused on acting in each phase. However, even though experimental studies have demonstrated the benefit of therapeutic interventions both in the acute and chronic phases of cerebral ischemia, only the chronic phase offers a therapeutic window sufficiently wide enough to provide vascular protection in clinical practice. Several drugs including erythropoietin and HMG-CoA reductase inhibitors (statins), antihypertensive (angiotensin modulators), antibiotics (minocycline) and antihyperglycemic drugs (thiazolidinediones) have been proved to provide vascular protection in patients with ischemic stroke. Anti-inflammatory, antioxidant, and antiapoptotic actions are responsible for the vascular protective effect related to these drugs.
Collapse
Affiliation(s)
- Manuel Rodríguez-Yáñez
- Department of Neurology, Division of Vascular Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
26
|
Khan M, Jatana M, Elango C, Paintlia AS, Singh AK, Singh I. Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide 2006; 15:114-24. [PMID: 16524750 DOI: 10.1016/j.niox.2006.01.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/14/2005] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
The efficacy of nitric oxide (NO) treatment in ischemic stroke, though well recognized, is yet to be tested in clinic. NO donors used to treat ischemic injury are structurally diverse compounds. We have shown that treatment of S-nitrosoglutathione (GSNO) protects the brain against injury and inflammation in rats after experimental stroke [M. Khan, B. Sekhon, S. Giri, M. Jatana, A. G. Gilg, K. Ayasolla, C. Elango, A. K. Singh, I. Singh, S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke, J. Cereb. Blood Flow Metab. 25 (2005) 177-192.]. In this study, we tested structurally different NO donors including GSNO, S-nitroso-N-acetyl-penicillamine (SNAP), sodium nitroprusside (SNP), methylamine hexamethylene methylamine NONOate (MAHMA), propylamine propylamine NONOate (PAPA), 3-morpholinosydnonimine (SIN-1) and compared their neuroprotective efficacy and antioxidant property in rats after ischemia/reperfusion (I/R). GSNO, in addition to neuroprotection, decreased nitrotyrosine formation and lipid peroxidation in blood and increased the ratio of reduced versus oxidized glutathione (GSH/GSSG) in brain as compared to untreated animals. GSNO also prevented the I/R-induced increase in mRNA expression of ICAM-1 and E-Selectin. SNAP and SNP extended limited neuroprotection, reduced nitrotyrosine formation in blood and blocked increase in mRNA expression of ICAM-1 and E-Selectin in brain tissue. PAPA, MAHMA, and SIN-1 neither protected the brain nor reduced oxidative stress. We conclude that neuroprotective action of NO donors in experimental stroke depends on their ability to reduce oxidative stress both in brain and blood.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | |
Collapse
|
27
|
Lippoldt A, Reichel A, Moenning U. Progress in the identification of stroke-related genes: emerging new possibilities to develop concepts in stroke therapy. CNS Drugs 2005; 19:821-32. [PMID: 16185092 DOI: 10.2165/00023210-200519100-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Stroke is a very complex disease influenced by many risk factors: genetic, environmental and comorbidities, such as hypertension, diabetes mellitus, obesity and having had a previous stroke. Neuroprotective therapies that have been found to be successful in laboratory animals have failed to produce the same benefits in clinical trials. Currently, a re-analysis of the clinical trial failures is underway and new therapeutic approaches using the growing knowledge from neurogenesis and neuroinflammation studies, combined with the information from gene expression studies, are taking place. This review focuses on possible ways to identify therapeutic targets using the new discoveries in neuroinflammation and intrinsic regenerative mechanisms of the brain. Molecular events associated with ischaemia trigger an environment for inflammation. Within the ischaemic region and its penumbra, a battery of chemokines and cytokines are released, which have both detrimental and beneficial effects, depending on the specific timepoint after injury and the current activation status of microglia/macrophages. Preventive therapies and treatments for stroke may be established by identifying the genes that are responsible for the induction of those phenotypic changes of microglia/macrophages that switch them to become players in tissue repair and regeneration processes. To aid in the establishment of new target sources for novel therapeutic agents, animal stroke models should closely mimic stroke in humans. To do so, these models should take into account the various risk factors for stroke. For example, hypertensive animals have a more vulnerable blood-brain barrier that in turn may trigger a greater degree of damage after stroke. Furthermore, in aged animals an accelerated astrocytic and microglial reaction has been observed and the regenerative capacity of aged brains is not as high as young brains. Improvements in animal models may also help to ensure better success rates of potential therapies in clinical studies. Inflammation in the brain is a double-edged sword--characterised by the deleterious effect of nerve cell damage and nerve cell death, as well as the beneficial influence on regeneration. The major challenge to develop successful stroke therapies is to broaden the knowledge regarding the underlying pathologic processes and the intrinsic mechanisms of the brain to drive regenerative and plasticity-related changes. On this basis, new concepts can be created leading to better stroke therapy.
Collapse
Affiliation(s)
- Andrea Lippoldt
- Department of Radiopharmaceuticals Research, Schering AG Berlin, Berlin, Germany.
| | | | | |
Collapse
|