3
|
Zhong H, Zhu J, Liu S, Ghoneim DH, Surendran P, Liu T, Fahle S, Butterworth A, Ashad Alam M, Deng HW, Yu H, Wu C, Wu L. Identification of blood protein biomarkers associated with prostate cancer risk using genetic prediction models: analysis of over 140,000 subjects. Hum Mol Genet 2023; 32:3181-3193. [PMID: 37622920 PMCID: PMC10630250 DOI: 10.1093/hmg/ddad139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Prostate cancer (PCa) brings huge public health burden in men. A growing number of conventional observational studies report associations of multiple circulating proteins with PCa risk. However, the existing findings may be subject to incoherent biases of conventional epidemiologic studies. To better characterize their associations, herein, we evaluated associations of genetically predicted concentrations of plasma proteins with PCa risk. We developed comprehensive genetic prediction models for protein levels in plasma. After testing 1308 proteins in 79 194 cases and 61 112 controls of European ancestry included in the consortia of BPC3, CAPS, CRUK, PEGASUS, and PRACTICAL, 24 proteins showed significant associations with PCa risk, including 16 previously reported proteins and eight novel proteins. Of them, 14 proteins showed negative associations and 10 showed positive associations with PCa risk. For 18 of the identified proteins, potential functional somatic changes of encoding genes were detected in PCa patients in The Cancer Genome Atlas (TCGA). Genes encoding these proteins were significantly involved in cancer-related pathways. We further identified drugs targeting the identified proteins, which may serve as candidates for drug repurposing for treating PCa. In conclusion, this study identifies novel protein biomarker candidates for PCa risk, which may provide new perspectives on the etiology of PCa and improve its therapeutic strategies.
Collapse
Affiliation(s)
- Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Shuai Liu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Dalia H Ghoneim
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, United Kingdom
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Sarah Fahle
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, United Kingdom
| | - Adam Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, United Kingdom
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, United Kingdom
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, 1440 Canal Street, New Orleans, LA 70112, United States
- Center for Outcomes Research, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, 1440 Canal Street, New Orleans, LA 70112, United States
| | - Herbert Yu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, United States
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, United States
| |
Collapse
|
7
|
Pasqualini L, Bu H, Puhr M, Narisu N, Rainer J, Schlick B, Schäfer G, Angelova M, Trajanoski Z, Börno ST, Schweiger MR, Fuchsberger C, Klocker H. miR-22 and miR-29a Are Members of the Androgen Receptor Cistrome Modulating LAMC1 and Mcl-1 in Prostate Cancer. Mol Endocrinol 2015; 29:1037-54. [PMID: 26052614 DOI: 10.1210/me.2014-1358] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The normal prostate as well as early stages and advanced prostate cancer (PCa) require a functional androgen receptor (AR) for growth and survival. The recent discovery of microRNAs (miRNAs) as novel effector molecules of AR disclosed the existence of an intricate network between AR, miRNAs and downstream target genes. In this study DUCaP cells, characterized by high content of wild-type AR and robust AR transcriptional activity, were chosen as the main experimental model. By integrative analysis of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray expression profiling data, miRNAs putatively bound and significantly regulated by AR were identified. A direct AR regulation of miR-22, miR-29a, and miR-17-92 cluster along with their host genes was confirmed. Interestingly, endogenous levels of miR-22 and miR-29a were found to be reduced in PCa cells expressing AR. In primary tumor samples, miR-22 and miR-29a were less abundant in the cancerous tissue compared with the benign counterpart. This specific expression pattern was associated with a differential DNA methylation of the genomic AR binding sites. The identification of laminin gamma 1 (LAMC1) and myeloid cell leukemia 1 (MCL1) as direct targets of miR-22 and miR-29a, respectively, suggested a tumor-suppressive role of these miRNAs. Indeed, transfection of miRNA mimics in PCa cells induced apoptosis and diminished cell migration and viability. Collectively, these data provide additional information regarding the complex regulatory machinery that guides miRNAs activity in PCa, highlighting an important contribution of miRNAs in the AR signaling.
Collapse
Affiliation(s)
- Lorenza Pasqualini
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Huajie Bu
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Martin Puhr
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Narisu Narisu
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Johannes Rainer
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Bettina Schlick
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Georg Schäfer
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Mihaela Angelova
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Zlatko Trajanoski
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Stefan T Börno
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michal R Schweiger
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Christian Fuchsberger
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Helmut Klocker
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
8
|
Sapienza MR, Fuligni F, Agostinelli C, Tripodo C, Righi S, Laginestra MA, Pileri A, Mancini M, Rossi M, Ricci F, Gazzola A, Melle F, Mannu C, Ulbar F, Arpinati M, Paulli M, Maeda T, Gibellini D, Pagano L, Pimpinelli N, Santucci M, Cerroni L, Croce CM, Facchetti F, Piccaluga PP, Pileri SA, for the AIRC 5xMille consortium ‘Genetics-driven targeted management of lymphoid malignancies’ and the Italian Registry on Blastic Plasmacytoid Dendritic Cell Neoplasm. Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition. Leukemia 2014; 28:1606-1616. [PMID: 24504027 PMCID: PMC4294271 DOI: 10.1038/leu.2014.64] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 12/12/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare disease of controversial origin recently recognized as a neoplasm deriving from plasmacytoid dendritic cells (pDCs). Nevertheless, it remains an orphan tumor with obscure biology and dismal prognosis. To better understand the pathobiology of BPDCN and discover new targets for effective therapies, the gene expression profile (GEP) of 25 BPDCN samples was analyzed and compared with that of pDCs, their postulated normal counterpart. Validation was performed by immunohistochemistry (IHC), whereas functional experiments were carried out ex vivo. For the first time at the molecular level, we definitely recognized the cellular derivation of BPDCN that proved to originate from the myeloid lineage and in particular, from resting pDCs. Furthermore, thanks to an integrated bioinformatic approach we discovered aberrant activation of the NF-kB pathway and suggested it as a novel therapeutic target. We tested the efficacy of anti-NF-kB-treatment on the BPDCN cell line CAL-1, and successfully demonstrated by GEP and IHC the molecular shutoff of the NF-kB pathway. In conclusion, we identified a molecular signature representative of the transcriptional abnormalities of BPDCN and developed a cellular model proposing a novel therapeutic approach in the setting of this otherwise incurable disease.
Collapse
Affiliation(s)
- MR Sapienza
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - F Fuligni
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - C Agostinelli
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - C Tripodo
- Department of Health Science, Tumour Immunology Unit, Human Pathology Section University of Palermo School of Medicine, Palermo, Italy
| | - S Righi
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - MA Laginestra
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - A Pileri
- Department of Surgery and Translational Medicine - Division Dermatology, University of Florence, Florence, Italy
| | - M Mancini
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - M Rossi
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - F Ricci
- Department of Hematology, Oncology and Laboratory Medicine, Transfusion Medicine Service, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - A Gazzola
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - F Melle
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - C Mannu
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - F Ulbar
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - M Arpinati
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - M Paulli
- Anatomic Pathology Section, University of Pavia Medical School, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Policlinico, San Matteo, Pavia, Italy
| | - T Maeda
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - D Gibellini
- Department of Experimental, Diagnostic, and Specialty Medicine, Microbiology Section, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - L Pagano
- Institute of Hematology, Catholic University, Rome, Italy
| | - N Pimpinelli
- Department of Surgery and Translational Medicine - Division Dermatology, University of Florence, Florence, Italy
| | - M Santucci
- Department of Surgery and Translational Medicine, Pathologic Anatomy Division, University of Florence, Florence, Italy
| | - L Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - CM Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - F Facchetti
- Department of Molecular and Translational Medicine, Pathology Section, University of Brescia, Brescia, Italy
| | - PP Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - SA Pileri
- Department of Experimental, Diagnostic, and Specialty Medicine, Hematopathology & Hematology Sections, Molecular Pathology Laboratory, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | | |
Collapse
|