1
|
Diaz-Hernandez ME, Murakami K, Murata S, Khan NM, Shenoy SPV, Henke K, Yamada H, Drissi H. Inhibition of KDM2/7 Promotes Notochordal Differentiation of hiPSCs. Cells 2024; 13:1482. [PMID: 39273051 PMCID: PMC11393929 DOI: 10.3390/cells13171482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Intervertebral disc disease (IDD) is a debilitating spine condition that can be caused by intervertebral disc (IVD) damage which progresses towards IVD degeneration and dysfunction. Recently, human pluripotent stem cells (hPSCs) were recognized as a valuable resource for cell-based regenerative medicine in skeletal diseases. Therefore, adult somatic cells reprogrammed into human induced pluripotent stem cells (hiPSCs) represent an attractive cell source for the derivation of notochordal-like cells (NCs) as a first step towards the development of a regenerative therapy for IDD. Utilizing a differentiation method involving treatment with a four-factor cocktail targeting the BMP, FGF, retinoic acid, and Wnt signaling pathways, we differentiate CRISPR/Cas9-generated mCherry-reporter knock-in hiPSCs into notochordal-like cells. Comprehensive analysis of transcriptomic changes throughout the differentiation process identified regulation of histone methylation as a pivotal driver facilitating the differentiation of hiPSCs into notochordal-like cells. We further provide evidence that specific inhibition of histone demethylases KDM2A and KDM7A/B enhanced the lineage commitment of hiPSCs towards notochordal-like cells. Our results suggest that inhibition of KDMs could be leveraged to alter the epigenetic landscape of hiPSCs to control notochord-specific gene expression. Thus, our study highlights the importance of epigenetic regulators in stem cell-based regenerative approaches for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Martha E. Diaz-Hernandez
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Kimihide Murakami
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
- Department of Orthopaedics Surgery, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Shizumasa Murata
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
- Department of Orthopaedics Surgery, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Nazir M. Khan
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
| | - Sreekala P. V. Shenoy
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
| | - Katrin Henke
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
| | - Hiroshi Yamada
- Department of Orthopaedics Surgery, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
2
|
Das S, Zea Rojas MP, Tran EJ. Novel insights on the positive correlation between sense and antisense pairs on gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1864. [PMID: 39087253 PMCID: PMC11626863 DOI: 10.1002/wrna.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/02/2024]
Abstract
A considerable proportion of the eukaryotic genome undergoes transcription, leading to the generation of noncoding RNA molecules that lack protein-coding information and are not subjected to translation. These noncoding RNAs (ncRNAs) are well recognized to have essential roles in several biological processes. Long noncoding RNAs (lncRNAs) represent the most extensive category of ncRNAs found in the human genome. Much research has focused on investigating the roles of cis-acting lncRNAs in the regulation of specific target gene expression. In the majority of instances, the regulation of sense gene expression by its corresponding antisense pair occurs in a negative (discordant) manner, resulting in the suppression of the target genes. The notion that a negative correlation exists between sense and antisense pairings is, however, not universally valid. In fact, several recent studies have reported a positive relationship between corresponding cis antisense pairs within plants, budding yeast, and mammalian cancer cells. The positive (concordant) correlation between anti-sense and sense transcripts leads to an increase in the level of the sense transcript within the same genomic loci. In addition, mechanisms such as altering chromatin structure, the formation of R loops, and the recruitment of transcription factors can either enhance transcription or stabilize sense transcripts through their antisense pairs. The primary objective of this work is to provide a comprehensive understanding of both aspects of antisense regulation, specifically focusing on the positive correlation between sense and antisense transcripts in the context of eukaryotic gene expression, including its implications towards cancer progression. This article is categorized under: RNA Processing > 3' End Processing Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| | | | - Elizabeth J. Tran
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
3
|
Dudakovic A, Camilleri ET, Paradise CR, Samsonraj RM, Gluscevic M, Paggi CA, Begun DL, Khani F, Pichurin O, Ahmed FS, Elsayed R, Elsalanty M, McGee-Lawrence ME, Karperien M, Riester SM, Thaler R, Westendorf JJ, van Wijnen AJ. Enhancer of zeste homolog 2 ( Ezh2) controls bone formation and cell cycle progression during osteogenesis in mice. J Biol Chem 2018; 293:12894-12907. [PMID: 29899112 DOI: 10.1074/jbc.ra118.002983] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/12/2018] [Indexed: 12/25/2022] Open
Abstract
Epigenetic mechanisms control skeletal development and osteoblast differentiation. Pharmacological inhibition of the histone 3 Lys-27 (H3K27) methyltransferase enhancer of zeste homolog 2 (EZH2) in WT mice enhances osteogenesis and stimulates bone formation. However, conditional genetic loss of Ezh2 early in the mesenchymal lineage (i.e. through excision via Prrx1 promoter-driven Cre) causes skeletal abnormalities due to patterning defects. Here, we addressed the key question of whether Ezh2 controls osteoblastogenesis at later developmental stages beyond patterning. We show that Ezh2 loss in committed pre-osteoblasts by Cre expression via the osterix/Sp7 promoter yields phenotypically normal mice. These Ezh2 conditional knock-out mice (Ezh2 cKO) have normal skull bones, clavicles, and long bones but exhibit increased bone marrow adiposity and reduced male body weight. Remarkably, in vivo Ezh2 loss results in a low trabecular bone phenotype in young mice as measured by micro-computed tomography and histomorphometry. Thus, Ezh2 affects bone formation stage-dependently. We further show that Ezh2 loss in bone marrow-derived mesenchymal cells suppresses osteogenic differentiation and impedes cell cycle progression as reflected by decreased metabolic activity, reduced cell numbers, and changes in cell cycle distribution and in expression of cell cycle markers. RNA-Seq analysis of Ezh2 cKO calvaria revealed that the cyclin-dependent kinase inhibitor Cdkn2a is the most prominent cell cycle target of Ezh2 Hence, genetic loss of Ezh2 in mouse pre-osteoblasts inhibits osteogenesis in part by inducing cell cycle changes. Our results suggest that Ezh2 serves a bifunctional role during bone formation by suppressing osteogenic lineage commitment while simultaneously facilitating proliferative expansion of osteoprogenitor cells.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Emily T Camilleri
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55905; Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | | | - Martina Gluscevic
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55905
| | - Carlo Alberto Paggi
- Department of Developmental BioEngineering, University of Twente, 7522 NB Enschede, Netherlands
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Farah S Ahmed
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Ranya Elsayed
- Department of Oral Biology, Augusta University, Augusta, Georgia 30912
| | | | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia 30912; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Marcel Karperien
- Department of Developmental BioEngineering, University of Twente, 7522 NB Enschede, Netherlands
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
4
|
Dudakovic A, van Wijnen AJ. Epigenetic Control of Osteoblast Differentiation by Enhancer of Zeste Homolog 2 (EZH2). ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40610-017-0064-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Farzaneh K, Thaler R, Paradise CR, Deyle DR, Julio MKD, Galindo M, Gordon JA, Stein GS, Dudakovic A, van Wijnen AJ. Histone H4 Methyltransferase Suv420h2 Maintains Fidelity of Osteoblast Differentiation. J Cell Biochem 2017; 118:1262-1272. [PMID: 27862226 PMCID: PMC5357582 DOI: 10.1002/jcb.25787] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
Osteogenic lineage commitment and progression is controlled by multiple signaling pathways (e.g., WNT, BMP, FGF) that converge on bone-related transcription factors. Access of osteogenic transcription factors to chromatin is controlled by epigenetic regulators that generate post-translational modifications of histones ("histone code"), as well as read, edit and/or erase these modifications. Our understanding of the biological role of epigenetic regulators in osteoblast differentiation remains limited. Therefore, we performed next-generation RNA sequencing (RNA-seq) and established which chromatin-related proteins are robustly expressed in mouse bone tissues (e.g., fracture callus, calvarial bone). These studies also revealed that cells with increased osteogenic potential have higher levels of the H4K20 methyl transferase Suv420h2 compared to other methyl transferases (e.g., Suv39h1, Suv39h2, Suv420h1, Ezh1, Ezh2). We find that all six epigenetic regulators are transiently expressed at different stages of osteoblast differentiation in culture, with maximal mRNAs levels of Suv39h1 and Suv39h2 (at day 3) preceding maximal expression of Suv420h1 and Suv420h2 (at day 7) and developmental stages that reflect, respectively, early and later collagen matrix deposition. Loss of function analysis of Suv420h2 by siRNA depletion shows loss of H4K20 methylation and decreased expression of bone biomarkers (e.g., alkaline phosphatase/Alpl) and osteogenic transcription factors (e.g., Sp7/Osterix). Furthermore, Suv420h2 is required for matrix mineralization during osteoblast differentiation. We conclude that Suv420h2 controls the H4K20 methylome of osteoblasts and is critical for normal progression of osteoblastogenesis. J. Cell. Biochem. 118: 1262-1272, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Khani Farzaneh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Mario Galindo
- Millennium Institute on Immunology and Immunotherapy, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jonathan A. Gordon
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Corresponding author: Andre J. van Wijnen, Ph.D., Mayo Clinic, 200 First Street SW, Rochester, MN 55905, Phone: 507- 293-2105, Fax: 507-284-5075,
| |
Collapse
|
6
|
KDM5A controls bone morphogenic protein 2-induced osteogenic differentiation of bone mesenchymal stem cells during osteoporosis. Cell Death Dis 2016; 7:e2335. [PMID: 27512956 PMCID: PMC5108323 DOI: 10.1038/cddis.2016.238] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic protein 2 (BMP2) has been used to induce bone regeneration by promoting osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs). However, its effect is attenuated in osteoporotic conditions by unknown mechanisms. In this study, we investigated the molecular mechanisms of reduced osteogenic effect of BMP2 in osteoporotic conditions. By interrogating the microarray data from osteoporosis patients, we revealed an upregulation of the epigenetic modifying protein lysine (K)-specific demethylase 5A (KDM5A) and decreased Runt-related transcription factor 2 (RUNX2) expression. Further studies were focused on the role of KDM5A in osteoporosis. We first established ovariectomized (OVX) mouse model and found that the BMP2-induced osteogenic differentiation of osteoporotic MSCs was impaired. The elevated level of KDM5A was confirmed in osteoporotic MSCs. Overexpression of KDM5A in normal MSCs inhibited BMP2-induced osteogenesis. Moreover, osteogenic differentiation of osteoporotic MSCs was restored by specific KDM5A short hairpin RNA or inhibitor. Furthermore, by chromatin immunoprecipitation assay we demonstrated that KDM5A functions as endogenous modulator of osteogenic differentiation by decreasing H3K4me3 levels on promoters of Runx2, depend on its histone methylation activity. More importantly, we found an inhibitory role of KDM5A in regulating bone formation in osteoporotic mice, and pretreatment with KDM5A inhibitor partly rescued the bone loss during osteoporosis. Our results show, for the first time, that KDM5A-mediated H3K4me3 modification participated in the etiology of osteoporosis and may provide new strategies to improve the clinical efficacy of BMP2 in osteoporotic conditions.
Collapse
|
7
|
Varela N, Aranguiz A, Lizama C, Sepulveda H, Antonelli M, Thaler R, Moreno RD, Montecino M, Stein GS, van Wijnen AJ, Galindo M. Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells. J Cell Physiol 2016; 231:1001-14. [PMID: 26381402 PMCID: PMC5812339 DOI: 10.1002/jcp.25188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.
Collapse
Affiliation(s)
- Nelson Varela
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Alejandra Aranguiz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Carlos Lizama
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Ricardo D. Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Gary S. Stein
- Department of Biochemistry, HSRF 326, Vermont Cancer Center for Basic and Translational Research, University of Vermont Medical School, Burlington, VT
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Montecino M, Stein G, Stein J, Zaidi K, Aguilar R. Multiple levels of epigenetic control for bone biology and pathology. Bone 2015; 81:733-738. [PMID: 25865577 PMCID: PMC4600412 DOI: 10.1016/j.bone.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone.
Collapse
Affiliation(s)
- Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile.
| | - Gary Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA.
| | - Janet Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA
| | - Kaleem Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA
| | - Rodrigo Aguilar
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile
| |
Collapse
|
9
|
Simon TW, Budinsky RA, Rowlands JC. A model for aryl hydrocarbon receptor-activated gene expression shows potency and efficacy changes and predicts squelching due to competition for transcription co-activators. PLoS One 2015; 10:e0127952. [PMID: 26039703 PMCID: PMC4454675 DOI: 10.1371/journal.pone.0127952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
A stochastic model of nuclear receptor-mediated transcription was developed based on activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and subsequent binding the activated AHR to xenobiotic response elements (XREs) on DNA. The model was based on effects observed in cells lines commonly used as in vitro experimental systems. Following ligand binding, the AHR moves into the cell nucleus and forms a heterodimer with the aryl hydrocarbon nuclear translocator (ARNT). In the model, a requirement for binding to DNA is that a generic coregulatory protein is subsequently bound to the AHR-ARNT dimer. Varying the amount of coregulator available within the nucleus altered both the potency and efficacy of TCDD for inducing for transcription of CYP1A1 mRNA, a commonly used marker for activation of the AHR. Lowering the amount of available cofactor slightly increased the EC50 for the transcriptional response without changing the efficacy or maximal response. Further reduction in the amount of cofactor reduced the efficacy and produced non-monotonic dose-response curves (NMDRCs) at higher ligand concentrations. The shapes of these NMDRCs were reminiscent of the phenomenon of squelching. Resource limitations for transcriptional machinery are becoming apparent in eukaryotic cells. Within single cells, nuclear receptor-mediated gene expression appears to be a stochastic process; however, intercellular communication and other aspects of tissue coordination may represent a compensatory process to maintain an organism’s ability to respond on a phenotypic level to various stimuli within an inconstant environment.
Collapse
Affiliation(s)
- Ted W. Simon
- Ted Simon LLC, Winston, GA, United States of America
- * E-mail:
| | - Robert A. Budinsky
- The Dow Chemical Company, Toxicology and Environmental Research & Consulting. Midland, MI, United States of America
| | - J. Craig Rowlands
- The Dow Chemical Company, Toxicology and Environmental Research & Consulting. Midland, MI, United States of America
| |
Collapse
|
10
|
Im GI, Shin KJ. Epigenetic approaches to regeneration of bone and cartilage from stem cells. Expert Opin Biol Ther 2014; 15:181-93. [DOI: 10.1517/14712598.2015.960838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Aguilar R, Grandy R, Meza D, Sepulveda H, Pihan P, van Wijnen AJ, Lian JB, Stein GS, Stein JL, Montecino M. A functional N-terminal domain in C/EBPβ-LAP* is required for interacting with SWI/SNF and to repress Ric-8B gene transcription in osteoblasts. J Cell Physiol 2014; 229:1521-8. [PMID: 24585571 DOI: 10.1002/jcp.24595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 01/06/2023]
Abstract
The chromatin remodeling complex SWI/SNF and the transcription factor C/EBPβ play critical roles in osteoblastic cells as they jointly control transcription of a number of bone-related target genes. The largest C/EBPβ isoform, LAP*, possesses a short additional N-terminal domain that has been proposed to mediate the interaction of this factor with SWI/SNF in myeloid cells. Here we examine the requirement of a functional N-terminus in C/EBPβ-LAP* for binding SWI/SNF and for recruiting this complex to the Ric-8B gene to mediate transcriptional repression. We find that both C/EBPβ-LAP* and SWI/SNF simultaneously bind to the Ric-8B promoter in differentiating osteoblasts that repress Ric-8B expression. This decreased expression of Ric-8B is not accompanied by significant changes in histone acetylation at the Ric-8B gene promoter sequence. A single aminoacid change at the C/EBPβ-LAP* N-terminus (R3L) that inhibits C/EBPβ-LAP*-SWI/SNF interaction, also prevents SWI/SNF recruitment to the Ric-8B promoter as well as C/EBPβ-LAP*-dependent repression of the Ric-8B gene. Inducible expression of the C/EBPβ-LAP*R3L protein in stably transfected osteoblastic cells demonstrates that this mutant protein binds to C/EBPβ-LAP*-target promoters and competes with the endogenous C/EBPβ factor. Together our results indicate that a functional N-terminus in C/EBPβ-LAP* is required for interacting with SWI/SNF and for Ric-8B gene repression in osteoblasts.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Groner B, Vafaizadeh V. Cytokine regulation of mammary gland development and epithelial cell functions through discrete activities of Stat proteins. Mol Cell Endocrinol 2014; 382:552-559. [PMID: 24076095 DOI: 10.1016/j.mce.2013.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Paul Ehrlich Str. 42, D-60596 Frankfurt am Main, Germany.
| | - Vida Vafaizadeh
- Georg Speyer Haus, Institute for Biomedical Research, Paul Ehrlich Str. 42, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Xu J, Yu B, Hong C, Wang CY. KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci 2013; 5:200-5. [PMID: 24158144 PMCID: PMC3967319 DOI: 10.1038/ijos.2013.77] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified and isolated from dental tissues, including stem cells from apical papilla, which demonstrated the ability to differentiate into dentin-forming odontoblasts. The histone demethylase KDM6B (also known as JMJD3) was shown to play a key role in promoting osteogenic commitment by removing epigenetic marks H3K27me3 from the promoters of osteogenic genes. Whether KDM6B is involved in odontogenic differentiation of dental MSCs, however, is not known. Here, we explored the role of KDM6B in dental MSC fate determination into the odontogenic lineage. Using shRNA-expressing lentivirus, we performed KDM6B knockdown in dental MSCs and observed that KDM6B depletion leads to a significant reduction in alkaline phosphate (ALP) activity and in formation of mineralized nodules assessed by Alizarin Red staining. Additionally, mRNA expression of odontogenic marker gene SP7 (osterix, OSX), as well as extracellular matrix genes BGLAP (osteoclacin, OCN) and SPP1 (osteopontin, OPN), was suppressed by KDM6B depletion. When KDM6B was overexpressed in KDM6B-knockdown MSCs, odontogenic differentiation was restored, further confirming the facilitating role of KDM6B in odontogenic commitment. Mechanistically, KDM6B was recruited to bone morphogenic protein 2 (BMP2) promoters and the subsequent removal of silencing H3K27me3 marks led to the activation of this odontogenic master transcription gene. Taken together, our results demonstrated the critical role of a histone demethylase in the epigenetic regulation of odontogenic differentiation of dental MSCs. KDM6B may present as a potential therapeutic target in the regeneration of tooth structures and the repair of craniofacial defects.
Collapse
Affiliation(s)
- Juan Xu
- 1] Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China [2] Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, USA
| | | | | | | |
Collapse
|
14
|
Shapiro JA. How life changes itself: the Read-Write (RW) genome. Phys Life Rev 2013; 10:287-323. [PMID: 23876611 DOI: 10.1016/j.plrev.2013.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 01/06/2023]
Abstract
The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences.
Collapse
Affiliation(s)
- James A Shapiro
- Dept. of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA. http://www.huffingtonpost.com/james-a-shapiro
| |
Collapse
|
15
|
Bravo S, Núñez F, Cruzat F, Cafferata EG, De Ferrari GV, Montecino M, Podhajcer OL. Enhanced CRAd activity using enhancer motifs driven by a nucleosome positioning sequence. Mol Ther 2013; 21:1403-12. [PMID: 23712038 PMCID: PMC3702098 DOI: 10.1038/mt.2013.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/10/2013] [Indexed: 01/13/2023] Open
Abstract
Cancer development involves changes driven by the epigenetic machinery, including nucleosome positioning. Recently, the concept that adenoviral replication may be driven by tumor specific promoters (TSPs) gained support, and several conditionally replicative adenoviruses (CRAd) exhibited therapeutic efficacy in clinical trials. Here, we show for the first time that placing a nucleosome positioning sequence (NPS) upstream of a TSP combined with Wnt-responsive motifs (pART enhancer) enhanced the TSP transcriptional activity and increased the lytic activity of a CRAd. pART enhanced the transcriptional activity of the gastrointestinal cancer (GIC)-specific REG1A promoter (REG1A-pr); moreover, pART also increased the in vitro lytic activity of a CRAd whose replication was driven by REG1A-Pr. The pART enhancer effect in vitro and in vivo was strictly dependent on the presence of the NPS. Indeed, deletion of the NPS was strongly deleterious for the in vivo antitumor efficacy of the CRAd on orthotopically established pancreatic xenografts. pART also enhanced the specific activity of other heterologous promoters; moreover, the NPS was also able to enhance the responsiveness of hypoxia- and NFκB-response elements. We conclude that NPS could be useful for gene therapy approaches in cancer as well as other diseases.
Collapse
Affiliation(s)
- Soraya Bravo
- Centro de Investigaciones Biomédicas and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Felipe Núñez
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Fernando Cruzat
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - Giancarlo V De Ferrari
- Centro de Investigaciones Biomédicas and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Martín Montecino
- Centro de Investigaciones Biomédicas and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | | |
Collapse
|
16
|
Bidwell JP, Alvarez MB, Hood M, Childress P. Functional impairment of bone formation in the pathogenesis of osteoporosis: the bone marrow regenerative competence. Curr Osteoporos Rep 2013; 11:117-25. [PMID: 23471774 DOI: 10.1007/s11914-013-0139-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The skeleton is a high-renewal organ that undergoes ongoing cycles of remodeling. The regenerative bone formation arm ultimately declines in the aging, postmenopausal skeleton, but current therapies do not adequately address this deficit. Bone marrow is the primary source of the skeletal anabolic response and the mesenchymal stem cells (MSCs), which give rise to bone matrix-producing osteoblasts. The identity of these stem cells is emerging, but it now appears that the term 'MSC' has often been misapplied to the bone marrow stromal cell (BMSC), a progeny of the MSC. Nevertheless, the changes in BMSC phenotype associated with age and estrogen depletion likely contribute to the attenuated regenerative competence of the marrow and may reflect alterations in MSC phenotype. Here we summarize current concepts in bone marrow MSC identity, and within this context, review recent observations on changes in bone marrow population dynamics associated with aging and menopause.
Collapse
Affiliation(s)
- Joseph P Bidwell
- Department of Anatomy and Cell Biology, Indiana University School of Medicine (IUSM), Medical Science Bldg 5035, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
17
|
Nair SS, Kumar R. Chromatin remodeling in cancer: a gateway to regulate gene transcription. Mol Oncol 2012; 6:611-9. [PMID: 23127546 PMCID: PMC3538127 DOI: 10.1016/j.molonc.2012.09.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/30/2012] [Indexed: 01/01/2023] Open
Abstract
Cancer cells are remarkably adaptive to diverse survival strategies, probably due to its ability to interpret signaling cues differently than the normal cells. It appears as if cancer cells are constantly sampling, selecting and adapting signaling pathways to favor its proliferation. This process of successful adaptive evolution eventually renders a retractile nature to therapeutic regimens, fueling to the process of cancer progression. Based on plethora of available information, it is now evident that multiple signaling pathways eventually converge, perhaps, in a tempo-spatial manner, onto DNA template-dependent dynamic processes. Considering the complexity and packaging of eukaryotic genome, this process involves energy-dependent sub-events mediated by chromatin remodelers. Chromatin remodeler proteins function as gatekeepers and constitute a major determinant of accessibility of accessory factors to nucleosome DNA, allowing a wide repertoire of biological functions. And thus, aberrant expression or epigenetic modulation of remodeler proteins confers a unique ability to cancer cells to reprogram its genome for the maintenance of oncogenic phenotypes. Cancer cells can uniquely select a multi-subunit remodeler proteome for oncogenic advantage. This review summarizes our current understanding and importance of remodeler and chromatin proteins in cancer biology and also highlights the paradoxical role of proteins with or without dual-regulator functions. It is our hope that an in-depth understanding of these events is likely to provide a next set of opportunities for novel strategies for targeted cancer therapeutics.
Collapse
Affiliation(s)
- Sujit S Nair
- Department of Biochemistry and Molecular Biology, The McCormick Genomic and Proteomic Center, The School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | | |
Collapse
|
18
|
Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell 2012; 11:50-61. [PMID: 22770241 DOI: 10.1016/j.stem.2012.04.009] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 03/03/2012] [Accepted: 04/09/2012] [Indexed: 01/10/2023]
Abstract
Human bone marrow mesenchymal stem/stromal cells (MSCs) are multipotent progenitor cells with multilineage differentiation potentials including osteogenesis and adipogenesis. While significant progress has been made in understanding transcriptional controls of MSC fate, little is known about how MSC differentiation is epigenetically regulated. Here we show that the histone demethylases KDM4B and KDM6B play critical roles in osteogenic commitment of MSCs by removing H3K9me3 and H3K27me3. Depletion of KDM4B or KDM6B significantly reduced osteogenic differentiation and increased adipogenic differentiation. Mechanistically, while KDM6B controlled HOX expression by removing H3K27me3, KDM4B promoted DLX expression by removing H3K9me3. Importantly, H3K27me3- and H3K9me3-positive MSCs of bone marrow were significantly elevated in ovariectomized and aging mice in which adipogenesis was highly active. Since histone demethylases are chemically modifiable, KDM4B and KDM6B may present as therapeutic targets for controlling MSC fate choices and lead to clues for new treatment in metabolic bone diseases such as osteoporosis.
Collapse
|
19
|
Alvarenga EM, Mondin M, Rodrigues VL, Andrade LM, Vidal BDC, Mello MLS. Contribution of AT-, GC-, and methylated cytidine-rich DNA to chromatin composition in Malpighian tubule cell nuclei of Panstrongylus megistus (Hemiptera, Reduviidae). Acta Histochem 2012; 114:665-72. [PMID: 22197484 DOI: 10.1016/j.acthis.2011.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 12/31/2022]
Abstract
The Malpighian tubule cell nuclei of male Panstrongylus megistus, a vector of Chagas disease, contain one chromocenter, which is composed solely of the Y chromosome. Considering that different chromosomes contribute to the composition of chromocenters in different triatomini species, the aim of this study was to determine the contribution of AT-, GC-, and methylated cytidine-rich DNA in the chromocenter as well as in euchromatin of Malpighian tubule cell nuclei of P. megistus in comparison with published data for Triatoma infestans. Staining with 4',6-diamidino-2-phenylindole/actinomycin D and chromomycin A(3)/distamycin, immunodetection of 5-methylcytidine and AgNOR test were used. The results revealed AT-rich/GC-poor DNA in the male chromocenter, but equally distributed AT and GC DNA sequences in male and female euchromatin, like in T. infestans. Accumulation of argyrophilic proteins encircling the chromocenter did not always correlate with that of GC-rich DNA. Methylated DNA identified by immunodetection was found sparsely distributed in the euchromatin of both sexes and at some points around the chromocenter edge, but it could not be considered responsible for chromatin condensation in the chromocenter, like in T. infestans. However, unlike in T. infestans, no correlation between the chromocenter AT-rich DNA and nucleolus organizing region (NOR) DNA was found in P. megistus.
Collapse
|
20
|
Ioannou D, Fonseka KGL, Meershoek EJ, Thornhill AR, Abogrein A, Ellis M, Griffin DK. Twenty-four chromosome FISH in human IVF embryos reveals patterns of post-zygotic chromosome segregation and nuclear organisation. Chromosome Res 2012; 20:447-60. [DOI: 10.1007/s10577-012-9294-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 12/21/2022]
|
21
|
Ali SA, Dobson JR, Lian JB, Stein JL, van Wijnen AJ, Zaidi SK, Stein GS. A RUNX2-HDAC1 co-repressor complex regulates rRNA gene expression by modulating UBF acetylation. J Cell Sci 2012; 125:2732-9. [PMID: 22393235 DOI: 10.1242/jcs.100909] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The osteogenic and oncogenic transcription factor RUNX2 downregulates the RNA polymerase I (RNA Pol I)-mediated transcription of rRNAs and changes histone modifications associated with the rDNA repeat. However, the mechanisms by which RUNX2 suppresses rRNA transcription are not well understood. RUNX2 cofactors such as histone deacetylases (HDACs) play a key role in chromatin remodeling and regulation of gene transcription. Here, we show that RUNX2 recruits HDAC1 to the rDNA repeats in osseous cells. This recruitment alters the histone modifications associated with active rRNA-encoding genes and causes deacetylation of the protein upstream binding factor (UBF, also known as UBTF). Downregulation of RUNX2 expression reduces the localization of HDAC1 to the nucleolar periphery and also decreases the association between HDAC1 and UBF. Functionally, depletion of HDAC1 relieves the RUNX2-mediated repression of rRNA-encoding genes and concomitantly increases cell proliferation and global protein synthesis in osseous cells. Our findings collectively identify a RUNX2-HDAC1-dependent mechanism for the regulation of rRNA-encoding genes and suggest that there is plasticity to RUNX2-mediated epigenetic control, which is mediated through selective mitotic exclusion of co-regulatory factors.
Collapse
Affiliation(s)
- Syed A Ali
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Yang P, Ma J, Zhang B, Duan H, He Z, Zeng J, Zeng X, Li D, Wang Q, Xiao Y, Liu C, Xiao Q, Chen L, Zhu X, Xing X, Li Z, Zhang S, Zhang Z, Ma L, Wang E, Zhuang Z, Zheng Y, Chen W. CpG site-specific hypermethylation of p16INK4α in peripheral blood lymphocytes of PAH-exposed workers. Cancer Epidemiol Biomarkers Prev 2011; 21:182-90. [PMID: 22028397 DOI: 10.1158/1055-9965.epi-11-0784] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sufficient epidemiologic evidence shows an etiologic link between polycyclic aromatic hydrocarbons (PAH) exposure and lung cancer risk. While the genetic modifications have been found in PAH-exposed population, it is unclear whether gene-specific methylation involves in the process of PAH-associated biologic consequence. METHODS Sixty-nine PAH-exposed workers and 59 control subjects were recruited. Using bisulfite sequencing, we examined the methylation status of p16(INK4α) promoter in peripheral blood lymphocytes (PBL) from PAH-exposed workers and in benzo(a)pyrene (BaP)-transformed human bronchial epithelial (HBE) cells. The relationships between p16(INK4α) methylation and the level of urinary 1-hydroxypyrene (1-OHP) or the frequency of cytokinesis block micronucleus (CBMN) were analyzed. RESULTS Compared with the control group, PAH-exposed workers exhibited higher levels of urinary 1-OHP (10.62 vs. 2.52 μg/L), p16(INK4α) methylation (7.95% vs. 1.14% for 22 "hot" CpG sites), and CBMN (7.28% vs. 2.92%) in PBLs. p16(INK4α) hypermethylation in PAH-exposed workers exhibited CpG site specificity. Among the 35 CpG sites we analyzed, 22 were significantly hypermethylated. These 22 hypermethylated CpG sites were positively correlated to levels of urinary 1-OHP and CBMN in PBLs. Moreover, the hypermethylation and suppression of p16 expression was also found in BaP-transformed HBER cells. CONCLUSION PAH exposure induced CpG site-specific hypermethylation of p16(INK4α) gene. The degree of p16(INK4α) methylation was associated with the levels of DNA damage and internal exposure. IMPACT p16(INK4α) hypermethylation might be an essential biomarker for the exposure to PAHs and for early diagnosis of cancer.
Collapse
Affiliation(s)
- Ping Yang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ioannou D, Meershoek EJ, Christopikou D, Ellis M, Thornhill AR, Griffin DK. Nuclear organisation of sperm remains remarkably unaffected in the presence of defective spermatogenesis. Chromosome Res 2011; 19:741-53. [PMID: 21947956 DOI: 10.1007/s10577-011-9238-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 10/17/2022]
Abstract
Organisation of chromosome territories in interphase nuclei has been studied in many systems and positional alterations have been associated with disease phenotypes (e.g. laminopathies, cancer) in somatic cells. Altered nuclear organisation is also reported in developmental processes such as mammalian spermatogenesis where a "chromocentre" model is proposed with the centromeres and sex chromosomes repositioning to the nuclear centre. The purpose of this study was to test the hypothesis that alterations in nuclear organisation of human spermatozoa are associated with defects upstream in spermatogenesis (as manifest in certain infertility phenotypes). The nuclear address of (peri-) centromeric loci for 18 chromosomes (1-4, 6-12, 15-18, 20, X and Y) was assayed in 20 males using established algorithms for 3D extrapolations of 2D data. The control group comprised 10 fertile sperm donors while the test group was 10 patients with severely compromised semen parameters including high sperm aneuploidy. All loci examined in the control group adopted defined, interior positions thus providing supporting evidence for the presence of a chromocentre and interior sex chromosome territories. In the test group however there were subtle alterations in the nuclear address for certain centromeres in individual patients and, when all patient results were pooled, some different nuclear addresses were observed for chromosomes 3, 6, 12 and 18. Considering the extensive impairment of spermatogenesis in the test group (evidenced by compromised semen parameters and increased chromosome abnormalities), the observed differences in nuclear organisation for centromeric loci compared to the controls were modest. A defined pattern of nuclear reorganisation of centromeric loci in sperm heads therefore appears to be a remarkably robust process, even if spermatogenesis is severely compromised.
Collapse
Affiliation(s)
- Dimitris Ioannou
- School of Biosciences, University of Kent, Canterbury CT27NJ, UK
| | | | | | | | | | | |
Collapse
|