1
|
Rizzoli E, Fievez L, Fastrès A, Roels E, Marichal T, Clercx C. A single-cell RNA sequencing atlas of the healthy canine lung: a foundation for comparative studies. Front Immunol 2025; 16:1501603. [PMID: 40114924 PMCID: PMC11922831 DOI: 10.3389/fimmu.2025.1501603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Single cell RNA sequencing (scRNA-seq) can be used to resolve the cellular and molecular heterogeneity within a tissue by identifying cell populations with an unprecedented granularity along with their transcriptional signatures. Yet, the single cell gene expression profiles of cell populations in the healthy canine lung tissue remain unexplored and such analysis could reveal novel cell populations or markers lacking in dogs and facilitate comparisons with lung diseases. Using fresh healthy lung biopsies from four dogs, we conducted droplet-based scRNA-seq on 26,278 cells. We characterized 46 transcriptionally distinct cell subpopulations across all lung tissue compartments including 23 immune, 13 mesenchymal, five epithelial and five endothelial cell subpopulations. Of note, we captured rare cells such as unconventional T cells or Schwann cells. Differential gene expression profiles identified specific markers across all cell subpopulations. Fibroblasts clusters exhibited a marked transcriptional heterogeneity, some of which might exert immune regulatory functions. Finally, the integration of canine lung cells with an annotated human lung atlas highlighted many similarities in gene expression profiles between species. This study thus provides an extensive molecular cell atlas of the healthy canine lung, expanding our knowledge of lung cell diversity in dogs, and providing the molecular foundation for investigating lung cell identities and functions in canine lung diseases. Besides, the occurrence of spontaneous lung diseases in pet dogs, with phenotypes closely resembling those in humans, may provide a relevant model for advancing research into human lung diseases.
Collapse
Affiliation(s)
- Elodie Rizzoli
- Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Laurence Fievez
- Department of Functional Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, University of Liège, Liège, Belgium
| | - Aline Fastrès
- Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Elodie Roels
- Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Thomas Marichal
- Department of Functional Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Laboratory of Immunophysiology, GIGA Institute, University of Liège, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Cécile Clercx
- Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Lopes GAO, Lima BHF, Freitas CS, Peixoto AC, Soriani FM, Cassali GD, Ryffel B, Teixeira MM, Machado FS, Russo RC. Opposite effects of systemic and local conditional CD11c+ myeloid cell depletion during bleomycin-induced inflammation and fibrosis in mice. Immun Inflamm Dis 2024; 12:e70042. [PMID: 39582275 PMCID: PMC11586507 DOI: 10.1002/iid3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
RATIONALE Elevated levels of CD11c+ myeloid cells are observed in various pulmonary disorders, including Idiopathic Pulmonary Fibrosis (IPF). Dendritic cells (DCs) and macrophages (MΦ) are critical antigen-presenting cells (APCs) that direct adaptive immunity. However, the role of CD11c+ myeloid cells in lung extracellular matrix (ECM) accumulation and pulmonary fibrosis is poorly understood. OBJECTIVE We aimed to investigate the impact of depleting CD11c+ myeloid cells, including DCs and macrophages, during bleomycin-induced pulmonary fibrosis in mice. METHODS We used a diphtheria toxin (DTx) receptor (DTR) transgenic mouse model (CD11c-DTR-Tg) to deplete CD11c+ myeloid cells through two methods: Systemic Depletion (SD) via intraperitoneal injection (i.p.) and local depletion (LD) via intranasal instillation (i.n.). We then assessed the effects of CD11c+ cell depletion during bleomycin-induced lung inflammation and fibrosis. RESULTS Fourteen days after bleomycin instillation, there was a progressive accumulation of myeloid cells, specifically F4/80-MHCII+CD11c+ DCs and F4/80 + MHCII+CD11c+ MΦ, preceding mortality and pulmonary fibrosis. Systemic depletion of CD11c+ DCs and MΦ via i.p. DTx administration in CD11c-DTR-Tg mice protected against bleomycin-induced mortality and pulmonary fibrosis compared to wild-type (WT) mice. Systemic depletion reduced myeloid cells, airway inflammation (total leukocytes, neutrophils, and CD4+ lymphocytes in bronchoalveolar lavage (BAL), inflammatory and fibrogenic mediators, and fibrosis-related mRNAs (Collagen-1α1 and α-SMA). Increased anti-inflammatory cytokine IL-10 and CXCL9 levels were observed, resulting in lower lung hydroxyproline content and Ashcroft fibrosis score. Conversely, local depletion of CD11c+ cells increased mortality by acute leukocyte influx (predominantly neutrophils, DCs, and MΦ in BAL) correlated to IL-1β, with lung hyper-inflammation and early fibrosis development. CONCLUSION Systemic depletion of CD11c+ cells confers protection against inflammation and fibrosis induced by Bleomycin, underscoring the significance of myeloid cells expressing F4/80-MHCII+CD11c+ DCs and F4/80 + MHCII+CD11c+ MΦ orchestrating the inflammatory milieu within the lungs, potentially as a source of cytokines sustaining pulmonary chronic inflammation leading to progressive fibrosis and mortality.
Collapse
Affiliation(s)
- Gabriel Augusto Oliveira Lopes
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Braulio Henrique Freire Lima
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Department of Biochemistry and Immunology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Camila Simões Freitas
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Andiara Cardoso Peixoto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology, and Evolution, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and NeurogeneticsUniversity of Orleans, CNRS UMR7355OrleansFrance
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Fabiana Simão Machado
- Laboratory of Immunoregulation of Infectious Diseases, Department of Biochemistry and Immunology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
3
|
Xuan S, Ma Y, Zhou H, Gu S, Yao X, Zeng X. The implication of dendritic cells in lung diseases: Immunological role of toll-like receptor 4. Genes Dis 2024; 11:101007. [PMID: 39238498 PMCID: PMC11375267 DOI: 10.1016/j.gendis.2023.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 09/07/2024] Open
Abstract
The immune responses play a profound role in the progression of lung lesions in both infectious and non-infectious diseases. Dendritic cells, as the "frontline" immune cells responsible for antigen presentation, set up a bridge between innate and adaptive immunity in the course of these diseases. Among the receptors equipped in dendritic cells, Toll-like receptors are a group of specialized receptors as one type of pattern recognition receptors, capable of sensing environmental signals including invading pathogens and self-antigens. Toll-like receptor 4, a pivotal member of the Toll-like receptor family, was formerly recognized as a receptor sensitive to the outer membrane component lipopolysaccharide derived from Gram-negative bacteria, triggering the subsequent response. Moreover, its other essential roles in immune responses have drawn significant attention in the past decade. A better understanding of the implication of Toll-like receptor 4 in dendritic cells could contribute to the management of pulmonary diseases including pneumonia, pulmonary tuberculosis, asthma, acute lung injury, and lung cancer.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yuan Ma
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shengwei Gu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Yao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
4
|
Wu W, Jia H, Chen S, Ma X, Zhou S, Qiu L, Wu X, Li P, Chu H, Zhang G. Inhibition of OGG1 ameliorates pulmonary fibrosis via preventing M2 macrophage polarization and activating PINK1-mediated mitophagy. Mol Med 2024; 30:72. [PMID: 38822247 PMCID: PMC11143656 DOI: 10.1186/s10020-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenjuan Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Hongxia Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xinran Ma
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Shuai Zhou
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Lingxiao Qiu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Xinhui Wu
- Department of Traditional Chinese Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, 450064, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Heying Chu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
5
|
Sabour S, Li JF, Lipscomb JT, Santos Tino AP, Johnson JA. Immunocapture of cell surface proteins embedded in HIV envelopes uncovers considerable virion genetic diversity associated with different source cell types. PLoS One 2024; 19:e0296891. [PMID: 38412143 PMCID: PMC10898758 DOI: 10.1371/journal.pone.0296891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/18/2023] [Indexed: 02/29/2024] Open
Abstract
HIV particles in the blood largely originate from activated lymphocytes and can overshadow variants which may be expressed from other cell types. Investigations of virus persistence must be able to distinguish cells refractory to viral clearance that serve as reservoirs. To investigate additional cell types that may be associated with in vivo HIV expression we developed a virus particle immunomagnetic capture method targeting several markers of cellular origin that become embedded within virion envelopes during budding. We evaluated the ability of markers to better distinguish cell lineage source subpopulations by assessing combinations of different antibodies with cell-sorted in vitro culture and clinical specimens. Various deductive algorithms were designed to discriminate source cell lineages and subsets. From the particle capture algorithms, we identified distinct variants expressed within individuals that were associated with disparate cellular markers. Among the variants uncovered were minority-level viruses with drug resistance mutations undetected by sequencing and often were associated with markers indicative of myeloid lineage (CD3-/CD10-/CD16+ or /CD14+, and CD3-/CD16-/CD14-/CD11c+ or /HLA-DR+) cell sources. The diverse HIV genetic sequences expressed from different cell types within individuals, further supported by the appearance of distinct drug-resistant variants, highlights the complexity of HIV reservoirs in vivo which must be considered for HIV cure strategies. This approach could also be helpful in examining in vivo host cell origins and genetic diversity in infections involving other families of budding viruses.
Collapse
Affiliation(s)
- Sarah Sabour
- ORISE Fellowship Program, Oak Ridge, Tennessee, United States of America
- Division of HIV Prevention, CDC, Atlanta, Georgia, United States of America
| | - Jin-Fen Li
- Division of HIV Prevention, CDC, Atlanta, Georgia, United States of America
| | | | | | - Jeffrey A Johnson
- Division of HIV Prevention, CDC, Atlanta, Georgia, United States of America
| |
Collapse
|
6
|
Priyadarshini NP, Gopamma D, Srinivas N, Malla RR, Kumar KS. Particulate Matter and Its Impact on Macrophages: Unraveling the Cellular Response for Environmental Health. Crit Rev Oncog 2024; 29:33-42. [PMID: 38989736 DOI: 10.1615/critrevoncog.2024053305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Particulate matter (PM) imposes a significant impact to environmental health with deleterious effects on the human pulmonary and cardiovascular systems. Macrophages (Mφ), key immune cells in lung tissues, have a prominent role in responding to inhaled cells, accommodating inflammation, and influencing tissue repair processes. Elucidating the critical cellular responses of Mφ to PM exposure is essential to understand the mechanisms underlying PM-induced health effects. The present review aims to give a glimpse on literature about the PM interaction with Mφ, triggering the cellular events causing the inflammation, oxidative stress (OS) and tissue damage. The present paper reviews the different pathways involved in Mφ activation upon PM exposure, including phagocytosis, intracellular signaling cascades, and the release of pro-inflammatory mediators. Potential therapeutic strategies targeting Mφ-mediated responses to reduce PM-induced health effects are also discussed. Overall, unraveling the complex interplay between PM and Mφ sheds light on new avenues for environmental health research and promises to develop targeted interventions to reduce the burden of PM-related diseases on global health.
Collapse
Affiliation(s)
- Nyayapathi Priyanka Priyadarshini
- Department of Environmental Science, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Daka Gopamma
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Namuduri Srinivas
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Kolli Suresh Kumar
- Department of Environmental Science, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|
7
|
Goughenour KD, Nair AS, Xu J, Olszewski MA, Wozniak KL. Dendritic Cells: Multifunctional Roles in Host Defenses to Cryptococcus Infections. J Fungi (Basel) 2023; 9:1050. [PMID: 37998856 PMCID: PMC10672120 DOI: 10.3390/jof9111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Fungal infections are an increasingly growing public health concern, and Cryptococcus is one of the most problematic fungal organisms causing substantial mortality and morbidity worldwide. Clinically, this high incidence of cryptococcosis is most commonly seen in immunocompromised patients, especially those who lack an adaptive T cell response, such as HIV/AIDS patients. However, patients with other underlying immunodeficiencies are also at an increased risk for cryptococcosis. The adaptive immune response, in particular the Th1/Th17 T-cell-mediated responses, to pulmonary Cryptococcus infections are required for host protection. Dendritic cells (DCs), encompassing multiple subsets identified to date, are recognized as the major professional antigen-presenting cell (APC) subset essential for the initiation and execution of T-cell immunity. Apart from their prominent role in orchestration of the adaptive arm of the immune defenses, DCs are fully armed cells from the innate immune system capable of the recognition, uptake, and killing of the fungal cells. Thus, DCs serve as a critical point for the endpoint outcomes of either fungal control or unrestrained fungal infection. Multiple studies have shown that DCs are required for anti-cryptococcal defense in the lungs. In addition, the role of DCs in Cryptococcus gattii infections is just starting to be elucidated. C. gattii has recently risen to prominence with multiple outbreaks in the US and Canada, demonstrating increased virulence in non-immunocompromised individuals. C. gattii infection fails to generate an inflammatory immune response or a protective Th1/Th17 T cell response, at least in part, through a lack of proper DC function. Here we summarize the multiple roles of DCs, including subsets of DCs in both mouse and human models, the roles of DCs during cryptococcal infection, and mechanisms by cryptococcal cells to attempt to undermine these host defenses.
Collapse
Affiliation(s)
- Kristie D. Goughenour
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Ayesha S. Nair
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jintao Xu
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A. Olszewski
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
8
|
Wang Z, Wang Z. The role of macrophages polarization in sepsis-induced acute lung injury. Front Immunol 2023; 14:1209438. [PMID: 37691951 PMCID: PMC10483837 DOI: 10.3389/fimmu.2023.1209438] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Sepsis presents as a severe infectious disease frequently documented in clinical settings. Characterized by its systemic inflammatory response syndrome, sepsis has the potential to trigger multi-organ dysfunction and can escalate to becoming life-threatening. A common fallout from sepsis is acute lung injury (ALI), which often progresses to acute respiratory distress syndrome (ARDS). Macrophages, due to their significant role in the immune system, are receiving increased attention in clinical studies. Macrophage polarization is a process that hinges on an intricate regulatory network influenced by a myriad of signaling molecules, transcription factors, epigenetic modifications, and metabolic reprogramming. In this review, our primary focus is on the classically activated macrophages (M1-like) and alternatively activated macrophages (M2-like) as the two paramount phenotypes instrumental in sepsis' host immune response. An imbalance between M1-like and M2-like macrophages can precipitate the onset and exacerbate the progression of sepsis. This review provides a comprehensive understanding of the interplay between macrophage polarization and sepsis-induced acute lung injury (SALI) and elaborates on the intervention strategy that centers around the crucial process of macrophage polarization.
Collapse
Affiliation(s)
| | - Zhong Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Roe MM, Do T, Turner S, Jevitt AM, Chlebicz M, White K, Oomens AGP, Rankin S, Kovats S, Gappa-Fahlenkamp H. Blood myeloid cells differentiate to lung resident cells and respond to pathogen stimuli in a 3D human tissue-engineered lung model. Front Bioeng Biotechnol 2023; 11:1212230. [PMID: 37485324 PMCID: PMC10361305 DOI: 10.3389/fbioe.2023.1212230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Respiratory infections remain a leading global health concern. Models that recapitulate the cellular complexity of the lower airway of humans will provide important information about how the immune response reflects the interactions between diverse cell types during infection. We developed a 3D human tissue-engineered lung model (3D-HTLM) composed of primary human pulmonary epithelial and endothelial cells with added blood myeloid cells that allows assessment of the innate immune response to respiratory infection. Methods: The 3D-HTLM consists of small airway epithelial cells grown at air-liquid interface layered on fibroblasts within a collagen matrix atop a permeable membrane with pulmonary microvascular endothelial cells layered underneath. After the epithelial and endothelial layers had reached confluency, an enriched blood monocyte population, containing mostly CD14+ monocytes (Mo) with minor subsets of CD1c+ classical dendritic cells (cDC2s), monocyte-derived dendritic cells (Mo-DCs), and CD16+ non-classical monocytes, was added to the endothelial side of the model. Results: Immunofluorescence imaging showed the myeloid cells migrate through and reside within each layer of the model. The myeloid cell subsets adapted to the lung environment in the 3D-HTLM, with increased proportions of the recovered cells expressing lung tissue resident markers CD206, CD169, and CD163 compared with blood myeloid cells, including a population with features of alveolar macrophages. Myeloid subsets recovered from the 3D-HTLM displayed increased expression of HLA-DR and the co-stimulatory markers CD86, CD40, and PDL1. Upon stimulation of the 3D-HTLM with the toll-like receptor 4 (TLR4) agonist bacterial lipopolysaccharide (LPS), the CD31+ endothelial cells increased expression of ICAM-1 and the production of IL-10 and TNFα was dependent on the presence of myeloid cells. Challenge with respiratory syncytial virus (RSV) led to increased expression of macrophage activation and antiviral pathway genes by cells in the 3D-HTLM. Discussion: The 3D-HTLM provides a lower airway environment that promotes differentiation of blood myeloid cells into lung tissue resident cells and enables the study of respiratory infection in a physiological cellular context.
Collapse
Affiliation(s)
- Mandi M. Roe
- Kovats Lab, Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, United States
| | - Taylor Do
- Fahlenkamp Lab, School of Chemical Engineering, Oklahoma State University, Stillwater, OK, United States
| | - Sean Turner
- Kovats Lab, Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, United States
| | - Allison M. Jevitt
- Rankin Lab, Oklahoma Medical Research Foundation, Cell Cycle and Cancer Biology Program, Oklahoma City, OK, United States
| | - Magdalena Chlebicz
- Kovats Lab, Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, United States
| | - Karley White
- Fahlenkamp Lab, School of Chemical Engineering, Oklahoma State University, Stillwater, OK, United States
| | - Antonius G. P. Oomens
- Oomens Lab, Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Susannah Rankin
- Rankin Lab, Oklahoma Medical Research Foundation, Cell Cycle and Cancer Biology Program, Oklahoma City, OK, United States
| | - Susan Kovats
- Kovats Lab, Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Heather Gappa-Fahlenkamp
- Fahlenkamp Lab, School of Chemical Engineering, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
10
|
Barnett KC, Xie Y, Asakura T, Song D, Liang K, Taft-Benz SA, Guo H, Yang S, Okuda K, Gilmore RC, Loome JF, Oguin Iii TH, Sempowski GD, Randell SH, Heise MT, Lei YL, Boucher RC, Ting JPY. An epithelial-immune circuit amplifies inflammasome and IL-6 responses to SARS-CoV-2. Cell Host Microbe 2023; 31:243-259.e6. [PMID: 36563691 PMCID: PMC9731922 DOI: 10.1016/j.chom.2022.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/12/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Elevated levels of cytokines IL-1β and IL-6 are associated with severe COVID-19. Investigating the underlying mechanisms, we find that while primary human airway epithelia (HAE) have functional inflammasomes and support SARS-CoV-2 replication, they are not the source of IL-1β released upon infection. In leukocytes, the SARS-CoV-2 E protein upregulates inflammasome gene transcription via TLR2 to prime, but not activate, inflammasomes. SARS-CoV-2-infected HAE supply a second signal, which includes genomic and mitochondrial DNA, to stimulate leukocyte IL-1β release. Nuclease treatment, STING, and caspase-1 inhibition but not NLRP3 inhibition blocked leukocyte IL-1β release. After release, IL-1β stimulates IL-6 secretion from HAE. Therefore, infection alone does not increase IL-1β secretion by either cell type. Rather, bi-directional interactions between the SARS-CoV-2-infected epithelium and immune bystanders stimulates both IL-1β and IL-6, creating a pro-inflammatory cytokine circuit. Consistent with these observations, patient autopsy lungs show elevated myeloid inflammasome gene signatures in severe COVID-19.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dingka Song
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon A Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haitao Guo
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuangshuang Yang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rodney C Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer F Loome
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Scott H Randell
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48104, USA; Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Sabatel C, Bureau F. The innate immune brakes of the lung. Front Immunol 2023; 14:1111298. [PMID: 36776895 PMCID: PMC9915150 DOI: 10.3389/fimmu.2023.1111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023] Open
Abstract
Respiratory mucosal surfaces are continuously exposed to not only innocuous non-self antigens but also pathogen-associated molecular patterns (PAMPs) originating from environmental or symbiotic microbes. According to either "self/non-self" or "danger" models, this should systematically result in homeostasis breakdown and the development of immune responses directed to inhaled harmless antigens, such as T helper type (Th)2-mediated asthmatic reactions, which is fortunately not the case in most people. This discrepancy implies the existence, in the lung, of regulatory mechanisms that tightly control immune homeostasis. Although such mechanisms have been poorly investigated in comparison to the ones that trigger immune responses, a better understanding of them could be useful in the development of new therapeutic strategies against lung diseases (e.g., asthma). Here, we review current knowledge on innate immune cells that prevent the development of aberrant immune responses in the lung, thereby contributing to mucosal homeostasis.
Collapse
Affiliation(s)
- Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium,*Correspondence: Catherine Sabatel,
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Deng W, Li B, Wang J, Jiang W, Yan X, Li N, Vukmirovic M, Kaminski N, Wang J, Zhao H. A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy. Brief Bioinform 2023; 24:bbac616. [PMID: 36631398 PMCID: PMC9851324 DOI: 10.1093/bib/bbac616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.
Collapse
Affiliation(s)
- Wenxuan Deng
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Bolun Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Jiawei Wang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Wei Jiang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ningshan Li
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., ON, Canada
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| |
Collapse
|
13
|
Rui Y, Han X, Jiang A, Hu J, Li M, Liu B, Qian F, Huang L. Eucalyptol prevents bleomycin-induced pulmonary fibrosis and M2 macrophage polarization. Eur J Pharmacol 2022; 931:175184. [PMID: 35964659 DOI: 10.1016/j.ejphar.2022.175184] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial pneumonia with limited therapeutic options. Eucalyptol, a terpenoid oxide isolated from eucalyptus species, reportedly exhibits various biological activities such as anti-inflammatory and antioxidant effects. In the present study, we aimed to determine whether eucalyptol could alleviate bleomycin (BLM)-induced pulmonary fibrosis and inhibit interleukin (IL)-13-induced M2 macrophage polarization. Upon treatment with eucalyptol, BLM-induced pulmonary fibrosis and lung inflammation were significantly reduced. The pulmonary neutrophil accumulation and pulmonary permeability were inhibited and the expression of hydroxyproline, alpha-smooth muscle actin, and fibronectin was significantly down-regulated. Eucalyptol also markedly inhibited the expression of arginase-1, Ym-1, IL-13, and transforming growth factor (TGF)-β1, reduced the production of IL-13, IL-6, tumor necrosis factor (TNF)-α, and attenuated the activity of TGF-β1 in bronchoalveolar lavage fluid (BALF). Furthermore, the in vitro assay revealed that eucalyptol disturbed M2 macrophage polarization and reduced the macrophage-mediated secretion of the profibrotic factor TGF-β1. Eucalyptol inhibited the nuclear location of signal transducer and activator of transcription 6 (STAT6) and the phosphorylation of STAT6 and p38 mitogen-activated protein kinase (p38 MAPK), and reduced the expression of their downstream transcription factors, krupple-like factor 4 (KLF4) and peroxisome proliferator-activated receptor gamma (PPAR-γ). These findings indicated that eucalyptol alleviates BLM-induced pulmonary fibrosis by regulating M2 macrophage polarization, which, in turn, inhibits the activation of signaling molecules (e.g., STAT6 and p38 MAPK) and the expression of transcription factors (e.g., KLF4 and PPAR-γ). Thus, eucalyptol might be a potential therapeutic agent for IPF.
Collapse
Affiliation(s)
- Yan Rui
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xiaojing Han
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Anbang Jiang
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Junfeng Hu
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Miao Li
- Department of General Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Bangzhu Liu
- Department of Respiratory Medicine, The Second People's Hospital of Anhui, Wuhu, Anhui, 233000, China
| | - Feng Qian
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233000, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Linian Huang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China.
| |
Collapse
|
14
|
Sun X, Perl AK, Li R, Bell SM, Sajti E, Kalinichenko VV, Kalin TV, Misra RS, Deshmukh H, Clair G, Kyle J, Crotty Alexander LE, Masso-Silva JA, Kitzmiller JA, Wikenheiser-Brokamp KA, Deutsch G, Guo M, Du Y, Morley MP, Valdez MJ, Yu HV, Jin K, Bardes EE, Zepp JA, Neithamer T, Basil MC, Zacharias WJ, Verheyden J, Young R, Bandyopadhyay G, Lin S, Ansong C, Adkins J, Salomonis N, Aronow BJ, Xu Y, Pryhuber G, Whitsett J, Morrisey EE. A census of the lung: CellCards from LungMAP. Dev Cell 2022; 57:112-145.e2. [PMID: 34936882 PMCID: PMC9202574 DOI: 10.1016/j.devcel.2021.11.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.
Collapse
Affiliation(s)
- Xin Sun
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Anne-Karina Perl
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Rongbo Li
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sheila M Bell
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer Kyle
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laura E Crotty Alexander
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge A Masso-Silva
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Kitzmiller
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gail Deutsch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratories, Seattle Children's Hospital, OC.8.720, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Yina Du
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Valdez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haoze V Yu
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kang Jin
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric E Bardes
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jarod A Zepp
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Terren Neithamer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William J Zacharias
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Jamie Verheyden
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Randee Young
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sara Lin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua Adkins
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bruce J Aronow
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yan Xu
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gloria Pryhuber
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeff Whitsett
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Shotland AM, Fontenot AP, McKee AS. Pulmonary Macrophage Cell Death in Lung Health and Disease. Am J Respir Cell Mol Biol 2021; 64:547-556. [PMID: 33332993 DOI: 10.1165/rcmb.2020-0420tr] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Over the last several decades, our understanding of regulated-cell-death (RCD) pathways has increased dramatically. In addition to apoptosis and accidental cell death (primary necrosis), a diverse spectrum of RCD pathways has been delineated. In the lung, airway macrophages are critical for maintaining the functionality of airways via the clearance of inhaled particles, cell debris, and infectious agents. Exposure of these cells to pathogenic organisms or particles can induce a variety of RCD pathways that promote the release of danger signals into the lung. These responses have evolved to trigger the innate and adaptive arms of the immune system and thus offer protection against pathogens; yet they can also contribute to the development of lung injury and pathogenic immune responses. In this review, we discuss recent studies that suggest a critical role for airway-macrophage RCD pathways in promoting the release of pulmonary danger signals in health and disease.
Collapse
Affiliation(s)
- Abigail M Shotland
- Division of Allergy and Clinical Immunology, Department of Medicine, and
| | - Andrew P Fontenot
- Division of Allergy and Clinical Immunology, Department of Medicine, and.,Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Amy S McKee
- Division of Allergy and Clinical Immunology, Department of Medicine, and.,Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
16
|
Slimmen LJM, Janssens HM, van Rossum AMC, Unger WWJ. Antigen-Presenting Cells in the Airways: Moderating Asymptomatic Bacterial Carriage. Pathogens 2021; 10:pathogens10080945. [PMID: 34451409 PMCID: PMC8400527 DOI: 10.3390/pathogens10080945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Bacterial respiratory tract infections (RTIs) are a major global health burden, and the role of antigen-presenting cells (APCs) in mounting an immune response to contain and clear invading pathogens is well-described. However, most encounters between a host and a bacterial pathogen do not result in symptomatic infection, but in asymptomatic carriage instead. The fact that a pathogen will cause infection in one individual, but not in another does not appear to be directly related to bacterial density, but rather depend on qualitative differences in the host response. Understanding the interactions between respiratory pathogens and airway APCs that result in asymptomatic carriage, will provide better insight into the factors that can skew this interaction towards infection. This review will discuss the currently available knowledge on airway APCs in the context of asymptomatic bacterial carriage along the entire respiratory tract. Furthermore, in order to interpret past and futures studies into this topic, we propose a standardized nomenclature of the different stages of carriage and infection, based on the pathogen’s position with regard to the epithelium and the amount of inflammation present.
Collapse
Affiliation(s)
- Lisa J. M. Slimmen
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Hettie M. Janssens
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Annemarie M. C. van Rossum
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Wendy W. J. Unger
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
17
|
Logette E, Lorin C, Favreau C, Oshurko E, Coggan JS, Casalegno F, Sy MF, Monney C, Bertschy M, Delattre E, Fonta PA, Krepl J, Schmidt S, Keller D, Kerrien S, Scantamburlo E, Kaufmann AK, Markram H. A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Front Public Health 2021; 9:695139. [PMID: 34395368 PMCID: PMC8356061 DOI: 10.3389/fpubh.2021.695139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 started spreading toward the end of 2019 causing COVID-19, a disease that reached pandemic proportions among the human population within months. The reasons for the spectrum of differences in the severity of the disease across the population, and in particular why the disease affects more severely the aging population and those with specific preconditions are unclear. We developed machine learning models to mine 240,000 scientific articles openly accessible in the CORD-19 database, and constructed knowledge graphs to synthesize the extracted information and navigate the collective knowledge in an attempt to search for a potential common underlying reason for disease severity. The machine-driven framework we developed repeatedly pointed to elevated blood glucose as a key facilitator in the progression of COVID-19. Indeed, when we systematically retraced the steps of the SARS-CoV-2 infection, we found evidence linking elevated glucose to each major step of the life-cycle of the virus, progression of the disease, and presentation of symptoms. Specifically, elevations of glucose provide ideal conditions for the virus to evade and weaken the first level of the immune defense system in the lungs, gain access to deep alveolar cells, bind to the ACE2 receptor and enter the pulmonary cells, accelerate replication of the virus within cells increasing cell death and inducing an pulmonary inflammatory response, which overwhelms an already weakened innate immune system to trigger an avalanche of systemic infections, inflammation and cell damage, a cytokine storm and thrombotic events. We tested the feasibility of the hypothesis by manually reviewing the literature referenced by the machine-generated synthesis, reconstructing atomistically the virus at the surface of the pulmonary airways, and performing quantitative computational modeling of the effects of glucose levels on the infection process. We conclude that elevation in glucose levels can facilitate the progression of the disease through multiple mechanisms and can explain much of the differences in disease severity seen across the population. The study provides diagnostic considerations, new areas of research and potential treatments, and cautions on treatment strategies and critical care conditions that induce elevations in blood glucose levels.
Collapse
Affiliation(s)
- Emmanuelle Logette
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
18
|
Guttenberg MA, Vose AT, Tighe RM. Role of Innate Immune System in Environmental Lung Diseases. Curr Allergy Asthma Rep 2021; 21:34. [PMID: 33970346 PMCID: PMC8311569 DOI: 10.1007/s11882-021-01011-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 01/07/2023]
Abstract
The lung mucosa functions as a principal barrier between the body and inhaled environmental irritants and pathogens. Precise and targeted surveillance mechanisms are required at this lung-environment interface to maintain homeostasis and preserve gas exchange. This is performed by the innate immune system, a germline-encoded system that regulates initial responses to foreign irritants and pathogens. Environmental pollutants, such as particulate matter (PM), ozone (O3), and other products of combustion (NO2, SO3, etc.), both stimulate and disrupt the function of the innate immune system of the lung, leading to the potential for pathologic consequences. PURPOSE OF REVIEW: The purpose of this review is to explore recent discoveries and investigations into the role of the innate immune system in responding to environmental exposures. This focuses on mechanisms by which the normal function of the innate immune system is modified by environmental agents leading to disruptions in respiratory function. RECENT FINDINGS: This is a narrative review of mechanisms of pulmonary innate immunity and the impact of environmental exposures on these responses. Recent findings highlighted in this review are categorized by specific components of innate immunity including epithelial function, macrophages, pattern recognition receptors, and the microbiome. Overall, the review supports broad impacts of environmental exposures to alterations to normal innate immune functions and has important implications for incidence and exacerbations of lung disease. The innate immune system plays a critical role in maintaining pulmonary homeostasis in response to inhaled air pollutants. As many of these agents are unable to be mitigated, understanding their mechanistic impact is critical to develop future interventions to limit their pathologic consequences.
Collapse
Affiliation(s)
| | | | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, NC,Corresponding Author: Robert M Tighe, MD, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Box 2969, Durham, North Carolina 27710, Telephone: 919-684-4894, Fax: 919-684-5266,
| |
Collapse
|
19
|
Fastrès A, Pirottin D, Fievez L, Tutunaru AC, Bolen G, Merveille AC, Marichal T, Desmet CJ, Bureau F, Clercx C. Identification of Pro-Fibrotic Macrophage Populations by Single-Cell Transcriptomic Analysis in West Highland White Terriers Affected With Canine Idiopathic Pulmonary Fibrosis. Front Immunol 2020; 11:611749. [PMID: 33384697 PMCID: PMC7770158 DOI: 10.3389/fimmu.2020.611749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Canine idiopathic pulmonary fibrosis (CIPF) affects old dogs from the West Highland white terrier (WHWT) breed and mimics idiopathic pulmonary fibrosis (IPF) in human. The disease results from deposition of fibrotic tissue in the lung parenchyma causing respiratory failure. Recent studies in IPF using single-cell RNA sequencing (scRNA-seq) revealed the presence of profibrotic macrophage populations in the lung, which could be targeted for therapeutic purpose. In dogs, scRNA-seq was recently validated for the detection of cell populations in bronchoalveolar lavage fluid (BALF) from healthy dogs. Here we used the scRNA-seq to characterize disease-related heterogeneity within cell populations of macrophages/monocytes (Ma/Mo) in the BALF from five WHWTs affected with CIPF in comparison with three healthy WHWTs. Gene set enrichment analysis was also used to assess pro-fibrotic capacities of Ma/Mo populations. Five clusters of Ma/Mo were identified. Gene set enrichment analyses revealed the presence of pro-fibrotic monocytes in higher proportion in CIPF WHWTs than in healthy WHWTs. In addition, monocyte-derived macrophages enriched in pro-fibrotic genes in CIPF compared with healthy WHWTs were also identified. These results suggest the implication of Ma/Mo clusters in CIPF processes, although, further research is needed to understand their role in disease pathogenesis. Overexpressed molecules associated with pulmonary fibrosis processes were also identified that could be used as biomarkers and/or therapeutic targets in the future.
Collapse
Affiliation(s)
- Aline Fastrès
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - Dimitri Pirottin
- Laboratory of Cellular and Molecular Immunology, Department Functional Sciences and GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Laurence Fievez
- Laboratory of Cellular and Molecular Immunology, Department Functional Sciences and GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Alexandru-Cosmin Tutunaru
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - Géraldine Bolen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - Anne-Christine Merveille
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, Department Functional Sciences and GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, Department Functional Sciences and GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, Department Functional Sciences and GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Cécile Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| |
Collapse
|
20
|
Wang G, Zhang X, Liu X, Zheng J. Co-culture of human alveolar epithelial (A549) and macrophage (THP-1) cells to study the potential toxicity of ambient PM 2.5: a comparison of growth under ALI and submerged conditions. Toxicol Res (Camb) 2020; 9:636-651. [PMID: 33178424 DOI: 10.1093/toxres/tfaa072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022] Open
Abstract
Fine particulate matter (PM2.5) in the ambient atmosphere is strongly associated with detrimental health effects. However, these particles from various sources and regions are unlikely equally toxic. While animal studies are impractical for high-throughput toxicity testing, appropriate in vitro models are urgently needed. Co-culture of A549 and THP-1 macrophages grown at air-liquid interface (ALI) or under submerged conditions was exposed to same concentrations of ambient PM2.5 to provide accurate comparisons between culture methods. Following 24-h incubation with PM2.5 collected in Harbin in China, biological endpoints being investigated include cytotoxicity, reactive oxygen species (ROS) levels and pro-inflammatory mediators. The co-culture grown under submerged condition demonstrated a significant increase in ROS levels and all tested pro-inflammatory indicators [interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α] in mRNA expression and released protein levels. Similar but a declining response trend was observed using the same PM2.5 incubation after grown at ALI. We further observed a significant increase of PM2.5-induced phosphorylation of p38 MAPK and activation of NF-κB p65 in a dose-dependent trend for co-cultures grown under submerged condition. These results provide important implications that culture conditions (ALI versus submerged) can induce different extents of biological responses to ambient PM2.5; the co-culture grown at ALI is less likely to produce false-positive results than submerged culture. Hence, culture conditions should be discussed when comparing in vitro methods used for high-throughput PM2.5 toxicity assessment in future.
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, Shanghai 200025, China
| | - Xiaofeng Zhang
- Department of Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Xinyan Liu
- Department of Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jing Zheng
- Department of Environmental Health, Heilongjiang Provincial Center for Disease Control and Prevention, 40 Youfang Road, Xiangfang District, Harbin, 150030, China
| |
Collapse
|
21
|
Valacchi G, Magnani N, Woodby B, Ferreira SM, Evelson P. Particulate Matter Induces Tissue OxInflammation: From Mechanism to Damage. Antioxid Redox Signal 2020; 33:308-326. [PMID: 32443938 DOI: 10.1089/ars.2019.8015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress and oxidative damage are central hypothetical mechanisms for the adverse effects of airborne particulate matter (PM). Activation of inflammatory cells capable of generating reactive oxygen and nitrogen species is another proposed damage pathway. Understanding the interplay between these responses can help us understand the adverse health effects attributed to breathing polluted air. Recent Advances: The consequences of PM exposure on different organs are oxidative damage, decreased function, and inflammation, which can lead to the development/exacerbation of proinflammatory disorders. Mitochondrial damage is also an important event in PM-induced cytotoxicity. Critical Issues: Reactive oxygen species (ROS) are generated during phagocytosis of the particles, leading to enhancement of oxidative stress and triggering the inflammatory response. The activation of inflammatory signaling pathways results in the release of cytokines and other mediators, which can further induce ROS production by activating endogenous enzymes, leading to a positive feedback loop, which can aggravate the effects triggered by PM exposure. Future Directions: Further research is required to elucidate the exact mechanisms by which PM exposure results in adverse health effects, in terms of the relationship between the redox responses triggered by the presence of the particles and the inflammation observed in the different organs, so the development/exacerbation of PM-associated health problems can be prevented.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA.,Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Brittany Woodby
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sandra María Ferreira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Fastrès A, Pirottin D, Fievez L, Marichal T, Desmet CJ, Bureau F, Clercx C. Characterization of the Bronchoalveolar Lavage Fluid by Single Cell Gene Expression Analysis in Healthy Dogs: A Promising Technique. Front Immunol 2020; 11:1707. [PMID: 32849601 PMCID: PMC7406785 DOI: 10.3389/fimmu.2020.01707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Single-cell mRNA-sequencing (scRNA-seq) is a technique which enables unbiased, high throughput and high-resolution transcriptomic analysis of the heterogeneity of cells within a population. This recent technique has been described in humans, mice and other species in various conditions to cluster cells in populations and identify new subpopulations, as well as to study the gene expression of cells in various tissues, conditions and origins. In dogs, a species for which markers of cell populations are often limiting, scRNA-seq presents with elevated yet untested potential for the study of tissue composition. As a proof of principle, we used scRNA-seq to identify cellular populations of the bronchoalveolar lavage fluid (BALF) in healthy dogs (n = 4). A total of 5,710 cells were obtained and analyzed by scRNA-seq. Fourteen distinct clusters of cells were identified, further identified as macrophages/monocytes (4 clusters), T cells (2 clusters) and B cells (1 cluster), neutrophils (1 cluster), mast cells (1 cluster), mature or immature dendritic cells (1 cluster each), ciliated or non-ciliated epithelial cells (1 cluster each) and cycling cells (1 cluster). We used for the first time in dogs the scRNA-seq to investigate cellular subpopulations of the BALF of dog. This study hence expands our knowledge on dog lung immune cell populations, paves the way for the investigation at single-cell level of lower respiratory diseases in dogs, and establishes that scRNA-seq is a powerful tool for the study of dog tissue composition.
Collapse
Affiliation(s)
- Aline Fastrès
- Department of Clinical Sciences, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Dimitri Pirottin
- Laboratory of Cellular and Molecular Immunology, Department of Functional Sciences and GIGA-Inflammation, Infection and Immunity, University of Liège, Liège, Belgium
| | - Laurence Fievez
- Laboratory of Cellular and Molecular Immunology, Department of Functional Sciences and GIGA-Inflammation, Infection and Immunity, University of Liège, Liège, Belgium
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, Department of Functional Sciences and GIGA-Inflammation, Infection and Immunity, University of Liège, Liège, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, Department of Functional Sciences and GIGA-Inflammation, Infection and Immunity, University of Liège, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, Department of Functional Sciences and GIGA-Inflammation, Infection and Immunity, University of Liège, Liège, Belgium
| | - Cécile Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
23
|
Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: Molecular Mechanisms and Potential Clinical Applications in Lung Disease. Am J Respir Cell Mol Biol 2020; 62:413-422. [PMID: 31967851 DOI: 10.1165/rcmb.2019-0328tr] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pirfenidone (PFD) is a pharmacological compound with therapeutic efficacy in idiopathic pulmonary fibrosis. It has been chiefly characterized as an antifibrotic agent, although it was initially developed as an antiinflammatory compound because of its ability to diminish the accumulation of inflammatory cells and cytokines. Despite recent studies that have elucidated key mechanisms, the precise molecular activities of PFD remain incompletely understood. PFD modulates fibrogenic growth factors, thereby attenuating fibroblast proliferation, myofibroblast differentiation, collagen and fibronectin synthesis, and deposition of extracellular matrix. This effect is mediated by suppression of TGF-β1 (transforming growth factor-β1) and other growth factors. Here, we appraise the impact of PFD on TGF-β1 production and its downstream pathways. Accumulating evidence indicates that PFD also downregulates inflammatory pathways and therefore has considerable potential as a viable and innovative antiinflammatory compound. We examine the effects of PFD on inflammatory cells and the production of pro- and antiinflammatory cytokines in the lung. In this context, recent evidence that PFD can target inflammasome pathways and ensuing lung inflammation is highlighted. Finally, the antioxidant properties of PFD, such as its ability to inhibit redox reactions and regulate oxidative stress-related genes and enzymes, are detailed. In summary, this narrative review examines molecular mechanisms underpinning PFD and its recognized benefits in lung fibrosis. We highlight preclinical data that demonstrate the potential of PFD as a nonsteroidal antiinflammatory agent and outline areas for future research.
Collapse
Affiliation(s)
- Saleela M Ruwanpura
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Belinda J Thomas
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Philip G Bardin
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Mnich ME, van Dalen R, van Sorge NM. C-Type Lectin Receptors in Host Defense Against Bacterial Pathogens. Front Cell Infect Microbiol 2020; 10:309. [PMID: 32733813 PMCID: PMC7358460 DOI: 10.3389/fcimb.2020.00309] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Antigen-presenting cells (APCs) are present throughout the human body—in tissues, at barrier sites and in the circulation. They are critical for processing external signals to instruct both local and systemic responses toward immune tolerance or immune defense. APCs express an extensive repertoire of pattern-recognition receptors (PRRs) to detect and transduce these signals. C-type lectin receptors (CLRs) comprise a subfamily of PRRs dedicated to sensing glycans, including those expressed by commensal and pathogenic bacteria. This review summarizes recent findings on the recognition of and responses to bacteria by membrane-expressed CLRs on different APC subsets, which are discussed according to the primary site of infection. Many CLR-bacterial interactions promote bacterial clearance, whereas other interactions are exploited by bacteria to enhance their pathogenic potential. The discrimination between protective and virulence-enhancing interactions is essential to understand which interactions to target with new prophylactic or treatment strategies. CLRs are also densely concentrated at APC dendrites that sample the environment across intact barrier sites. This suggests an–as yet–underappreciated role for CLR-mediated recognition of microbiota-produced glycans in maintaining tolerance at barrier sites. In addition to providing a concise overview of identified CLR-bacteria interactions, we discuss the main challenges and potential solutions for the identification of new CLR-bacterial interactions, including those with commensal bacteria, and for in-depth structure-function studies on CLR-bacterial glycan interactions. Finally, we highlight the necessity for more relevant tissue-specific in vitro, in vivo and ex vivo models to develop therapeutic applications in this area.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, Netherlands.,GSK, Siena, Italy
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
25
|
Shao J, Talton J, Wang Y, Winner L, Hochhaus G. Quantitative Assessment of Pulmonary Targeting of Inhaled Corticosteroids Using Ex Vivo Receptor Binding Studies. AAPS JOURNAL 2020; 22:39. [PMID: 32002694 DOI: 10.1208/s12248-019-0404-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/05/2019] [Indexed: 11/30/2022]
Abstract
The goal of locally acting inhaled corticosteroids is to achieve distinct pulmonary effects with reduced systemic side effects. The present work using an ex vivo receptor binding model in rats was interested in assessing pulmonary targeting for several commercially available corticosteroids by monitoring receptor occupancies in the lung and systemic organs (liver, kidney, spleen, and brain) after intravenous (IV) injection or intratracheal (IT) instillation of a dry powder administration at a dose of 100 μg/kg. Pulmonary targeting, defined as the difference in cumulative receptor occupancies (AUCE) between the lung and kidney after pulmonary delivery, differed across the investigated corticosteroids (ΔAUCE range, 33 ± 46 to 143 ± 52% *h) with the highest degree found for corticosteroids with high systemic clearance and pronounced lipophilicity (presumably allowing a long pulmonary residence time). Additionally, this study demonstrated differences in the receptor occupancies across systemic organs. Using kidney receptor occupancies as the comparator, liver receptor occupancies were reduced (ΔAUCE range: - 157 ± 43 to 178 ± 42% *h) after IV and IT administration for corticosteroids with high intrinsic clearance, while they were increased for corticosteroid prodrugs due to hepatic activation. Spleen receptor occupancies were increased after IT (ΔAUCE range: 33 ± 35 to 135 ± 28% *h), but not after IV administration. This was especially true for slowly dissolving drugs. Reduced brain uptake was also observed for ciclesonide (CIC) and des-ciclesonide (desCIC), two compounds previously not investigated. In summary, ex vivo receptor binding studies represent a powerful tool to assess the fate of ICSs.
Collapse
Affiliation(s)
- Jie Shao
- Department of Pharmaceutics, JHMHC, P3-33, College of Pharmacy, University of Florida, P.O. Box 100494, Gainesville, FL, 32610, USA
| | | | - Yaning Wang
- Department of Pharmaceutics, JHMHC, P3-33, College of Pharmacy, University of Florida, P.O. Box 100494, Gainesville, FL, 32610, USA
| | - Lawrence Winner
- Department of Statistics, University of Florida, Gainesville, FL, USA
| | - Guenther Hochhaus
- Department of Pharmaceutics, JHMHC, P3-33, College of Pharmacy, University of Florida, P.O. Box 100494, Gainesville, FL, 32610, USA.
| |
Collapse
|