1
|
Hatch K, Lischka F, Wang M, Xu X, Stimpson CD, Barvir T, Cramer NP, Perl DP, Yu G, Browne CA, Dickstein DL, Galdzicki Z. The role of microglia in neuronal and cognitive function during high altitude acclimatization. Sci Rep 2024; 14:18981. [PMID: 39152179 PMCID: PMC11329659 DOI: 10.1038/s41598-024-69694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Due to their interactions with the neurovasculature, microglia are implicated in maladaptive responses to hypobaric hypoxia at high altitude (HA). To explore these interactions at HA, pharmacological depletion of microglia with the colony-stimulating factor-1 receptor inhibitor, PLX5622, was employed in male C57BL/6J mice maintained at HA or sea level (SL) for 3-weeks, followed by assessment of ex-vivo hippocampal long-term potentiation (LTP), fear memory recall and microglial dynamics/physiology. Our findings revealed that microglia depletion decreased LTP and reduced glucose levels by 25% at SL but did not affect fear memory recall. At HA, the absence of microglia did not significantly alter HA associated deficits in fear memory or HA mediated decreases in peripheral glucose levels. In regard to microglial dynamics in the cortex, HA enhanced microglial surveillance activity, ablation of microglia resulted in increased chemotactic responses and decreased microglia tip proliferation during ball formation. In contrast, vessel ablation increased cortical microglia tip path tortuosity. In the hippocampus, changes in microglial dynamics were only observed in response to vessel ablation following HA. As the hippocampus is critical for learning and memory, poor hippocampal microglial context-dependent adaptation may be responsible for some of the enduring neurological deficits associated with HA.
Collapse
Affiliation(s)
- Kathleen Hatch
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Fritz Lischka
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Mengfan Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Xiufen Xu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Cheryl D Stimpson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tara Barvir
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Nathan P Cramer
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Caroline A Browne
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Dara L Dickstein
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Zygmunt Galdzicki
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Zhang W, Zhang Q, Yang N, Shi Q, Su H, Lin T, He Z, Wang W, Guo H, Shen P. Crosstalk between IL-15Rα + tumor-associated macrophages and breast cancer cells reduces CD8 + T cell recruitment. Cancer Commun (Lond) 2022; 42:536-557. [PMID: 35615815 PMCID: PMC9198341 DOI: 10.1002/cac2.12311] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
Background Interleukin‐15 (IL‐15) is a promising immunotherapeutic agent owing to its powerful immune‐activating effects. However, the clinical benefits of these treatments are limited. Crosstalk between tumor cells and immune cells plays an important role in immune escape and immunotherapy drug resistance. Herein, this study aimed to obtain in‐depth understanding of crosstalk in the tumor microenvironment for providing potential therapeutic strategies to prevent tumor progression. Methods T‐cell killing assays and co‐culture models were developed to determine the role of crosstalk between macrophages and tumor cells in breast cancer resistant to IL‐15. Western blotting, histological analysis, CRISPR‐Cas9 knockout, multi‐parameter flow cytometry, and tumor cell‐macrophage co‐injection mouse models were developed to examine the mechanism by which IL‐15Rα+ tumor‐associated macrophages (TAMs) regulate breast cancer cell resistance to IL‐15. Results We found that macrophages contributed to the resistance of tumor cells to IL‐15, and tumor cells induced macrophages to express high levels of the α subunit of the IL‐15 receptor (IL‐15Rα). Further investigation showed that IL‐15Rα+ TAMs reduced the protein levels of chemokine CX3C chemokine ligand 1 (CX3CL1) in tumor cells to inhibit the recruitment of CD8+ T cells by releasing the IL‐15/IL‐15Rα complex (IL‐15Rc). Administration of an IL‐15Rc blocking peptide markedly suppressed breast tumor growth and overcame the resistance of cancer cells to anti‐ programmed cell death protein 1 (PD‐1) antibody immunotherapy. Interestingly, Granulocyte‐macrophage colony‐stimulating factor (GMCSF) induced γ chain (γc) expression to promote tumor cell‐macrophage crosstalk, which facilitated tumor resistance to IL‐15. Additionally, we observed that the non‐transcriptional regulatory function of hypoxia inducible factor‐1alpha (HIF‐1α) was essential for IL‐15Rc to regulate CX3CL1 expression in tumor cells. Conclusions The IL‐15Rc‐HIF‐1α‐CX3CL1 signaling pathway serves as a crosstalk between macrophages and tumor cells in the tumor microenvironment of breast cancer. Targeting this pathway may provide a potential therapeutic strategy for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Wenlong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.,Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Qing Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Qian Shi
- Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3904, USA
| | - Huifang Su
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Tingsheng Lin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Eircode D04 V1W8, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Eircode D04 V1W8, Ireland
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.,Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| |
Collapse
|
3
|
Fractalkine/CX3CL1 in Neoplastic Processes. Int J Mol Sci 2020; 21:ijms21103723. [PMID: 32466280 PMCID: PMC7279446 DOI: 10.3390/ijms21103723] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fractalkine/CX3C chemokine ligand 1 (CX3CL1) is a chemokine involved in the anticancer function of lymphocytes-mainly NK cells, T cells and dendritic cells. Its increased levels in tumors improve the prognosis for cancer patients, although it is also associated with a poorer prognosis in some types of cancers, such as pancreatic ductal adenocarcinoma. This work focuses on the 'hallmarks of cancer' involving CX3CL1 and its receptor CX3CR1. First, we describe signal transduction from CX3CR1 and the role of epidermal growth factor receptor (EGFR) in this process. Next, we present the role of CX3CL1 in the context of cancer, with the focus on angiogenesis, apoptosis resistance and migration and invasion of cancer cells. In particular, we discuss perineural invasion, spinal metastasis and bone metastasis of cancers such as breast cancer, pancreatic cancer and prostate cancer. We extensively discuss the importance of CX3CL1 in the interaction with different cells in the tumor niche: tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC) and microglia. We present the role of CX3CL1 in the development of active human cytomegalovirus (HCMV) infection in glioblastoma multiforme (GBM) brain tumors. Finally, we discuss the possible use of CX3CL1 in immunotherapy.
Collapse
|
4
|
Mangold A, Hofbauer TM, Ondracek AS, Artner T, Scherz T, Speidl WS, Krychtiuk KA, Sadushi-Kolici R, Jakowitsch J, Lang IM. Neutrophil extracellular traps and monocyte subsets at the culprit lesion site of myocardial infarction patients. Sci Rep 2019; 9:16304. [PMID: 31704966 PMCID: PMC6841683 DOI: 10.1038/s41598-019-52671-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Neutrophils release their chromatin into the extracellular space upon activation. These web-like structures are called neutrophil extracellular traps (NETs) and have potent prothrombotic and proinflammatory properties. In ST-elevation myocardial infarction (STEMI), NETs correlate with increased infarct size. The interplay of neutrophils and monocytes impacts cardiac remodeling. Monocyte subsets are classified as classical, intermediate and non-classical monocytes. In the present study, in vitro stimulation with NETs led to an increase of intermediate monocytes and reduced expression of CX3CR1 in all subsets. Intermediate monocytes have been associated with poor outcome, while non-classical CX3CR1-positive monocytes could have reparative function after STEMI. We characterized monocyte subsets and NET markers at the culprit lesion site of STEMI patients (n = 91). NET surrogate markers were increased and correlated with larger infarct size and with fewer non-classical monocytes. Intermediate and especially non-classical monocytes were increased at the culprit site compared to the femoral site. Low CX3CR1 expression of monocytes correlated with high NET markers and increased infarct size. In this translational system, causality cannot be proven. However, our data suggest that NETs interfere with monocytic differentiation and receptor expression, presumably promoting a subset shift at the culprit lesion site. Reduced monocyte CX3CR1 expression may compromise myocardial salvage.
Collapse
Affiliation(s)
- Andreas Mangold
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Thomas M Hofbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Anna S Ondracek
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherz
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Walter S Speidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Konstantin A Krychtiuk
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Roela Sadushi-Kolici
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johannes Jakowitsch
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Zhang JD, Küng E, Boess F, Certa U, Ebeling M. Pathway reporter genes define molecular phenotypes of human cells. BMC Genomics 2015; 16:342. [PMID: 25903797 PMCID: PMC4415216 DOI: 10.1186/s12864-015-1532-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
Background The phenotype of a living cell is determined by its pattern of active signaling networks, giving rise to a “molecular phenotype” associated with differential gene expression. Digital amplicon based RNA quantification by sequencing is a useful technology for molecular phenotyping as a novel tool to characterize the state of biological systems. Results We show here that the activity of signaling networks can be assessed based on a set of established key regulators and expression targets rather than the entire transcriptome. We compiled a panel of 917 human pathway reporter genes, representing 154 human signaling and metabolic networks for integrated knowledge- and data-driven understanding of biological processes. The reporter genes are significantly enriched for regulators and effectors covering a wide range of biological processes, and faithfully capture gene-level and pathway-level changes. We apply the approach to iPSC derived cardiomyocytes and primary human hepatocytes to describe changes in molecular phenotype during development or drug response. The reporter genes deliver an accurate pathway-centric view of the biological system under study, and identify known and novel modulation of signaling networks consistent with literature or experimental data. Conclusions A panel of 917 pathway reporter genes is sufficient to describe changes in the molecular phenotype defined by 154 signaling cascades in various human cell types. AmpliSeq-RNA based digital transcript imaging enables simultaneous monitoring of the entire pathway reporter gene panel in up to 150 samples. We propose molecular phenotyping as a useful approach to understand diseases and drug action at the network level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1532-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jitao David Zhang
- Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Erich Küng
- Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Franziska Boess
- Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Ulrich Certa
- Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Martin Ebeling
- Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
6
|
Szukiewicz D, Kochanowski J, Mittal TK, Pyzlak M, Szewczyk G, Cendrowski K. Chorioamnionitis (ChA) modifies CX3CL1 (fractalkine) production by human amniotic epithelial cells (HAEC) under normoxic and hypoxic conditions. JOURNAL OF INFLAMMATION-LONDON 2014; 11:12. [PMID: 24851083 PMCID: PMC4029884 DOI: 10.1186/1476-9255-11-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/08/2014] [Indexed: 01/01/2023]
Abstract
Background Chemokine CX3CL1 possesses unique properties, including combined adhesive and chemotactic functions. Human amniotic epithelial cells (HAEC) show expression of CX3CL1 receptor (CX3CR1) and produce CX3CL1 in response to both physiologic and pathologic stimuli. Chorioamnionitis (ChA) is a common complication of pregnancy and labour. ChA is often accompanied by local hypoxia because of the high oxygen consumption at the site of inflammation. We examined comparatively (ChA-complicated vs. normal pregnancy) CX3CR1 expression and the effects of hypoxia, lipopolysaccharide (LPS), and CX3CR1 blockade on CX3CL1 production in HAEC cultured in vitro. Methods HAEC have been isolated using trypsinization, and cultured under normoxia (20% O2) vs. hypoxia (5% O2). According to the experimental design, LPS (1 μg/ml) and neutralizing anti-CX3CR1 antibodies were added at respective time points. Mean CX3CL1 concentration in the supernatant samples were determined by ELISA. Expression of immunostained CX3CR1 was analyzed using quantitative morphometry. Results We have found that the mean levels of CX3CL1 and CX3CR1 expression were remarkably (p < 0.05) higher in ChA, compared to normal pregnancy. Significantly increased expression of CX3CR1 was observed in ChA during both normoxia and hypoxia. Hypoxia exposure produced decrease in the mean concentration of CX3CL1 in both groups, however this reduction was stronger in normal pregnancy. In normoxia, LPS-evoked rise in the mean concentration of CX3CL1 was higher (p < 0.05) in normal pregnancy. This response was positively correlated with CX3CR1 expression. Blockade of CX3CR1 canceled the secretory response to LPS in all groups. Conclusions ChA-complicated pregnancy up-regulates CX3CR1 in HAEC cultured in vitro with simultaneous increase in CX3CL1 production. Hypoxia-resistant production of CX3CL1 may be responsible for ChA-related complications of pregnancy and labor.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of General & Experimental Pathology, Medical University of Warsaw, ul.Krakowskie Przedmiescie 26/28, Warsaw 00-928, Poland
| | - Jan Kochanowski
- Department of Neurology, Second Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tarun Kumar Mittal
- Department of Obstetrics & Gynecology, Second Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michal Pyzlak
- Department of General & Experimental Pathology, Medical University of Warsaw, ul.Krakowskie Przedmiescie 26/28, Warsaw 00-928, Poland
| | - Grzegorz Szewczyk
- Department of General & Experimental Pathology, Medical University of Warsaw, ul.Krakowskie Przedmiescie 26/28, Warsaw 00-928, Poland
| | - Krzysztof Cendrowski
- Department of Obstetrics & Gynecology, Second Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Szukiewicz D, Kochanowski J, Mittal TK, Pyzlak M, Szewczyk G, Cendrowski K. CX3CL1 (fractalkine) and TNFα production by perfused human placental lobules under normoxic and hypoxic conditions in vitro: the importance of CX3CR1 signaling. Inflamm Res 2013; 63:179-89. [PMID: 24270813 PMCID: PMC3921448 DOI: 10.1007/s00011-013-0687-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 10/03/2013] [Accepted: 11/06/2013] [Indexed: 11/30/2022] Open
Abstract
Objective
Inflammation and hypoxia activate the fractalkine (CX3CL1) receptor (CX3CR1)-related signaling pathway. Tumor necrosis factor alpha (TNFα) induces CX3CL1, influencing a mechanism of CX3CL1 autoregulation by CX3CR1 expression. We compared spontaneous and lipopolysaccharide (LPS)-induced CX3CL1 and TNFα production by human placenta under normoxic vs. hypoxic conditions, with respect to CX3CR1 expression and its functional status. Methods Placental lobules of term placentae (N = 24) were perfused extracorporeally. CX3CL1 and TNFα concentrations were measured in the perfusion fluid by ELISA. LPS, anti-CX3CR1 antibodies and pirfenidone were used in respective subgroups. After perfusion, CX3CR1 expression was estimated in placental tissue using quantitative immunohistochemistry, and the final results were adjusted for the mean microvascular density. Results The highest increase in CX3CL1 concentration in response to LPS was observed in hypoxia (p < 0.05). Unlike in normoxia, anti-CX3CR1 administration in hypoxia significantly reduced the LPS-evoked response. CX3CR1 expression was augmented by hypoxia and reached 260.9 ± 41 (% ±SEM) of the reference value in normoxia. Positive immunostaining for CX3CR1 corresponded to the vascular endothelium. Pirfenidone inhibited hypoxia + LPS-related increase in TNFα production and prevented the up-regulation of CX3CR1. Conclusion The modulatory influence of TNFα on CX3CR1 expression in hypoxia and CX3CL1/CX3CR1 interaction may serve as a compensatory mechanism to preserve or augment the pro-inflammatory course of intercellular interactions in placental endothelium.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of General and Experimental Pathology, Second Faculty of Medicine, Medical University of Warsaw, ul. Krakowskie Przedmiescie 26/28, 00-928 Warsaw, Poland
| | - Jan Kochanowski
- Department of Neurology, Second Faculty of Medicine, Medical University of Warsaw, ul. Ceglowska 80, 01-809 Warsaw, Poland
| | - Tarun Kumar Mittal
- Department of Obstetrics and Gynecology, Second Faculty of Medicine, Medical University of Warsaw, ul. Kondratowicza 8, 03-242 Warsaw, Poland
| | - Michal Pyzlak
- Department of General and Experimental Pathology, Second Faculty of Medicine, Medical University of Warsaw, ul. Krakowskie Przedmiescie 26/28, 00-928 Warsaw, Poland
| | - Grzegorz Szewczyk
- Department of General and Experimental Pathology, Second Faculty of Medicine, Medical University of Warsaw, ul. Krakowskie Przedmiescie 26/28, 00-928 Warsaw, Poland
| | - Krzysztof Cendrowski
- Department of Obstetrics and Gynecology, Second Faculty of Medicine, Medical University of Warsaw, ul. Kondratowicza 8, 03-242 Warsaw, Poland
| |
Collapse
|
8
|
Fractalkine (CX3CL1) and its receptor CX3CR1 may contribute to increased angiogenesis in diabetic placenta. Mediators Inflamm 2013; 2013:437576. [PMID: 23956503 PMCID: PMC3730155 DOI: 10.1155/2013/437576] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/12/2013] [Accepted: 06/26/2013] [Indexed: 01/27/2023] Open
Abstract
Chemokine CX3CL1 is unique, possessing the ability to act as a dual agent: chemoattractant and adhesive compound. Acting via its sole receptor CX3CR1, CX3CL1 participates in many processes in human placental tissue, including inflammation and angiogenesis. Strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokines secretion, CX3CL1 may act locally as a key angiogenic factor. Both clinical observations and histopathological studies of the diabetic placenta have confirmed an increased incidence of hypoxia and inflammatory reactions with defective angiogenesis. In this study we examined comparatively (diabetes class C complicated versus normal pregnancy) the correlation between CX3CL1 content in placental tissue, the mean CX3CR1 expression, and density of the network of placental microvessels. A sandwich enzyme immunoassay was applied for CX3CL1 measurement in placental tissue homogenates, whereas quantitative immunohistochemical techniques were used for the assessment of CX3CR1 expression and the microvascular density. Significant differences have been observed for all analyzed parameters between the groups. The mean concentration of CX3CL1 in diabetes was increased and accompanied by augmented placental microvessel density as well as a higher expression of CX3CR1. In conclusion, we suggest involvement of CX3CL1/CX3CR1 signaling pathway in the pathomechanism of placental microvasculature remodeling in diabetes class C.
Collapse
|
9
|
Ghatnekar A, Chrobak I, Reese C, Stawski L, Seta F, Wirrig E, Paez-Cortez J, Markiewicz M, Asano Y, Harley R, Silver R, Feghali-Bostwick C, Trojanowska M. Endothelial GATA-6 deficiency promotes pulmonary arterial hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2391-406. [PMID: 23583651 DOI: 10.1016/j.ajpath.2013.02.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/07/2013] [Accepted: 02/07/2013] [Indexed: 01/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease characterized by pulmonary vasculopathy with elevation of pulmonary artery pressure, often culminating in right ventricular failure. GATA-6, a member of the GATA family of zinc-finger transcription factors, is highly expressed in quiescent vasculature and is frequently lost during vascular injury. We hypothesized that endothelial GATA-6 may play a critical role in the molecular mechanisms underlying endothelial cell (EC) dysfunction in PAH. Here we report that GATA-6 is markedly reduced in pulmonary ECs lining both occluded and nonoccluded vessels in patients with idiopathic and systemic sclerosis-associated PAH. GATA-6 transcripts are also rapidly decreased in rodent PAH models. Endothelial GATA-6 is a direct transcriptional regulator of genes controlling vascular tone [endothelin-1, endothelin-1 receptor type A, and endothelial nitric oxide synthase (eNOS)], pro-inflammatory genes, CX3CL1 (fractalkine), 5-lipoxygenease-activating protein, and markers of vascular remodeling, including PAI-1 and RhoB. Mice with the genetic deletion of GATA-6 in ECs (Gata6-KO) spontaneously develop elevated pulmonary artery pressure and increased vessel muscularization, and these features are further exacerbated in response to hypoxia. Furthermore, innate immune cells including macrophages (CD11b(+)/F4/80(+)), granulocytes (Ly6G(+)/CD45(+)), and dendritic cells (CD11b(+)/CD11c(+)) are significantly increased in normoxic Gata6-KO mice. Together, our findings suggest a critical role of endothelial GATA-6 deficiency in development and disease progression in PAH.
Collapse
Affiliation(s)
- Angela Ghatnekar
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Marasini B, Cossutta R, Selmi C, Pozzi MR, Gardinali M, Massarotti M, Erario M, Battaglioli L, Biondi ML. Polymorphism of the fractalkine receptor CX3CR1 and systemic sclerosis-associated pulmonary arterial hypertension. Clin Dev Immunol 2009; 12:275-9. [PMID: 16584113 PMCID: PMC2270742 DOI: 10.1080/17402520500303297] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fractalkine (FKN) and its receptor CX3CR1 are critical mediators in the
vascular and tissue damage of several chronic diseases, including systemic
sclerosis (SSc) and pulmonary arterial hypertension (PAH). Interestingly, the V249I
and T280M genetic polymorphisms influence CX3CR1 expression and function. We
investigated whether these polymorphisms are associated with PAH secondary to
SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with
limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography.
Homozygosity for 249II as well as the combined presence of 249II and 280MM were
significantly more frequent in patients with SSc compared to controls (17 vs 6%,
p = 0.0034 and 5 vs 1%, p = 0.0027, respectively). The 249I and 280M alleles were
associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75,
p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively). In conclusion,
the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of
patients with SSc-associated PAH suggest a role for the fractalkine system in
the pathogenesis of this
condition. Further, the 249I allele might be associated with susceptibility to SSc.
Collapse
Affiliation(s)
- Bianca Marasini
- Rheumatology Unit, Department of Medicine, Surgery and Dentistry, Humanitas Clinical Institute, University of Milan, Rozzano, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Girard BM, Malley SE, Braas KM, Waschek JA, May V, Vizzard MA. Exaggerated expression of inflammatory mediators in vasoactive intestinal polypeptide knockout (VIP-/-) mice with cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 2008; 36:188-99. [PMID: 18483878 PMCID: PMC2695563 DOI: 10.1007/s12031-008-9084-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/08/2008] [Indexed: 12/18/2022]
Abstract
Vasoactive intestinal polypeptide (VIP) is an immunomodulatory neuropeptide distributed in micturition pathways. VIP(-/-) mice exhibit altered bladder function and neurochemical properties in micturition pathways after cyclophosphamide (CYP)-induced cystitis. Given VIP's role as an anti-inflammatory mediator, we hypothesized that VIP(-/-) mice would exhibit enhanced inflammatory mediator expression after cystitis. A mouse inflammatory cytokine and receptor RT2 profiler array was used to determine regulated transcripts in the urinary bladder of wild type (WT) and VIP(-/-) mice with or without CYP-induced cystitis (150 mg/kg; i.p.; 48 h). Four binary comparisons were made: WT control versus CYP treatment (48 h), VIP(-/-) control versus CYP treatment (48 h), WT control versus VIP(-/-) control, and WT with CYP treatment (48 h) versus VIP(-/-) with CYP treatment (48 h). The genes presented represent (1) greater than 1.5-fold change in either direction and (2) the p value is less than 0.05 for the comparison being made. Several regulated genes were validated using enzyme-linked immunoassays including IL-1beta and CXCL1. CYP treatment significantly (p < or = 0.001) increased expression of CXCL1 and IL-1beta in the urinary bladder of WT and VIP(-/-) mice, but expression in VIP(-/-) mice with CYP treatment was significantly (p < or = 0.001) greater (4.2- to 13-fold increase) than that observed in WT urinary bladder (3.6- to 5-fold increase). The data suggest that in VIP(-/-) mice with bladder inflammation, inflammatory mediators are increased above that observed in WT with CYP. This shift in balance may contribute to increased bladder dysfunction in VIP(-/-) mice with bladder inflammation and altered neurochemical expression in micturition pathways.
Collapse
Affiliation(s)
- Beatrice M. Girard
- University of Vermont College of Medicine, Department of Anatomy and Neurobiology, Burlington, VT
| | - Susan E. Malley
- University of Vermont College of Medicine, Department of Neurology, Burlington, VT
| | - Karen M. Braas
- University of Vermont College of Medicine, Department of Anatomy and Neurobiology, Burlington, VT
| | | | - Victor May
- University of Vermont College of Medicine, Department of Anatomy and Neurobiology, Burlington, VT
| | - Margaret A. Vizzard
- University of Vermont College of Medicine, Department of Anatomy and Neurobiology, Burlington, VT
- University of Vermont College of Medicine, Department of Neurology, Burlington, VT
| |
Collapse
|
12
|
Nevo I, Sagi-Assif O, Meshel T, Ben-Baruch A, Jöhrer K, Greil R, Trejo LEL, Kharenko O, Feinmesser M, Yron I, Witz IP. The involvement of the fractalkine receptor in the transmigration of neuroblastoma cells through bone-marrow endothelial cells. Cancer Lett 2008; 273:127-39. [PMID: 18778890 DOI: 10.1016/j.canlet.2008.07.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 06/01/2008] [Accepted: 07/30/2008] [Indexed: 12/13/2022]
Abstract
Transendothelial migration (TEM) of tumor cells is a crucial step in metastasis formation. The prevailing paradigm is that the mechanism underlying TEM of tumor cells is similar to that of leukocytes involving adhesion molecules and chemokines. Fractalkine (CX3CL1) is a unique membrane-bound chemokine that functions also as an adhesion molecule. CX3CL1 can be cleaved to a soluble fragment, capable of attracting fractalkine receptor (CX3CR1)-expressing cells. In the present study, we asked if CX3CR1 is involved in the TEM of neuroblastoma cells. We demonstrated that biologically functional CX3CR1 is expressed by several neuroblastoma cell lines. Most importantly, CX3CR1-expressing neuroblastoma cells were stimulated by CX3CL1 to transmigrate through human bone-marrow endothelial cells. A dose dependent phosphorylation of ERK1/2 and AKT was induced in CX3CR1-expressing neuroblastoma cells by soluble CX3CL1. In addition to CX3CR1, neuroblastoma cells also express the CX3CL1 ligand. Membrane CX3CL1 expression was downregulated and the shedding of soluble CX3CL1 was upregulated by PKC activation. Taken together, the results of this study indicate that CX3CR1 plays a functional role in transmigration of neuroblastoma cells through bone-marrow endothelium. These results led us to hypothesize that the CX3CR1-CX3CL1 axis takes part in bone-marrow metastasis of neuroblastoma.
Collapse
Affiliation(s)
- Ido Nevo
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Matsubara T, Ono T, Yamanoi A, Tachibana M, Nagasue N. Fractalkine-CX3CR1 axis regulates tumor cell cycle and deteriorates prognosis after radical resection for hepatocellular carcinoma. J Surg Oncol 2007; 95:241-9. [PMID: 17323338 DOI: 10.1002/jso.20642] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Fractalkine is the only CX3C chemokine, and its receptor, CX3CR1, is expressed on NK cells, CD8+ T cells, monocytes, and dendritic cells (DC). Although studies have reported that fractalkine regulates the host immune response, the roles of the fractalkine-CX3CR1 axis in tumor biology and the clinical results of hepatocellular carcinoma (HCC) remain unknown. METHODS Fractalkine and CX3CR1 expression in HCC were evaluated and compared with the clinicopathologic features, including tumor progression determined by proliferating cell nuclear antigen (PCNA) antibody and patient prognosis after surgery. RESULTS Tumors with high expression of both fractalkine and CX3CR1 had significantly fewer intra- and extrahepatic recurrences, a low PCNA labeling index (PCNALI), and different histological grades. Patients with tumors that expressed both had a significantly better prognosis in terms of disease-free (DFS) and overall survival (OAS), and this finding was identified as one of the independent prognostic factors in the multivariate analysis. CONCLUSIONS Our results suggest that the fractalkine-CX3CR1 axis plays a pivotal role in the prognosis of patients with HCC, which might arise from the known modulation of the host immune response, and that of the cell cycle in HCC.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Antinuclear/metabolism
- Biomarkers, Tumor/metabolism
- Blotting, Western
- CX3C Chemokine Receptor 1
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Chemokine CX3CL1
- Chemokines, CX3C/metabolism
- Female
- Humans
- Immunohistochemistry
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Liver Neoplasms/surgery
- Male
- Membrane Proteins/metabolism
- Middle Aged
- Multivariate Analysis
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/metabolism
- Portal Vein/pathology
- Prognosis
- Proliferating Cell Nuclear Antigen/immunology
- Receptors, Chemokine/metabolism
- Risk Factors
Collapse
Affiliation(s)
- Takeshi Matsubara
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, Japan.
| | | | | | | | | |
Collapse
|
14
|
Moon SO, Kim W, Sung MJ, Lee S, Kang KP, Kim DH, Lee SY, So JN, Park SK. Resveratrol suppresses tumor necrosis factor-alpha-induced fractalkine expression in endothelial cells. Mol Pharmacol 2006; 70:112-9. [PMID: 16614140 DOI: 10.1124/mol.106.022392] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Up-regulation of fractalkine is involved in vascular and tissue damage in inflammatory conditions. Resveratrol has been shown to have anti-inflammatory, antioxidant, and antitumor activities. Its regulatory effects on expression of fractalkine in vascular endothelial cells and fractalkine receptor CX3CR1 in monocytes have not been studied. We evaluated the effects of resveratrol on fractalkine expression in human umbilical vein endothelial cells and CX3CR1 expression in THP-1 cells in response to treatment with tumor necrosis factor (TNF)-alpha. TNF-alpha significantly induced fractalkine mRNA and protein expression in endothelial cells. Resveratrol strongly suppressed TNF-alpha-induced fractalkine expression in endothelial cells through suppression of nuclear factor-kappaB and Sp1 activities. Resveratrol decreased the number of TNF-alpha-induced fractalkine-positive endothelial cells and CX3CR1-positive cells determined by flow cytometric analysis. Resveratrol suppressed TNF-alpha-stimulated monocytes adhesion to human umbilical vein endothelial cells. Immunohistochemical analysis revealed that resveratrol suppressed TNF-alpha-induced arterial endothelial fractalkine expression in heart, kidney, and intestine and decreased ED-1-positive cell infiltration in intestinal villi. Resveratrol may provide a new pharmacological approach for suppressing fractalkine/CX3CR1-mediated injury in inflammatory conditions.
Collapse
Affiliation(s)
- Sang-Ok Moon
- Renal Regeneration Laboratory and Department of Internal Medicine, Chonbuk National University Medical School, San 2-20 Keumam-dong, Jeonju, 561-180, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yuridullah R, Corrow KA, Malley SE, Vizzard MA. Expression of fractalkine and fractalkine receptor in urinary bladder after cyclophosphamide (CYP)-induced cystitis. Auton Neurosci 2006; 126-127:380-9. [PMID: 16651033 PMCID: PMC1475778 DOI: 10.1016/j.autneu.2006.02.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 02/02/2006] [Accepted: 02/27/2006] [Indexed: 01/06/2023]
Abstract
Alterations in the expression of the chemokine, fractalkine (CX3CL1), were examined in the urinary bladder after cyclophosphamide (CYP)-induced cystitis of varying duration: acute (4 h or 48 h), or chronic (10 day). CYP-induced cystitis significantly (p<or=0.01) increased fractalkine protein expression in the urinary bladder with acute (48 h) and chronic CYP treatment. Western blot analysis also demonstrated significantly (p<or=0.01) increased fractalkine expression in the whole urinary bladder with acute (1.5-2.2-fold) and chronic (3-fold) CYP-induced cystitis. Immunohistochemistry for fractalkine-immunoreactivity revealed little fractalkine-IR in control or acute (4 h) CYP-treated rat urinary bladders except in a vascular bed but showed no colocalization with nerve fibers in the suburothelial plexus in any experimental group. However, expression was significantly (p<or=0.001) upregulated in the urothelium with 48 h or chronic CYP treatment. Similarly, fractalkine receptor (CX3CR1)-IR was significantly (p<or=0.001) upregulated in the urothelium with 48 h or chronic CYP treatment. These studies demonstrated upregulation of the chemokine, fractalkine, in the urinary bladder and specifically in the urothelium with CYP-induced cystitis. Chemokines, and specifically, fractalkine, may be another class of neuromodulatory agents upregulated in the urinary bladder that can affect micturition function and sensory processing with cystitis and may represent novel, drug targets for cystitis.
Collapse
Affiliation(s)
| | | | | | - Margaret A. Vizzard
- University of Vermont College of Medicine, Departments of Anatomy and Neurobiology and
- Neurology Burlington, VT 05405 USA
- Contact Information: Margaret A. Vizzard, Ph.D., University of Vermont College of Medicine, Department of Neurology, D411 Given Building, Burlington, VT 05405, Phone: 802-656-3209, Fax: 802-656-8704,
| |
Collapse
|
16
|
Imaizumi T, Yoshida H, Satoh K. The Molecular and Cellular Biology of C and CX3C Chemokines and Their Receptors. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(04)55004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Imaizumi T, Yoshida H, Satoh K. Regulation of CX3CL1/fractalkine expression in endothelial cells. J Atheroscler Thromb 2004; 11:15-21. [PMID: 15067194 DOI: 10.5551/jat.11.15] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CX3CL1/fractalkine is a chemokine with a unique CX3C motif. Fractalkine is synthesized in endothelial cells as a membrane protein, and the N-terminal domain containing a CX3C motif is cleaved and secreted. CX3CR1, the specific receptor for fractalkine, is expressed in monocytes and lymphocytes. Membrane-bound fractalkine works as an adhesion molecule for these leukocytes and the secreted form as a chemotactic factor. Fractalkine is produced by endothelial cells stimulated with tumor necrosis factor-alpha, interleukin-1 (IL-1), lipopolysaccharide and interferon-gamma. Expression of fractalkine in endothelial cells is inhibited by the soluble form of IL-6 receptor-alpha, 15-deoxy-Delta(12,14)-prostaglandin J(2), and hypoxia. The expression of fractalkine is tightly regulated and fractalkine plays an important role in the interaction between leukocytes and endothelial cells.
Collapse
Affiliation(s)
- Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University School of Medicine, Aomori, Japan.
| | | | | |
Collapse
|