1
|
Wang B, Chen Q, Zou X, Zheng P, Zhu J. Advances in non-coding RNA in tendon injuries. Front Genet 2024; 15:1396195. [PMID: 38836038 PMCID: PMC11148651 DOI: 10.3389/fgene.2024.1396195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Tendons serve as important weight-bearing structures that smoothly transfer forces from muscles to skeletal parts, allowing contracted muscle movements to be translated into corresponding joint movements. For body mechanics, tendon tissue plays an important role. If the tendons are damaged to varying degrees, it can lead to disability or pain in patients. That is to say, tendon injuries havea significant impact on quality of life and deserve our high attention. Compared to other musculoskeletal tissues, tendons are hypovascular and hypo-cellular, and therefore have a greater ability to heal, this will lead to a longer recovery period after injury or even disability, which will significantly affect the quality of life. There are many causes of tendon injury, including trauma, genetic factors, inflammation, aging, and long-term overuse, and the study of related mechanisms is of great significance. Currently, tendon there are different treatment modalities, like injection therapy and surgical interventions. However, they have a high failure rate due to different reasons, among which the formation of adhesions severely weakens the tissue strength, affecting the functional recovery and the patient's quality of life. A large amount of data has shown that non coding RNAs can play a huge role in this field, thus attracting widespread attention from researchers from various countries. This review summarizes the relevant research progress on non-coding RNAs in tendon injuries, providing new ideas for a deeper understanding of tendon injuries and exploring new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Bin Wang
- Department of Plastics, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, China
| | - Qiang Chen
- Center for Plastic and Reconstructive Surgery, Department of Hand and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodi Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Zheng
- Department of Plastics, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, China
| | - Jie Zhu
- Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Ghatak S, Khanna S, Roy S, Thirunavukkarasu M, Pradeep SR, Wulff BC, El Masry MS, Sharma A, Palakurti R, Ghosh N, Xuan Y, Wilgus TA, Maulik N, Yoder MC, Sen CK. Driving adult tissue repair via re-engagement of a pathway required for fetal healing. Mol Ther 2023; 31:454-470. [PMID: 36114673 PMCID: PMC9931555 DOI: 10.1016/j.ymthe.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
Fetal cutaneous wound closure and repair differ from that in adulthood. In this work, we identify an oxidant stress sensor protein, nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), that is abundantly expressed in normal fetal epidermis (and required for fetal wound closure), though not in adult epidermis, but is variably re-induced upon adult tissue wounding. NPGPx is a direct target of the miR-29 family. Following injury, abundance of miR-29 is lowered, permitting a prompt increase in NPGPx transcripts and protein expression in adult wound-edge tissue. NPGPx expression was required to mediate increased keratinocyte migration induced by miR-29 inhibition in vitro and in vivo. Increased NPGPx expression induced increased SOX2 expression and β-catenin nuclear localization in keratinocytes. Augmenting physiologic NPGPx expression via experimentally induced miR-29 suppression, using cutaneous tissue nanotransfection or targeted lipid nanoparticle delivery of anti-sense oligonucleotides, proved to be sufficient to overcome the deleterious effects of diabetes on this specific pathway to enhance tissue repair.
Collapse
Affiliation(s)
- Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mahesh Thirunavukkarasu
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Seetur R Pradeep
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Brian C Wulff
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mohamed S El Masry
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Plastic Surgery, Zagazig University, Zagazig 44519, Egypt
| | - Anu Sharma
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ravichand Palakurti
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nandini Ghosh
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Xuan
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Traci A Wilgus
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nilanjana Maulik
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Biological and Mechanical Factors and Epigenetic Regulation Involved in Tendon Healing. Stem Cells Int 2023; 2023:4387630. [PMID: 36655033 PMCID: PMC9842431 DOI: 10.1155/2023/4387630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Tendons are an important part of the musculoskeletal system. Connecting muscles to bones, tendons convert force into movement. Tendon injury can be acute or chronic. Noticeably, tendon healing requires a long time span and includes inflammation, proliferation, and remodeling processes. The mismatch between endogenous and exogenous healing may lead to adhesion causing further negative effects. Management of tendon injuries and complications such as subsequent adhesion formation are still challenges for clinicians. Due to numerous factors, tendon healing is a complex process. This review introduces the role of various biological and mechanical factors and epigenetic regulation processes involved in tendon healing.
Collapse
|
4
|
Liu Q, Zhu Y, Zhu W, Zhang G, Yang YP, Zhao C. The role of MicroRNAs in tendon injury, repair, and related tissue engineering. Biomaterials 2021; 277:121083. [PMID: 34488121 PMCID: PMC9235073 DOI: 10.1016/j.biomaterials.2021.121083] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022]
Abstract
Tendon injuries are one of the most common musculoskeletal disorders that cause considerable morbidity and significantly compromise the patients' quality of life. The innate limited regenerative capacity of tendon poses a substantial treating challenge for clinicians. MicroRNAs (miRNAs) are a family of small non-coding RNAs that play a vital role in orchestrating many biological processes through post-transcriptional regulation. Increasing evidence reveals that miRNA-based therapeutics may serve as an innovative strategy for the treatment of tendon pathologies. In this review, we briefly present miRNA biogenesis, the role of miRNAs in tendon cell biology and their involvement in tendon injuries, followed by a summary of current miRNA-based approaches in tendon tissue engineering with a special focus on attenuating post-injury fibrosis. Next, we discuss the advantages of miRNA-functionalized scaffolds in achieving sustained and localized miRNA administration to minimize off-target effects, and thus hoping to inspire the development of effective miRNA delivery platforms specifically for tendon tissue engineering. We envision that advancement in miRNA-based therapeutics will herald a new era of tendon tissue engineering and pave a way for clinical translation for the treatments of tendon disorders.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yaxi Zhu
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Yunzhi Peter Yang
- Department of Orthopedic Surgery, (by courtesy) Materials Science and Engineering, and Bioengineering, Stanford University, Stanford, CA, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Shen Y, Xu G, Huang H, Wang K, Wang H, Lang M, Gao H, Zhao S. Sequential Release of Small Extracellular Vesicles from Bilayered Thiolated Alginate/Polyethylene Glycol Diacrylate Hydrogels for Scarless Wound Healing. ACS NANO 2021; 15:6352-6368. [PMID: 33723994 DOI: 10.1021/acsnano.0c07714] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Excessive scar formation has adverse physiological and psychological effects on patients; therefore, a therapeutic strategy for rapid wound healing and reduced scar formation is urgently needed. Herein, bilayered thiolated alginate/PEG diacrylate (BSSPD) hydrogels were fabricated for sequential release of small extracellular vesicles (sEVs), which acted in different wound healing phases, to achieve rapid and scarless wound healing. The sEVs secreted by bone marrow derived mesenchymal stem cells (B-sEVs) were released from the lower layer of the hydrogels to promote angiogenesis and collagen deposition by accelerating fibroblast and endothelial cell proliferation and migration during the early inflammation and proliferation phases, while sEVs secreted by miR-29b-3p-enriched bone marrow derived mesenchymal stem cells were released from the upper layer of the hydrogels and suppressed excessive capillary proliferation and collagen deposition during the late proliferation and maturation phases. In a full-thickness skin defect model of rats and rabbit ears, the wound repair rate, angiogenesis, and collagen deposition were evaluated at different time points after treatment with BSSPD loaded with B-sEVs. Interestingly, during the end of the maturation phase in the in vivo model, tissues in the groups treated with BSSPD loaded with sEVs for sequential release (SR-sEVs@BSSPD) exhibited a more uniform vascular structure distribution, more regular collagen arrangement, and lower volume of hyperplastic scar tissue than tissues in the other groups. Hence, SR-sEVs@BSSPD based on skin repair phases was successfully designed and has considerable potential as a cell-free therapy for scarless wound healing.
Collapse
Affiliation(s)
- Yifan Shen
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guanzhe Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Internet of Things Research Center, Advanced Institute of Information Technology, Peking University, Hangzhou 311200, China
| | - Huanxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyang Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hui Wang
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shichang Zhao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
6
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
7
|
Yin JL, Wu Y, Yuan ZW, Gao XH, Chen HD. Advances in scarless foetal wound healing and prospects for scar reduction in adults. Cell Prolif 2020; 53:e12916. [PMID: 33058377 PMCID: PMC7653265 DOI: 10.1111/cpr.12916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
Healing after mammalian skin injury involves the interaction between numerous cellular constituents and regulatory factors, which together form three overlapping phases: an inflammatory response, a proliferation phase and a remodelling phase. Any slight variation in these three stages can substantially alter the healing process and resultant production of scars. Of particular significance are the mechanisms responsible for the scar‐free phenomenon observed in the foetus. Uncovering such mechanisms would offer great expectations in the treatment of scars and therefore represents an important area of investigation. In this review, we provide a comprehensive summary of studies on injury‐induced skin regeneration within the foetus. The information contained in these studies provides an opportunity for new insights into the treatment of clinical scars based on the cellular and molecular processes involved.
Collapse
Affiliation(s)
- Jia-Li Yin
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Wu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zheng-Wei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xing-Hua Gao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong-Duo Chen
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Petkovic M, Sørensen AE, Leal EC, Carvalho E, Dalgaard LT. Mechanistic Actions of microRNAs in Diabetic Wound Healing. Cells 2020; 9:E2228. [PMID: 33023156 PMCID: PMC7601058 DOI: 10.3390/cells9102228] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex biological process that is impaired under diabetes conditions. Chronic non-healing wounds in diabetes are some of the most expensive healthcare expenditures worldwide. Early diagnosis and efficacious treatment strategies are needed. microRNAs (miRNAs), a class of 18-25 nucleotide long RNAs, are important regulatory molecules involved in gene expression regulation and in the repression of translation, controlling protein expression in health and disease. Recently, miRNAs have emerged as critical players in impaired wound healing and could be targets for potential therapies for non-healing wounds. Here, we review and discuss the mechanistic background of miRNA actions in chronic wounds that can shed the light on their utilization as specific wound healing biomarkers.
Collapse
Affiliation(s)
- Marija Petkovic
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| | - Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| |
Collapse
|
9
|
Human Novel MicroRNA Seq-915_x4024 in Keratinocytes Contributes to Skin Regeneration by Suppressing Scar Formation. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 14:410-423. [PMID: 30731322 PMCID: PMC6365370 DOI: 10.1016/j.omtn.2018.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/23/2022]
Abstract
Early in gestation, wounds in fetal skin heal by regeneration, in which microRNAs play key roles. Seq-915_x4024 is a novel microRNA candidate confirmed by deep sequencing and mirTools 2.0. It is highly expressed in fetal keratinocytes during early gestation. Using an in vitro wound-healing assay, Transwell cell migration assay, and MTS proliferation assay, we demonstrated that keratinocytes overexpressing seq-915_x4024 exhibited higher proliferative activity and the ability to promote fibroblast migration and fibroblast proliferation. These characteristics of keratinocytes are the same biological behaviors as those of fetal keratinocytes, which contribute to skin regeneration. In addition, seq-915_x4024 suppressed the expression of the pro-inflammatory markers TNF-α, IL-6, and IL-8 and the pro-inflammatory chemokines CXCL1 and CXCL5. We also demonstrated that seq-915_x4024 regulates TGF-β isoforms and the extracellular matrix. Moreover, using an in vivo wound-healing model, we demonstrated that overexpression of seq-915_x4024 in keratinocytes suppresses inflammatory cell infiltration and scar formation. Using bioinformatics analyses, luciferase reporter assays, and western blotting, we further demonstrated that Sar1A, Smad2, TNF-α, and IL-8 are direct targets of seq-915_x4024. Furthermore, the expression of phosphorylated Smad2 and Smad3 was reduced by seq-915_x4024. Seq-915_x4024 could be used as an anti-fibrotic factor for the treatment of wound healing.
Collapse
|
10
|
Luan A, Hu MS, Leavitt T, Brett EA, Wang KC, Longaker MT, Wan DC. Noncoding RNAs in Wound Healing: A New and Vast Frontier. Adv Wound Care (New Rochelle) 2018; 7:19-27. [PMID: 29344431 DOI: 10.1089/wound.2017.0765] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022] Open
Abstract
Significance: Wound healing requires a highly orchestrated coordination of processes that are not yet fully understood. Therefore, available clinical therapies are thus far limited in their efficacy in preventing and treating both chronic wounds and scars. Current gene-based therapeutics is largely based on our understanding of the protein-coding genome and proteins involved in known wound healing pathways. Recent Advances: Noncoding RNAs such as microRNAs and long noncoding RNAs have recently been found to be significant modulators of gene expression in diverse cellular pathways. Research has now implicated noncoding RNAs in nearly every stage of the wound healing process, suggesting that they may serve as clinical therapeutic targets. Noncoding RNAs are critical regulators in processes such as angiogenesis and cutaneous cell migration and proliferation, including classically described biological pathways previously attributed to mostly protein constituents. Critical Issues: The complexity and diversity of the interactions of noncoding RNAs with their targets and other binding partners require thorough characterization and understanding of their functions before they may be altered to modulate human wound healing pathways. Future Directions: Research in the area of noncoding RNAs continues to rapidly expand our understanding of their potential roles in physiological and pathological wound healing. Coupled with improving technologies to enhance or suppress target noncoding RNA in vivo, these advances hold great promise in the development of new therapies for wound healing.
Collapse
Affiliation(s)
- Anna Luan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Tripp Leavitt
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Elizabeth A. Brett
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Department of Plastic and Hand Surgery, Technical University, Munich, Munich, Germany
| | - Kevin C. Wang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
11
|
Wang X, Zhang Y, Jiang BH, Zhang Q, Zhou RP, Zhang L, Wang C. Study on the role of Hsa-miR-31-5p in hypertrophic scar formation and the mechanism. Exp Cell Res 2017; 361:201-209. [PMID: 29056521 DOI: 10.1016/j.yexcr.2017.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/26/2022]
Abstract
Hypertrophic scar (HS) formation is associated with the fibrosis of fibrocytes caused by excessive extracellular matrix (ECM) synthesis and deposition, the initial event of HS formation. Our high throughput screen of miRNA expression profiles identified hsa-miR31-5p, whose transcription level was most differentially in normal skin fibroblasts (NS) and HS among other miRNAs. The level of hsa-miR31-5p in HS was significantly higher than in NS. In-vitro functional experiments showed hsa-miR31-5p knockdown remarkably suppressed the proliferation of hypertrophic scar fibroblasts (HSFBs) under hypoxia, promoted cell invasion, and inhibited the expression of Collagen I and III and Fibronectin (FN), suggesting that hsa-miR31-5p knockdown effectively reduces HS formation caused by excessive ECM synthesis and deposition in HSFBs under hypoxia. Mechanism study showed that the regulation of HS formation by hsa-miR31-5p was mediated by its target gene, factor-inhibiting HIF-1 (FIH): under hypoxia, hsa-miR31-5p down-regulated FIH and thus increased the level of hypoxia inducible factor-1α (HIF-1α), which subsequently activated the HIF-1α fibrosis regulation pathway in HSFBs, and stimulated the proliferation and ECM synthesis in HSFBs, eventually resulting in fibrosis and scar formation. The data also show that knockdown of hsa-miR31-5p in HSFBs impaired the trend of increased proliferation, reduced invasion and excessive ECM synthesis and deposition caused by HIF-1a activation under hypoxia through upregulating FIH, indicating that knockdown of hsa-miR31-5p effectively inhibits the formation of HS. In conclusion, hsa-miR31 -5p plays an important role in HS formation by inhibiting FIH and regulating the HIF-1α pathway. Therefore, hsa-miR31 -5p may be a novel therapeutic target for HS.
Collapse
Affiliation(s)
- X Wang
- Department of Dermatology and Dermatologic Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Y Zhang
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, PR China
| | - B H Jiang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, An'hui, PR China
| | - Q Zhang
- People's Hospital of Dancheng County, Dancheng City, Henan Province, PR China
| | - R P Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China
| | - L Zhang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, An'hui, PR China.
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China.
| |
Collapse
|
12
|
MicroRNAs in the skin: role in development, homoeostasis and regeneration. Clin Sci (Lond) 2017; 131:1923-1940. [PMID: 28705953 DOI: 10.1042/cs20170039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023]
Abstract
The skin is the largest organ of the integumentary system and possesses a vast number of functions. Due to the distinct layers of the skin and the variety of cells which populate each, a tightly regulated network of molecular signals control development and regeneration, whether due to programmed cell termination or injury. MicroRNAs (miRs) are a relatively recent discovery; they are a class of small non-coding RNAs which possess a multitude of biological functions due to their ability to regulate gene expression via post-transcriptional gene silencing. Of interest, is that a plethora of data demonstrates that a number of miRs are highly expressed within the skin, and are evidently key regulators of numerous vital processes to maintain non-aberrant functioning. Recently, miRs have been targeted as therapeutic interventions due to the ability of synthetic 'antagomiRs' to down-regulate abnormal miR expression, thereby potentiating wound healing and attenuating fibrotic processes which can contribute to disease such as systemic sclerosis (SSc). This review will provide an introduction to the structure and function of the skin and miR biogenesis, before summarizing the literature pertaining to the role of miRs. Finally, miR therapies will also be discussed, highlighting important future areas of research.
Collapse
|
13
|
|
14
|
Samadikuchaksaraei A, Mehdipour A, Habibi Roudkenar M, Verdi J, Joghataei MT, As'adi K, Amiri F, Dehghan Harati M, Gholipourmalekabadi M, Karkuki Osguei N. A Dermal Equivalent Engineered with TGF-β3 Expressing Bone Marrow Stromal Cells and Amniotic Membrane: Cosmetic Healing of Full-Thickness Skin Wounds in Rats. Artif Organs 2016; 40:E266-E279. [DOI: 10.1111/aor.12807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/04/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Ali Samadikuchaksaraei
- Cellular and Molecular Research Center; Iran University of Medical Sciences
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine; Iran University of Medical Sciences
- Department of Medical Biotechnology, Faculty of Allied Medicine; Iran University of Medical Sciences, Tehran
| | - Ahmad Mehdipour
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine; Iran University of Medical Sciences
| | - Mehryar Habibi Roudkenar
- Department of Medical Biotechnology, Faculty of Allied Medicine, Guilan University of Medical Sciences, Rasht
| | - Javad Verdi
- Department of Applied Cellular Sciences, Faculty of Advanced Technologies in Medicine; Tehran University of Medical Sciences
| | | | - Kamran As'adi
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Fatemeh Amiri
- Department of Medical Biotechnology, Faculty of Allied Medicine, Guilan University of Medical Sciences, Rasht
| | - Mozhgan Dehghan Harati
- Translational Oncology, Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology; University Hospital Tuebingen; Tuebingen Germany
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center; Iran University of Medical Sciences
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine; Iran University of Medical Sciences
- Department of Medical Biotechnology, Faculty of Medicine; Shahid Beheshti University of Medical Sciences
| | | |
Collapse
|
15
|
Podolak-Popinigis J, Ronowicz A, Dmochowska M, Jakubiak A, Sachadyn P. The methylome and transcriptome of fetal skin: implications for scarless healing. Epigenomics 2016; 8:1331-1345. [PMID: 27510554 DOI: 10.2217/epi-2016-0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Fetal skin is known to heal without scarring. In mice, the phenomenon is observed until the 16-17 day of gestation - the day of transition from scarless to normal healing. The study aims to identify key methylome and transcriptome changes following the transition. MATERIALS & METHODS Methylome and transcriptome profiles were analyzed in murine dorsal skin using microarray approach. RESULTS & CONCLUSION The genes associated with inflammatory response and hyaluronate degradation showed increased DNA methylation before the transition, while those involved in embryonic morphogenesis, neuron differentiation and synapse functions did so after. A number of the methylome alterations were retained until adulthood and correlated with gene expression, while the functional associations imply that scarless healing depends on epigenetic regulation.
Collapse
Affiliation(s)
- Justyna Podolak-Popinigis
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Monika Dmochowska
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Jakubiak
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
16
|
Leavitt T, Hu MS, Marshall CD, Barnes LA, Lorenz HP, Longaker MT. Scarless wound healing: finding the right cells and signals. Cell Tissue Res 2016; 365:483-93. [PMID: 27256396 DOI: 10.1007/s00441-016-2424-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/02/2016] [Indexed: 02/06/2023]
Abstract
From the moment we are born, every injury to the skin has the potential to form a scar, many of which can impair form and/or function. As such, scar management constitutes a billion-dollar industry. However, effectively promoting scarless wound healing remains an elusive goal. The complex interactions of wound healing contribute to our inability to recapitulate scarless wound repair as it occurs in nature, such as in fetal skin and the oral mucosa. However, many new advances have occurred in recent years, some of which have translated scientific findings from bench to bedside. In vivo lineage tracing has helped establish a variety of novel cellular culprits that may act as key drivers of the fibrotic response. These newly characterized cell populations present further targets for therapeutic intervention, some of which have previously demonstrated promising results in animal models. Here, we discuss several recent studies that identify exciting approaches for diminishing scar formation. Particular attention will also be paid to the canonical Wnt/β-catenin signaling pathway, which plays an important role in both embryogenesis and tissue repair. New insights into the differential effects of Wnt signaling on heterogeneous fibroblast and keratinocyte populations within the skin further demonstrate methods by which wound healing can be re-directed to a more fetal scarless phenotype. Graphical abstract Recent approaches to reducing scar formation. Representation showing novel scientific approaches for decreasing scar formation, including the targeting of pro-fibrotic cell populations based on surface molecule expression (e.g. DPP4(+) fibroblasts, ADAM12(+) pericytes). Modulation of cellular mechanotransduction pathways are another means to reduce scar formation, both at the molecular level or, macroscopically with dressings designed to offload tension, at cutaneous wound sites (ADAM12 a disintegrin and metalloprotease 12, DPP4 dipeptidyl peptidase-4, FAK focal adhesion kinase).
Collapse
Affiliation(s)
- Tripp Leavitt
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, USA
| | - Clement D Marshall
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA
| | - Leandra A Barnes
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA
| | - H Peter Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5461, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Liu X, Duan H, Zhang HH, Gan L, Xu Q. Integrated Data Set of microRNAs and mRNAs Involved in Severe Intrauterine Adhesion. Reprod Sci 2016; 23:1340-7. [PMID: 27052751 DOI: 10.1177/1933719116638177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Adhesion tissue is formed following injury to the uterine basal layer. Currently, there is no effective treatment for severe intrauterine adhesion (IUA), which causes loss of reproductive function. Enhanced understanding of the molecular mechanisms driving severe IUA would be beneficial for the treatment. METHODS Differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) in severe IUA (n = 3) and normal (n = 3) endometrium were analyzed by high-throughput microarray analysis. Subsequently, the target genes of the differentially expressed miRNAs were predicted and found to overlap with the differentially expressed mRNAs. Gene Ontology and pathway analyses were performed for the intersecting genes. Three of the significantly dysregulated miRNAs and 4 of their target mRNAs were further assessed using quantitative real-time polymerase chain reaction (PCR) in 10 severe IUA and 10 normal endometrium samples. RESULTS Microarray analysis indicated that 26 miRNAs and 1180 mRNAs were significantly different between the 2 groups. Of these, 16 miRNAs and 54 mRNAs overlapped with putative miRNA target genes and prediction of target gene. Real-time PCR revealed upregulation of hsa-miR-513a-5p and has-miR-135a-3p and downregulation of hsa-miR-543 and their corresponding target genes, plus downregulation of ADAM9 (a disintegrin-containing and metalloproteinases) and lysyl oxidase and upregulation of CDH2 (N-cadherin) and COL16A1 (collagen 16A1). Both CDH2 and COL16A1 were bioinformatically predicted and confirmed in vitro as target genes of miR-543. CONCLUSION This study provides an integrated data set of the miRNA and mRNA profiles in severe IUA, showing involvement of many miRNAs and their target genes. Further analysis of these genes will help in understanding of the molecular mechanism of IUA formation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Minimally Invasive Gynecology, Obstetrics and Gynecology Hospital Beijing, Capital Medical University, Beijing, PR China
| | - Hua Duan
- Department of Minimally Invasive Gynecology, Obstetrics and Gynecology Hospital Beijing, Capital Medical University, Beijing, PR China
| | - Heng-Hui Zhang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, PR China
| | - Lu Gan
- Department of Minimally Invasive Gynecology, Obstetrics and Gynecology Hospital Beijing, Capital Medical University, Beijing, PR China
| | - Qian Xu
- Department of Minimally Invasive Gynecology, Obstetrics and Gynecology Hospital Beijing, Capital Medical University, Beijing, PR China
| |
Collapse
|
18
|
Liu J, Luo C, Yin Z, Li P, Wang S, Chen J, He Q, Zhou J. Downregulation of let-7b promotes COL1A1 and COL1A2 expression in dermis and skin fibroblasts during heat wound repair. Mol Med Rep 2016; 13:2683-8. [PMID: 26861712 DOI: 10.3892/mmr.2016.4877] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs), a class of non‑coding RNAs 18‑25 nucleotides in length, generally serve suppressive role in the regulation of gene expression via directly binding to the 3'‑untranslated region (UTR) of their target mRNA. Previous studies have identified several miRs to be involved in thermal injury repair. However, the role of miR let‑7b during the recovery of thermal injury, in addition to the underlying mechanisms, has not previously been studied. In the present study, the expression of let‑7b was observed to be significantly increased in skin tissue shortly following thermal injury, however, gradually reduced during the recovery of thermal injury. Notably, similar findings were observed in heat‑denatured skin fibroblasts. Furthermore, collagen, type I, alpha 1 (COL1A1) and collagen, type I, alpha 2 (COL1A2), which are associated with the synthesis of type I collagen, were identified as two targets of let‑7b in skin fibroblasts. The overexpression of let‑7b was observed to upregulate the protein expression levels of COL1A1 and COL1A2, while knockdown of let‑7b reduced the levels of COL1A1 and COL1A2 in skin fibroblasts. Furthermore, COL1A1 and COL1A2 were significantly downregulated shortly following thermal injury, while gradually upregulated during healing, in heat‑damaged skin tissue and skin fibroblasts, with the expression profiles opposite to that of let‑7b. Taken together, this suggests that the downregulation of let‑7b in heat‑damaged dermis promotes the synthesis of type I collagen and thus aids in burn wound repair.
Collapse
Affiliation(s)
- Jinyan Liu
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chengqun Luo
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhaoqi Yin
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ping Li
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaohua Wang
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jia Chen
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Quanyong He
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianda Zhou
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
19
|
Zhou J, Zhang X, Liang P, Ren L, Zeng J, Zhang M, Zhang P, Huang X. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury. Biol Open 2016; 5:211-9. [PMID: 26794609 PMCID: PMC4810739 DOI: 10.1242/bio.014910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our previous study has suggested that downregulated microRNA (miR)-29a in denatured dermis might be involved in burn wound healing. However, the exact role of miR-29a in healing of burn injury still remains unclear. Here, we found that expression of miR-29a was notably upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury, and thereafter gradually downregulated compared with control group. By contrast, the expression of collagen, type I, alpha 2 (COL1A2) and vascular endothelial growth factor (VEGF-A) were first reduced and subsequently upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury. We further identified COL1A2 as a novel target of miR-29a, which is involved in type I collagen synthesis, and showed that miR-29a negatively regulated the expression level of COL1A2 in skin fibroblast cells. In addition, VEGF-A, another target gene of miR-29a, was also negatively mediated by miR-29a in skin fibroblast cells. Inhibition of miR-29a expression significantly promoted the proliferation and migration of skin fibroblast cells after thermal injury, and knockdown of COL1A2 and VEGF-A reversed the effects of miR-29a on the proliferation and migration of skin fibroblast cells. Furthermore, we found that Notch2/Jagged2 signaling was involved in miR-29a response to burn wound healing. Our findings suggest that downregulated miR-29a in denatured dermis may help burn wound healing in the later phase, probably via upregulation of COL1A2 and VEGF-A expression, which can further enhance type I collagen synthesis and angiogenesis. Summary: Inhibition of miR-29a can promote the proliferation and migration of skin fibroblast cells after thermal injury, and upregulate the production of COL1A2 and VEGF-A to further enhance the collagen synthesis and angiogenesis in skin and help burn wound healing in the later phase.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xipeng Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Licheng Ren
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Minghua Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoyuan Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
20
|
Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H. MicroRNAs in skin tissue engineering. Adv Drug Deliv Rev 2015; 88:16-36. [PMID: 25953499 DOI: 10.1016/j.addr.2015.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/04/2015] [Accepted: 04/25/2015] [Indexed: 01/08/2023]
Abstract
35.2 million annual cases in the U.S. require clinical intervention for major skin loss. To meet this demand, the field of skin tissue engineering has grown rapidly over the past 40 years. Traditionally, skin tissue engineering relies on the "cell-scaffold-signal" approach, whereby isolated cells are formulated into a three-dimensional substrate matrix, or scaffold, and exposed to the proper molecular, physical, and/or electrical signals to encourage growth and differentiation. However, clinically available bioengineered skin equivalents (BSEs) suffer from a number of drawbacks, including time required to generate autologous BSEs, poor allogeneic BSE survival, and physical limitations such as mass transfer issues. Additionally, different types of skin wounds require different BSE designs. MicroRNA has recently emerged as a new and exciting field of RNA interference that can overcome the barriers of BSE design. MicroRNA can regulate cellular behavior, change the bioactive milieu of the skin, and be delivered to skin tissue in a number of ways. While it is still in its infancy, the use of microRNAs in skin tissue engineering offers the opportunity to both enhance and expand a field for which there is still a vast unmet clinical need. Here we give a review of skin tissue engineering, focusing on the important cellular processes, bioactive mediators, and scaffolds. We further discuss potential microRNA targets for each individual component, and we conclude with possible future applications.
Collapse
|
21
|
Beavers KR, Nelson CE, Duvall CL. MiRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2015; 88:123-37. [PMID: 25553957 PMCID: PMC4485980 DOI: 10.1016/j.addr.2014.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/25/2014] [Accepted: 12/20/2014] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has motivated expanding efforts toward the development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair.
Collapse
Affiliation(s)
- Kelsey R Beavers
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Craig L Duvall
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
22
|
Sen CK, Ghatak S. miRNA control of tissue repair and regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2629-40. [PMID: 26056933 DOI: 10.1016/j.ajpath.2015.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022]
Abstract
Tissue repair and regeneration rely on the function of miRNA, molecular silencers that enact post-transcriptional gene silencing of coding genes. Disruption of miRNA homeostasis is developmentally lethal, indicating that fetal tissue development is tightly controlled by miRNAs. Multiple critical facets of adult tissue repair are subject to control by miRNAs, as well. Sources of cell pool for tissue repair and regeneration are diverse and provided by processes including cellular dedifferentiation, transdifferentiation, and reprogramming. Each of these processes is regulated by miRNAs. Furthermore, induced pluripotency may be achieved by miRNA-based strategies independent of transcription factor manipulation. The observation that miRNA does not integrate into the genome makes miRNA-based therapeutic strategies translationally valuable. Tools to manipulate cellular and tissue miRNA levels include mimics and inhibitors that may be specifically targeted to cells of interest at the injury site. Here, we discuss the extraordinary importance of miRNAs in tissue repair and regeneration based on emergent reports and rapid advances in miRNA-based therapeutics.
Collapse
Affiliation(s)
- Chandan K Sen
- Center for Regenerative Medicine and Cell-Based Therapies and the Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Subhadip Ghatak
- Center for Regenerative Medicine and Cell-Based Therapies and the Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
23
|
Zhao F, Wang Z, Lang H, Liu X, Zhang D, Wang X, Zhang T, Wang R, Shi P, Pang X. Dynamic Expression of Novel MiRNA Candidates and MiRNA-34 Family Members in Early- to Mid-Gestational Fetal Keratinocytes Contributes to Scarless Wound Healing by Targeting the TGF-β Pathway. PLoS One 2015; 10:e0126087. [PMID: 25978377 PMCID: PMC4433274 DOI: 10.1371/journal.pone.0126087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/30/2015] [Indexed: 12/21/2022] Open
Abstract
Background Early- to mid-gestational fetal mammalian skin wounds heal rapidly and without scarring. Keratinocytes (KCs) have been found to exert important effects on the regulation of fibroblasts. There may be significant differences of gestational fetal KCs at different ages. The advantages in early- to mid-gestational fetal KCs could lead to fetal scarless wound healing. Methods KCs from six human fetal skin samples were divided into two groups: a mid-gestation group (less than 28 weeks of gestational age) and a late-gestation group (more than 28 weeks of gestational age). RNA extracted from KCs was used to prepare a library of small RNAs for next-generation sequencing (NGS). To uncover potential novel microRNA (miRNAs), the mirTools 2.0 web server was used to identify candidate novel human miRNAs from the NGS data. Other bioinformatical analyses were used to further validate the novel miRNAs. The expression levels of the miRNAs were further confirmed by real-time quantitative RT-PCR. Results A total of 61.59 million reads were mapped to 1,170 known human miRNAs in miRBase. Among a total of 202 potential novel miRNAs uncovered, 106 candidates have a higher probability of being novel human miRNAs. A total of 110 miRNAs, including 22 novel miRNA candidates, were significantly differently expressed between mid- and late-gestational fetal KCs. Thirty-three differentially expressed miRNAs and miR-34 family members are correlated with the transforming growth factor-β (TGF-β) pathway. Conclusions Taken together, our results provide compelling evidence supporting the existence of 106 novel miRNAs and the dynamic expression of miRNAs that extensively targets the TGF-β pathway at different gestational ages in fetal KCs. MiRNAs showing altered expression at different gestational ages in fetal KCs may contribute to scarless wound healing in early- to mid-gestational fetal KCs, and thus may be new targets for potential scar prevention and reduction therapies.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110013, Liaoning Province, China
| | - Zhe Wang
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, 39 Huaxiang Street, Tiexi District, Shenyang City 110004, Liaoning Province, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110013, Liaoning Province, China
| | - Xiaoyu Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110013, Liaoning Province, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110013, Liaoning Province, China
| | - Xiliang Wang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110013, Liaoning Province, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110013, Liaoning Province, China
| | - Rui Wang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110013, Liaoning Province, China
| | - Ping Shi
- Department of General Practice, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang City 110001, Liaoning Province, China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Street, Shenbei New District, Shenyang City 110013, Liaoning Province, China
- * E-mail:
| |
Collapse
|
24
|
Gras C, Ratuszny D, Hadamitzky C, Zhang H, Blasczyk R, Figueiredo C. miR-145 Contributes to Hypertrophic Scarring of the Skin by Inducing Myofibroblast Activity. Mol Med 2015; 21:296-304. [PMID: 25876136 DOI: 10.2119/molmed.2014.00172] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 04/08/2015] [Indexed: 12/21/2022] Open
Abstract
Hyperthrophic scarring of the skin is caused by excessive activity of skin myofibroblasts after wound healing and often leads to functional and/or aesthetic disturbance with significant impairment of patient quality of life. MicroRNA (miRNA) gene therapies have recently been proposed for complex processes such as fibrosis and scarring. In this study, we focused on the role of miR-145 in skin scarring and its influence in myofibroblast function. Our data showed not only a threefold increase of miR-145 levels in skin hypertrophic scar tissue but also in transforming growth factor β1 (TGF-β1)-induced skin myofibroblasts compared with healthy skin or nontreated fibroblasts (p < 0.001). Consistent with the upregulation of miR-145 induced by TGF-β1 stimulation of fibroblasts, the expression of Kruppel-like factor 4 (KLF4) was decreased by 50% and α-smooth muscle actin (α-SMA) protein expression showed a threefold increase. Both could be reversed by miR-145 inhibition (p < 0.05). Restoration of KLF4 levels equally abrogated TGF-β1-induced α-SMA expression. These data demonstrate that TGF-β1 induces miR-145 expression in fibroblasts, which in turn inhibits KLF4, a known inhibitor of α-SMA, hence upregulating α-SMA expression. Furthermore, treatment of myofibroblasts with a miR-145 inhibitor strongly decreased their α-1 type I collagen expression, TGF-β1 secretion, contractile force generation and migration. These data demonstrate that upregulation of miR-145 plays an important role in the differentiation and function of skin myofibroblasts. Additionally, inhibition of miR-145 significantly reduces skin myofibroblast activity. Taken together, these results suggest that miR-145 is a promising therapeutic target to prevent or reduce hypertrophic scarring of the skin.
Collapse
Affiliation(s)
- Christiane Gras
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Dominica Ratuszny
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Catarina Hadamitzky
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Haijiao Zhang
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
25
|
Wang Z, Liu X, Zhang D, Wang X, Zhao F, Shi P, Pang X. Co‑culture with human fetal epidermal keratinocytes promotes proliferation and migration of human fetal and adult dermal fibroblasts. Mol Med Rep 2014; 11:1105-10. [PMID: 25351528 DOI: 10.3892/mmr.2014.2798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 10/20/2014] [Indexed: 11/06/2022] Open
Abstract
The repair strategy for the healing of skin wounds in fetuses differs from that in adults. Proliferation and migration of dermal fibroblasts are the main mechanisms associated with skin wound healing, as well as the complex interactions between epidermal keratinocytes (KCs) and dermal fibroblasts. In order to investigate the effects of fetal skin epidermal KCs on fetal and adult human dermal fibroblasts, KCs and fibroblasts were isolated from the skin tissue of mid‑gestational human fetuses and adults, and co‑cultured using a Transwell® system. When fetal mid‑gestational KCs were co‑cultured with either fetal or adult dermal fibroblasts, the proliferative and migratory potential of the fibroblasts was significantly enhanced. Furthermore, these phenotypic changes were concomitant with the upregulation of numerous proteins including mouse double minute 2 homolog, cyclin B1, phospho‑cyclin‑dependent kinase 1, phospho‑extracellular signal‑regulated kinase, and phospho‑AKT, along with C‑X‑C chemokine receptor 4, phospho‑p38 mitogen activated protein kinase, matrix metalloproteinase (MMP)‑2 and MMP‑9. Notably, no significant differences were observed between fetal and adult dermal fibroblasts in their responses to fetal mid‑gestational epidermal KCs, indicating that the cells from these two developmental stages respond in a similar manner to co‑culture with KCs.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaoyu Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiliang Wang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ping Shi
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Lianoning 110001, P.R. China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
26
|
Li P, He QY, Luo CQ. Overexpression of miR-200b inhibits the cell proliferation and promotes apoptosis of human hypertrophic scar fibroblasts in vitro. J Dermatol 2014; 41:903-11. [PMID: 25228082 DOI: 10.1111/1346-8138.12600] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/15/2014] [Indexed: 11/28/2022]
Abstract
Hypertrophic scarring leads to a deformed appearance and contracted neogenetic tissue, resulting in physiological and psychological problems for patients. Millions of people suffer these discomforts each year. Emerging evidence has reported that miRNA contributed to hypertrophic scarring or keloid formation. In this study, nine hypertrophic scar samples and the matched normal skin tissues were used to perform a miRNA microarray. The results of miRNA array showed that miR-200b was downregulated by more than 2-fold, validated by qPCR in hypertrophic scar tissues and human hypertrophic scar fibroblasts, suggesting that there was an important correlation between miR-200b and hypertrophic scarring. We also found that miR-200b affected hypertrophic scarring through regulating the cell proliferation and apoptosis of human hypertrophic scar fibroblasts by affecting the collagen I and III synthesis, fibronectin expression and TGF-β1/α-SMA signaling. Thus, our study provides evidence to support that miR-200b may be a useful target for hypertrophic scarring management.
Collapse
Affiliation(s)
- Ping Li
- Department of Plastic Surgery, The Third Xiang-Ya Hospital, Central South University, Changsha, China
| | | | | |
Collapse
|
27
|
The role of microRNAs in skin fibrosis. Arch Dermatol Res 2014; 305:763-76. [PMID: 24022477 DOI: 10.1007/s00403-013-1410-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/19/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022]
Abstract
Fibrotic skin disorders may be debilitating and impair quality of life. There are few effective treatment options for cutaneous fibrotic diseases. In this review, we discuss our current understanding of the role of microRNAs (miRNAs) in skin fibrosis. miRNAs are a class of small, non-coding RNAs involved in skin fibrosis. These small RNAs range from 18 to 25 nucleotides in length and modify gene expression by binding to target messenger RNA (mRNA), causing degradation of the target mRNA or inhibiting the translation into proteins. We present an overview of the biogenesis, maturation and function of miRNAs. We highlight miRNA’s role in key skin fibrotic processes including: transforming growth factor-beta signaling, extracellular matrix deposition, and fibroblast proliferation and differentiation. Some miRNAs are profibrotic and their upregulation favors these processes contributing to fibrosis, while anti-fibrotic miRNAs inhibit these processes and may be reduced in fibrosis. Finally, we describe the diagnostic and therapeutic significance of miRNAs in the management of skin fibrosis. The discovery that miRNAs are detectable in serum, plasma, and other bodily fluids, and are relatively stable, suggests that miRNAs may serve as valuable biomarkers to monitor disease progression and response to treatment. In the treatment of skin fibrosis, antifibrotic miRNAs may be upregulated using mimics and viral vectors. Conversely, profibrotic miRNAs may be downregulated by employing anti-miRNAs, sponges, erasers and masks. We believe that miRNA-based therapies hold promise as important treatments and may transform the management of fibrotic skin diseases by physicians.
Collapse
|
28
|
Abstract
Fetal skin has the intrinsic capacity for wound healing, which is not correlated with the intrauterine environment. This intrinsic ability requires biochemical signals, which start at the cellular level and lead to secretion of transforming factors and expression of receptors, and specific markers that promote wound healing without scar formation. The mechanisms and molecular pathways of wound healing still need to be elucidated to achieve a complete understanding of this remodeling system. The aim of this paper is to discuss the main biomarkers involved in fetal skin wound healing as well as their respective mechanisms of action.
Collapse
|
29
|
Identification of Collagen 1 as a Post-transcriptional Target of miR-29b in Skin Fibroblasts: Therapeutic Implication for Scar Reduction. Am J Med Sci 2013; 346:98-103. [DOI: 10.1097/maj.0b013e318267680d] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Kathju S, Gallo PH, Satish L. Scarless integumentary wound healing in the mammalian fetus: molecular basis and therapeutic implications. ACTA ACUST UNITED AC 2013; 96:223-36. [PMID: 23109318 DOI: 10.1002/bdrc.21015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adult mammals respond to injury of their skin/integument by forming scar tissue. Scar is useful in rapidly sealing an injured area, but can also lead to significant morbidity. Mammals in fetal life retain the ability to heal integumentary wounds regeneratively, without scar. The critical molecular mechanisms governing this remarkable phenomenon have been a subject of great interest, in the hopes that these could be dissected and recapitulated in the healing adult wound, with the goal of inducing scarless healing in injured patients. Multiple lines of investigation spanning decades have implicated a number of factors in distinguishing scarless from fibrotic wound healing, including most prominently transforming growth factor-β and interleukin-10, among others. Therapeutic interventions to try to mitigate scarring in adult wounds have been developed out of these studies, and have reached the level of clinical trials in humans, although as yet no FDA-approved treatment exists. More recent expressomic studies have revealed many more genes that are differentially expressed in scarlessly healing fetal wounds compared with adult, and microRNAs have also been identified as participating in the fetal wound healing response. These represent an even greater range of potential therapeutics (or targets for therapy) to translate the promise of scarless fetal wound healing to the injured adult patient.
Collapse
Affiliation(s)
- Sandeep Kathju
- Department of Surgery, Division of Plastic Surgery, University of Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
31
|
Jin Y, Tymen SD, Chen D, Fang ZJ, Zhao Y, Dragas D, Dai Y, Marucha PT, Zhou X. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS One 2013; 8:e64434. [PMID: 23724047 PMCID: PMC3665798 DOI: 10.1371/journal.pone.0064434] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/15/2013] [Indexed: 11/25/2022] Open
Abstract
Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3′-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling.
Collapse
Affiliation(s)
- Yi Jin
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Stéphanie D. Tymen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dan Chen
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zong Juan Fang
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dragan Dragas
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Phillip T. Marucha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PTM); (XZ)
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PTM); (XZ)
| |
Collapse
|
32
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules ∼22 nucleotides in length that can post-transcriptionally repress gene expression. MiRNAs bind to their target messenger RNAs (mRNAs), leading to mRNA degradation or suppression of translation. miRNAs have recently been shown to play pivotal roles in skin development and are linked to various skin pathologies, cancer, and wound healing. Chronic wounds represent a major health burden and drain on resources and developing more effective treatments is therefore a necessity. Increase in the understanding of the regulation of chronic wound biology is therefore required to develop newer therapies. This review focuses on the role of miRNAs in cutaneous biology, the various methods of miRNA modulation, and the therapeutic opportunities in treatment of skin diseases and wound healing.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | | |
Collapse
|
33
|
Qu L, Liu A, Zhou L, He C, Grossman PH, Moy RL, Mi QS, Ozog D. Clinical and molecular effects on mature burn scars after treatment with a fractional CO2 laser. Lasers Surg Med 2012; 44:517-24. [DOI: 10.1002/lsm.22055] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 12/16/2022]
|
34
|
Liang P, Lv C, Jiang B, Long X, Zhang P, Zhang M, Xie T, Huang X. MicroRNA profiling in denatured dermis of deep burn patients. Burns 2012; 38:534-40. [PMID: 22360957 DOI: 10.1016/j.burns.2011.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Denatured dermis is a part of the dermis in deep burn wound and has the ability to restore normal morphology and function. Skin grafting with the preservation of denatured dermis is a new kind of surgical procedure and has reported satisfactory clinical effects, such as lessened scar contracture and a better restoration of the appearance and function. However, the underlying mechanism of the recovery of denatured dermal function remains unclear. MicroRNAs (miRNAs) are a new class of regulatory noncoding single-stranded RNAs, which play a key role in normal development and physiology, as well as in disease development. This study analysed the profile of miRNAs in denatured dermis from patients and further investigated the possible roles of miRNAs played in the functional recovery of denatured dermis by prediction of the potential target genes of differentially expressed miRNAs. METHODS The denatured dermis and paired normal skin were collected and analysed by miRNA array. The miRNA profiling results were validated by real-time reverse transcriptase polymerase chain reaction (RT-PCR), and bioinformatics' analysis was employed to further predict the miRNA targets. RESULTS A total of 66 miRNAs were differentially expressed in denatured dermis compared with those in normal skin, among which 34 were down-regulated while 32 are up-regulated. The most significantly up-regulated miRNA was miR-663, and the most significantly down-regulated one was miR-203. Differentially expressed miRNAs were predicted to be related with several signalling pathways in wound healing. CONCLUSION The differential miRNA expression identified in this study supplies experimental basis for further understanding the mechanisms of functional recovery of the denatured dermis.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Belacortu Y, Paricio N. Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev Dyn 2011; 240:2379-404. [PMID: 21953647 DOI: 10.1002/dvdy.22753] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 11/11/2022] Open
Abstract
Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosophila adult stem cells to maintain tissue homeostasis. Here, we review how Drosophila has contributed to our understanding of these processes, primarily through live-imaging and genetic tools that are impractical in mammals. Furthermore, we highlight future research areas where this insect may provide novel insights and potential therapeutic strategies for wound healing and regeneration.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | | |
Collapse
|
36
|
Abstract
A group of small non-coding RNA molecules, termed microRNAs (miRNAs), have generated considerable interest in recent years due to their central role in a growing number of biologic processes. Serving as post-transcriptional regulators of gene expression, miRNAs have also emerged as critical factors in the pathogenesis of many diseases. As a result, they show great potential as accurate diagnostic and prognostic markers, as well as viable therapeutic targets for treating disease. It has been proposed that miRNAs play a significant role in cutaneous wound repair and that aberrant miRNA expression may result in disorganized or poor healing. Specific patterns of miRNA expression have been identified in wound healing models. miRNAs are important regulators of leucocyte function and the cytokine network, and are necessary for endothelial cell migration and capillary formation. These molecules also control proliferation and differentiation of wound-specific cells and can determine extracellular matrix composition. This article reviews the evidence for miRNA regulation of inflammation, angiogenesis, fibroblast function, keratinocyte function, and apoptosis, which are essential components for effective wound repair. The future potential for improving wound healing outcomes using miRNA-based therapies is also discussed.
Collapse
|
37
|
Abstract
MicroRNAs (miRNAs) are small endogenous RNA molecules ∼22 nt in length. miRNAs are capable of posttranscriptional gene regulation by binding to their target messenger RNAs (mRNAs), leading to mRNA degradation or suppression of translation. miRNAs have recently been shown to play pivotal roles in skin development and are linked to various skin pathologies, cancer, and wound healing. This review focuses on the role of miRNAs in cutaneous biology, the various methods of miRNA modulation, and the therapeutic opportunities in treatment of skin diseases and wound healing.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Surgery, Ohio State University Medical Center, Columbus, Ohio, USA
| | | | | |
Collapse
|