1
|
Lennernäs H, Brisander M, Liljebris C, Jesson G, Andersson P. Enhanced Bioavailability and Reduced Variability of Dasatinib and Sorafenib with a Novel Amorphous Solid Dispersion Technology Platform. Clin Pharmacol Drug Dev 2024; 13:985-999. [PMID: 38808617 DOI: 10.1002/cpdd.1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Despite clinical advances with protein kinase inhibitors (PKIs), oral administration of many PKIs is associated with highly variable plasma exposure and a narrow therapeutic window. We developed a novel hybrid nanoparticle-amorphous solid dispersion (ASD) technology platform consisting of an amorphous PKI embedded in a polymer matrix. The technology was used to manufacture immediate-release formulations of 2 tyrosine kinase inhibitors (TKIs), dasatinib and sorafenib. Our primary objective was to improve the absorption properties and reduce the pharmacokinetic (PK) variability of each TKI. The PKs of XS004 (dasatinib-ASD, 100 mg tablet) and XS005 (sorafenib-ASD, 2 × 50 mg capsules) were compared with their crystalline formulated reference drugs (140 mg of dasatinib-reference and 200 mg of sorafenib-reference). The in vitro biopharmaceutics of dasatinib-ASD and XS005-granulate showed sustained increased solubility in the pH range 1.2-8.0 compared to their crystalline references. In vivo, XS004 was bioequivalent at a 30% lower dose and showed increased absorption and bioavailability, with 2.1-4.8 times lower intra- and intersubject variability compared to the reference. XS005 had an increased absorption and bioavailability of 45% and 2.2-2.8 times lower variability, respectively, but it was not bioequivalent at the investigated dose level. Taken together, the formulation platform is suited to generate improved PKI formulations with consistent bioavailability and a reduced pH-dependent absorption process.
Collapse
Affiliation(s)
- Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
2
|
Ishida M, Kumagai T, Yamamoto T, Suzuki H, Moriki K, Fujiyoshi M, Nagata K, Shimada M. Mechanism Underlying Conflicting Drug-Drug Interaction Between Aprepitant and Voriconazole via Cytochrome P450 3A4-Mediated Metabolism. Yonago Acta Med 2024; 67:31-40. [PMID: 38371278 PMCID: PMC10867237 DOI: 10.33160/yam.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024]
Abstract
Background Voriconazole is an antifungal drug for which therapeutic monitoring is recommended to prevent side effects. Temporary administration of the antiemetic drug fosaprepitant remarkably decreases the plasma concentration of voriconazole from the therapeutic range. The ratio of the major metabolite voriconazole N-oxide to voriconazole exceeded that at any other time for a patient who started chemotherapy during voriconazole therapy. We attributed this unpredictable result to cytochrome P450 3A4 induced by aprepitant that was converted from fosaprepitant in vivo. Methods Concentrations of voriconazole and voriconazole N-oxide were measured using liquid chromatography-mass spectrometry/mass spectrometry in primary human hepatocytes after incubation with aprepitant. Aprepitant suppressed voriconazole N-oxide formation within 24 h, followed by a continuous increase. Levels of drug-metabolizing cytochrome P450 mRNA were measured using real-time PCR in primary human hepatocytes incubated with aprepitant. Results Cytochrome P450 3A4 and 2C9 mRNA levels increased ~4- and 2-fold, respectively, over time. Cytochrome P450 3A4 induction was confirmed using reporter assays. We also assessed L-755446, a major metabolite of aprepitant that lacks a triazole ring. Both compounds dose-dependently increased reporter activity; however, induction by L-755446 was stronger than that by aprepitant. Conclusion These results indicate that aprepitant initially inhibited voriconazole metabolism via its triazole ring and increased cytochrome P450 3A4 induction following L-755446 formation. The decrease in plasma voriconazole concentration 7 days after fosaprepitant administration was mainly attributed to cytochrome P450 3A4 induction by L-755446.
Collapse
Affiliation(s)
- Masako Ishida
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Takeshi Kumagai
- Laboratory of Environmental and Health Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Tatsuro Yamamoto
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Hiroyuki Suzuki
- Division of Clinical Pharmaceutics, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Kuniaki Moriki
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | | | - Kiyoshi Nagata
- Laboratory of Environmental and Health Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Miki Shimada
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| |
Collapse
|
3
|
van der Kleij MBA, Guchelaar NAD, Mathijssen RHJ, Versluis J, Huitema ADR, Koolen SLW, Steeghs N. Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin Pharmacokinet 2023; 62:1333-1364. [PMID: 37584840 PMCID: PMC10519871 DOI: 10.1007/s40262-023-01293-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Although kinase inhibitors (KI) frequently portray large interpatient variability, a 'one size fits all' regimen is still often used. In the meantime, relationships between exposure-response and exposure-toxicity have been established for several KIs, so this regimen could lead to unnecessary toxicity and suboptimal efficacy. Dose adjustments based on measured systemic pharmacokinetic levels-i.e., therapeutic drug monitoring (TDM)-could therefore improve treatment efficacy and reduce the incidence of toxicities. Therefore, the aim of this comprehensive review is to give an overview of the available evidence for TDM for the 77 FDA/EMA kinase inhibitors currently approved (as of July 1st, 2023) used in hematology and oncology. We elaborate on exposure-response and exposure-toxicity relationships for these kinase inhibitors and provide practical recommendations for TDM and discuss corresponding pharmacokinetic targets when possible.
Collapse
Affiliation(s)
- Maud B A van der Kleij
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jurjen Versluis
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Neeltje Steeghs
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Guchelaar NAD, van Eerden RAG, Groenland SL, Doorn LV, Desar IME, Eskens FALM, Steeghs N, van Erp NP, Huitema ADR, Mathijssen RHJ, Koolen SLW. Feasibility of therapeutic drug monitoring of sorafenib in patients with liver or thyroid cancer. Biomed Pharmacother 2022; 153:113393. [PMID: 35834987 DOI: 10.1016/j.biopha.2022.113393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION Sorafenib is a tyrosine-kinase inhibitor approved for the treatment of renal cell carcinoma, hepatocellular carcinoma, thyroid carcinoma, and desmoid fibromatosis. As high inter-individual variability exists in exposure, there is a scientific rationale to pursue therapeutic drug monitoring (TDM). We investigated the feasibility of TDM in patients on sorafenib and tried to identify sub-groups in whom pharmacokinetically (PK) guided-dosing might be of added value. METHODS We included patients who started on sorafenib (between October 2017 and June 2020) at the recommended dose of 400 mg BID or with a step-up dosing schedule. Plasma trough levels (Ctrough) were measured at pre-specified time-points. Increasing the dose was advised if Ctrough was below the target of 3750 ng/mL and toxicity was manageable. RESULTS A total of 150 samples from 36 patients were collected. Thirty patients (83 %) had a Ctrough below the prespecified target concentration at a certain time point during treatment. Toxicity from sorafenib hampered dosing according to target Ctrough in almost half of the patients. In 11 patients, dosing was adjusted based on Ctrough. In three patients, this resulted in an adequate Ctrough without additional toxicity four weeks after the dose increase. In the remaining eight patients, dose adjustment based on Ctrough did not result in a Ctrough above the target or caused excessive toxicity. CONCLUSIONS TDM for sorafenib is not of added value in daily clinical practice. In most cases, toxicity restricts the possibility of dose escalations.
Collapse
Affiliation(s)
- Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Leni van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands; Department of Pharmacy, Prinses Máxima Center for Pediatric Oncology, University Medical Center Utrecht, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
5
|
Ostwal V, Ramaswamy A, Gota V, Bhargava PG, Srinivas S, Shriyan B, Jadhav S, Goel M, Patkar S, Mandavkar S, Naughane D, Daddi A, Nashikkar C, Shetty N, Ankathi SK, Banavali SD. Phase I Study Evaluating Dose De-escalation of Sorafenib with Metformin and Atorvastatin in Hepatocellular Carcinoma (SMASH). Oncologist 2022; 27:165-e222. [PMID: 35274724 PMCID: PMC8914502 DOI: 10.1093/oncolo/oyab008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND This phase I dose de-escalation study aimed to assess the tolerability, safety, pharmacokinetics (PK), and efficacy of sequentially decreasing doses of sorafenib in combination (SAM) with atorvastatin (A, 10 mg) and metformin (M, 500 mg BD) in patients with advanced hepatocellular carcinoma (HCC). METHODS Patients were enrolled in 1 of 4 sequential cohorts (10 patients each) of sorafenib doses (800 mg, 600 mg. 400 mg, and 200 mg) with A and M. Progression from one level to the next was based on prespecified minimum disease stabilization (at least 4/10) and upper limits of specific grade 3-5 treatment-related adverse events (TRAE). RESULTS The study was able to progress through all 4 dosing levels of sorafenib by the accrual of 40 patients. Thirty-eight (95%) patients had either main portal vein thrombosis or/and extra-hepatic disease. The most common grade 3-5 TRAEs were hand-foot-syndrome (grade 2 and grade 3) in 3 (8%) and transaminitis in 2 (5%) patients, respectively. The plasma concentrations of sorafenib peaked at 600 mg dose, and the concentration threshold of 2400 ng/mL was associated with higher odds of achieving time to exposure (TTE) concentrations >75% centile (odds ratio [OR] = 10.0 [1.67-44.93]; P = .01). The median overall survival for patients without early hepatic decompensation (n = 31) was 8.9 months (95% confidence interval [CI]: 3.2-14.5 months). CONCLUSION The SAM combination in HCC patients with predominantly unfavorable baseline disease characteristics showed a marked reduction in sorafenib-related side effects. Studies using sorafenib 600 mg per day in this combination along with sorafenib drug level monitoring can be evaluated in further trials.(Trial ID: CTRI/2018/07/014865).
Collapse
Affiliation(s)
- Vikas Ostwal
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Anant Ramaswamy
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Vikram Gota
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Prabhat G Bhargava
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sujay Srinivas
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Bharati Shriyan
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shraddha Jadhav
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Mahesh Goel
- Gastrointestinal and HPB Surgery, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shraddha Patkar
- Gastrointestinal and HPB Surgery, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sarika Mandavkar
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Deepali Naughane
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Anuprita Daddi
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Chaitali Nashikkar
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nitin Shetty
- Department of Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Suman Kumar Ankathi
- Department of Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shripad D Banavali
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
6
|
Fahmy A, Hopkins AM, Sorich MJ, Rowland A. Evaluating the utility of therapeutic drug monitoring in the clinical use of small molecule kinase inhibitors: a review of the literature. Expert Opin Drug Metab Toxicol 2021; 17:803-821. [PMID: 34278936 DOI: 10.1080/17425255.2021.1943357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Orally administered small molecule kinase inhibitors (KI) are a key class of targeted anti-cancer medicines that have contributed substantially to improved survival outcomes in patients with advanced disease. Since the introduction of KIs in 2001, there has been a building body of evidence that the benefit derived from these drugs may be further enhanced by individualizing dosing on the basis of concentration.Areas covered: This review considers the rationale for individualized KI dosing and the requirements for robust therapeutic drug monitoring (TDM). Current evidence supporting TDM-guided KI dosing is presented and critically evaluated, and finally potential approaches to address translational challenges for TDM-guided KI dosing and alternate approaches to support individualization of KI dosing are discussed.Expert opinion: Intuitively, the individualization of KI dosing through an approach such as TDM-guided dosing has great potential to enhance the effectiveness and tolerability of these drugs. However, based on current literature evidence it is unrealistic to propose that TDM-guided KI dosing should be routinely implemented into clinical practice.
Collapse
Affiliation(s)
- Alia Fahmy
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
7
|
Mueller-Schoell A, Groenland SL, Scherf-Clavel O, van Dyk M, Huisinga W, Michelet R, Jaehde U, Steeghs N, Huitema ADR, Kloft C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur J Clin Pharmacol 2021; 77:441-464. [PMID: 33165648 PMCID: PMC7935845 DOI: 10.1007/s00228-020-03014-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This review provides an overview of the current challenges in oral targeted antineoplastic drug (OAD) dosing and outlines the unexploited value of therapeutic drug monitoring (TDM). Factors influencing the pharmacokinetic exposure in OAD therapy are depicted together with an overview of different TDM approaches. Finally, current evidence for TDM for all approved OADs is reviewed. METHODS A comprehensive literature search (covering literature published until April 2020), including primary and secondary scientific literature on pharmacokinetics and dose individualisation strategies for OADs, together with US FDA Clinical Pharmacology and Biopharmaceutics Reviews and the Committee for Medicinal Products for Human Use European Public Assessment Reports was conducted. RESULTS OADs are highly potent drugs, which have substantially changed treatment options for cancer patients. Nevertheless, high pharmacokinetic variability and low treatment adherence are risk factors for treatment failure. TDM is a powerful tool to individualise drug dosing, ensure drug concentrations within the therapeutic window and increase treatment success rates. After reviewing the literature for 71 approved OADs, we show that exposure-response and/or exposure-toxicity relationships have been established for the majority. Moreover, TDM has been proven to be feasible for individualised dosing of abiraterone, everolimus, imatinib, pazopanib, sunitinib and tamoxifen in prospective studies. There is a lack of experience in how to best implement TDM as part of clinical routine in OAD cancer therapy. CONCLUSION Sub-therapeutic concentrations and severe adverse events are current challenges in OAD treatment, which can both be addressed by the application of TDM-guided dosing, ensuring concentrations within the therapeutic window.
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program, PharMetrX, Berlin/Potsdam, Germany
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Robin Michelet
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Kloft
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Llopis B, Robidou P, Tissot N, Pinna B, Gougis P, Aubart FC, Campedel L, Abbar B, Weil DR, Uzunov M, Gligorov J, Salem JE, Funck-Brentano C, Zahr N. Development and clinical validation of a simple and fast UPLC-ESI-MS/MS method for simultaneous quantification of nine kinase inhibitors and two antiandrogen drugs in human plasma: Interest for their therapeutic drug monitoring. J Pharm Biomed Anal 2021; 197:113968. [PMID: 33618135 DOI: 10.1016/j.jpba.2021.113968] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Kinase inhibitors (KIs) and antiandrogen drugs (AAs) are oral anticancer drugs with narrow therapeutic index that exhibit high inter- and intra-individual variability. We describe here a UPLC-MS/MS method for the simultaneous quantification of nine KIs: cobimetinib, dasatinib, ibrutinib, imatinib, nilotinib, palbociclib, ruxolitinib, sorafenib and vemurafenib; two active metabolites of them: N-desmethyl imatinib, N-oxide sorafenib; and two AAs: abiraterone and enzalutamide; with short pre-treatment and run time in order to be easily used in clinical practice for their therapeutic drug monitoring (TDM) and facilitating pharmacokinetics and pharmacokinetics/pharmacodynamics studies. Plasma samples were prepared by a single-step protein precipitation. Analytes were separated on a Waters Acquity UPLC® T3 HSS C18 column by non-linear gradient elution; with subsequent detection by Xevo® TQD triple quadrupole tandem mass spectrometer in a positive ionization mode. Analysis time was 2.8 min per run, and all analytes eluted within 1.46-1.97 minutes. The analytical performance of the method in terms of specificity, sensitivity, linearity, precision, accuracy, matrix effect, extraction recovery, limit of quantification, dilution integrity and stability of analytes under different conditions met all criteria for a bioanalytical method for the quantification of drugs. The calibration curves were linear over the range of 1-500 ng/mL for abiraterone, dasatinib and ibrutinib; 5-500 ng/mL for cobimetinib and palbociclib; 10-5,000 ng/mL for imatinib, N-desmethyl imatinib, nilotinib, sorafenib, N-oxide sorafenib and ruxolitinib; 100-50,000 ng/mL for enzalutamide and 100-100,000 ng/mL for vemurafenib with coefficient of correlation above 0.995 for all analytes. This novel method was successfully applied to TDM in clinical practice.
Collapse
Affiliation(s)
- Benoit Llopis
- AP-HP.Sorbonne Université, Department of Pharmacology and Clinical Investigation Center (CIC-1901), Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université, Faculty of Medicine Sorbonne Université, Faculty of Medicine, Paris, France
| | - Pascal Robidou
- AP-HP.Sorbonne Université, Department of Pharmacology and Clinical Investigation Center (CIC-1901), Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université, Faculty of Medicine Sorbonne Université, Faculty of Medicine, Paris, France
| | - Nadine Tissot
- AP-HP.Sorbonne Université, Department of Pharmacology and Clinical Investigation Center (CIC-1901), Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université, Faculty of Medicine Sorbonne Université, Faculty of Medicine, Paris, France
| | - Bruno Pinna
- AP-HP.Sorbonne Université, Department of Pharmacology and Clinical Investigation Center (CIC-1901), Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université, Faculty of Medicine Sorbonne Université, Faculty of Medicine, Paris, France
| | - Paul Gougis
- AP-HP.Sorbonne Université, Department of Pharmacology and Clinical Investigation Center (CIC-1901), Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université, Faculty of Medicine Sorbonne Université, Faculty of Medicine, Paris, France; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, institut universitaire de cancérologie, département d'oncologie médicale, CLIP2, Galilée Paris, France
| | - Fleur Cohen Aubart
- AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Service de Médecine Interne 2, Centre National de Référence Maladies Systémiques Rares et Histiocytoses, Paris, France
| | - Luca Campedel
- AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, institut universitaire de cancérologie, département d'oncologie médicale, CLIP2, Galilée Paris, France
| | - Baptiste Abbar
- AP-HP.Sorbonne Université, Department of Pharmacology and Clinical Investigation Center (CIC-1901), Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université, Faculty of Medicine Sorbonne Université, Faculty of Medicine, Paris, France
| | - Damien Roos Weil
- AP-HP Sorbonne Université, Service d'Hématologie Clinique, Pitié-Salpêtrière Hospital, Paris, France
| | - Madalina Uzunov
- AP-HP Sorbonne Université, Service d'Hématologie Clinique, Pitié-Salpêtrière Hospital, Paris, France
| | - Joseph Gligorov
- Institut Universitaire de Cancérologie, AP-HP Sorbonne Université, INSERM U-938, CLIP(2) Galilée, Tenon Hospital, Medical Oncology Department, Paris, France
| | - Joe-Elie Salem
- AP-HP.Sorbonne Université, Department of Pharmacology and Clinical Investigation Center (CIC-1901), Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université, Faculty of Medicine Sorbonne Université, Faculty of Medicine, Paris, France
| | - Christian Funck-Brentano
- AP-HP.Sorbonne Université, Department of Pharmacology and Clinical Investigation Center (CIC-1901), Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université, Faculty of Medicine Sorbonne Université, Faculty of Medicine, Paris, France
| | - Noël Zahr
- AP-HP.Sorbonne Université, Department of Pharmacology and Clinical Investigation Center (CIC-1901), Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université, Faculty of Medicine Sorbonne Université, Faculty of Medicine, Paris, France.
| |
Collapse
|
9
|
Romualdo GR, Da Silva TC, de Albuquerque Landi MF, Morais JÁ, Barbisan LF, Vinken M, Oliveira CP, Cogliati B. Sorafenib reduces steatosis-induced fibrogenesis in a human 3D co-culture model of non-alcoholic fatty liver disease. ENVIRONMENTAL TOXICOLOGY 2021; 36:168-176. [PMID: 32918399 DOI: 10.1002/tox.23021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects around 25% of the worldwide population. Non-alcoholic steatohepatitis (NASH), the more progressive variant of NAFLD, is characterized by steatosis, cellular ballooning, lobular inflammation, and may culminate on hepatic stellate cell (HSC) activation, thus increasing the risk for fibrosis, cirrhosis, and HCC development. Conversely, the antifibrotic effects of sorafenib, an FDA-approved drug for HCC treatment, have been demonstrated in 2D cell cultures and animal models, but its mechanisms in a NAFLD-related microenvironment in vitro requires further investigation. Thus, a human 3D co-culture model of fatty hepatocytes and HSC was established by culturing hepatoma C3A cells, pre-treated with 1.32 mM oleic acid, with HSC LX-2 cells. The fatty C3A/LX-2 spheroids showed morphological and molecular hallmarks of altered lipid metabolism and steatosis-induced fibrogenesis, similarly to the human disease. Sorafenib (15 μM) for 72 hours reduced fatty spheroid viability, and upregulated the expression of lipid oxidation- and hydrolysis-related genes, CPT1 and LIPC, respectively. Sorafenib also inhibited steatosis-induced fibrogenesis by downregulating COL1A1, TGFB1, PDGF, and TIMP1 and by decreasing protein levels of IL-6, TGF-β1, and TNF-α in fatty spheroids. The demonstration of the antifibrotic properties of sorafenib on steatosis-induced fibrogenesis in a 3D in vitro model of NAFLD supports its clinical use as a therapeutic agent for the treatment of NAFLD/NASH patients.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Brazil
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| | | | - Juliana Ávila Morais
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| | - Luis Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Brazil
| | - Mathieu Vinken
- Department of in vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cláudia Pinto Oliveira
- Department of Gastroenterology (LIM07), School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
10
|
Ba HL, Mbatchi L, Gattacceca F, Evrard A, Lacarelle B, Blanchet B, Ciccolini J, Salas S. Pharmacogenetics and pharmacokinetics modeling of unexpected and extremely severe toxicities after sorafenib intake. Pharmacogenomics 2021; 21:173-179. [PMID: 31967518 DOI: 10.2217/pgs-2019-0127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A 53-year-old woman with papillary thyroid cancer treated with 800 mg sorafenib therapy rapidly experienced grade 3 toxicities. Dosing was reduced in a step-wise manner with several treatment discontinuations down to 200 mg every 2 days but severe toxicities continued. Plasma drug monitoring showed high exposure, even at low dose. Dosing was then further reduced at 200 mg every 3 days and tolerance was finally acceptable (i.e., grade 1 toxicity) with stable disease upon RECIST imaging. Pharmacogenetic investigations showed polymorphisms affecting both UGT1A9 (UGT1A9-rs3832043) and nuclear receptor PXR (NR1I2-rs3814055, NR1I2-rs2472677 and NR1I2-rs10934498), possibly resulting in downregulation of liver metabolizing enzymes of sorafenib (i.e., CYP and UGT). Patient's clearance (0.48 l/h) estimated by Bayesian approach was consistently lower than usually described. This is the first time that, in addition to mutations affecting UGT1A9, genetic polymorphisms of NR1I2 have possibly been associated with both plasma overexposure and severe toxicities upon sorafenib intake.
Collapse
Affiliation(s)
- Hai le Ba
- SMARTc Unit, CRCM, Inserm U1068, Aix Marseille University, Marseille, France
| | - Litaty Mbatchi
- Clinical Biochemistry Department, Caremeau University Hospital of Nîmes, Nîmes, France
| | - Florence Gattacceca
- SMARTc Unit, CRCM, Inserm U1068, Aix Marseille University, Marseille, France
| | - Alexandre Evrard
- Clinical Biochemistry Department, Caremeau University Hospital of Nîmes, Nîmes, France
| | - Bruno Lacarelle
- SMARTc Unit, CRCM, Inserm U1068, Aix Marseille University, Marseille, France
| | - Benoit Blanchet
- Biologie du Médicament - Toxicologie, Hôpital Cochin, AP-HP, Paris, France
| | - Joseph Ciccolini
- SMARTc Unit, CRCM, Inserm U1068, Aix Marseille University, Marseille, France
| | - Sébastien Salas
- Medical Oncology Unit, La Timone University Hospital of Marseille Assistance Publique Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
11
|
Labeur TA, Hofsink Q, Takkenberg RB, van Delden OM, Mathôt RAA, Schinner R, Malfertheiner P, Amthauer H, Schütte K, Basu B, Kuhl C, Mayerle J, Ricke J, Klümpen HJ. The value of sorafenib trough levels in patients with advanced hepatocellular carcinoma - a substudy of the SORAMIC trial. Acta Oncol 2020; 59:1028-1035. [PMID: 32366155 DOI: 10.1080/0284186x.2020.1759826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Sorafenib for advanced hepatocellular carcinoma (HCC) is dose adjusted by toxicity. Preliminary studies have suggested an association between plasma concentrations of sorafenib and its main metabolite (M2) and clinical outcomes. This study aimed to validate these findings and establish target values for sorafenib trough concentrations.Methods: Patients with advanced HCC were prospectively recruited within a multicenter phase II study (SORAMIC). Patients with blood samples available at trough level were included for this pharmacokinetic (PK) substudy. Trough plasma concentrations of sorafenib and its main metabolite (M2) were associated with sorafenib-related toxicity and overall survival (OS).Results: Seventy-four patients were included with a median OS of 19.7 months (95% CI 16.1-23.3). Patients received sorafenib for a median of 51 weeks (IQR 27-62) and blood samples were drawn after a median of 25 weeks (IQR 10-42). Patients had a median trough concentration of 3217 ng/ml (IQR 2166-4526) and 360 ng/ml (IQR 190-593) with coefficients of variation of 65% and 146% for sorafenib and M2, respectively. Patients who experienced severe sorafenib-related toxicity received a lower average daily dose (551 vs 730 mg/day, p = .003), but showed no significant differences in sorafenib (3298 vs 2915 ng/ml, p = .442) or M2 trough levels (428 vs 283 ng/ml, p = .159). Trough levels of sorafenib or M2 showed no significant association with OS.Conclusions: In patients with advanced HCC treated with sorafenib, the administered dose, trough levels of sorafenib or M2, and clinical outcomes were poorly correlated. Toxicity-adjusted dosing remains the standard for sorafenib treatment.
Collapse
Affiliation(s)
- Tim A. Labeur
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Quincy Hofsink
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - R. Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Otto M. van Delden
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ron A. A. Mathôt
- Hospital Pharmacy, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Regina Schinner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Holger Amthauer
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Schütte
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken, Marienhospital Osnabrück, Osnabrück, Germany
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Karbownik A, Miedziaszczyk M, Grabowski T, Stanisławiak-Rudowicz J, Jaźwiec R, Wolc A, Grześkowiak E, Szałek E. In vivo assessment of potential for UGT-inhibition-based drug-drug interaction between sorafenib and tapentadol. Biomed Pharmacother 2020; 130:110530. [PMID: 32712531 DOI: 10.1016/j.biopha.2020.110530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 02/08/2023] Open
Abstract
Sorafenib (SR) is one of the most potent UGT (1A1, 1A9) inhibitors (in in vitro tests). The inhibition of UGT1A1 may cause hyperbilirubinaemia, whereas the inhibition of UGT1A9 and 1A1 may result in drug-drug interactions (DDIs). Tapentadol (TAP) is a synthetic μ-opioid agonist and is used to treat moderate to severe acute pain. Tapentadol is highly glucuronidated by the UGT1A9 and UGT2B7 isoenzymes. The aim of the study was to assess the DDI between SR and TAP. Wistar rats were divided into three groups, with eight animals in each. The rats were orally treated with SR (100 mg/kg) or TAP (4.64 mg/kg) or in combination with 100 mg/kg SOR and 4.64 TAP mg/kg. The concentrations of SR and sorafenib N-oxide, TAP and tapentadol glucuronide were respectively measured by means of high-performance liquid chromatography (HPLC) with ultraviolet detection and by means of ultra-performance liquid chromatography-tandem mass spectrometry. The co-administration of TAP with SR caused TAP maximum plasma concentration (Cmax) to increase 5.3-fold whereas its area under the plasma concentration-time curve (AUC0-∞) increased 1.5-fold. The tapentadol glucuronide Cmax increased 5.3-fold and whereas its AUC0-∞ increased 2.0-fold. The tapentadol glucuronide/TAP AUC0-∞ ratio increased 1.4-fold (p = 0.0118). TAP also increased SR Cmax 1.9-fold, whereas its AUC0-∞ increased 1.3-fold. The sorafenib N-oxide Cmax increased 1.9-fold whereas its AUC0-∞ increased 1.3-fold. The sorafenib N-oxide/SR AUC0-t ratio increased 1.4-fold (p = 0.0127). The results show that the co-administration of sorafenib and tapentadol increases the exposure to both drugs and changes their metabolism. In consequence, the pharmacological effect may be intensified, but the toxicity may increases, too.
Collapse
Affiliation(s)
- Agnieszka Karbownik
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861, Poznań, Poland.
| | - Miłosz Miedziaszczyk
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861, Poznań, Poland
| | - Tomasz Grabowski
- Polpharma Biologics SA, Trzy Lipy 3 Str., 80-172, Gdańsk, Poland
| | | | - Radosław Jaźwiec
- Institute of Biochemistry and Biophysics PAS, Laboratory of Mas Spectromery, Polish Academy of Sciences, 5A Pawińskiego Str, 02-106, Warsaw, Poland
| | - Anna Wolc
- Department of Animal Science, Iowa State University, 239E Kildee Hall, Ames, IA, 50011, USA; Hy-Line International, 2583 240th Street, Dallas Center, IA, 50063, USA
| | - Edmund Grześkowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861, Poznań, Poland
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861, Poznań, Poland
| |
Collapse
|
13
|
Hulin A, Stocco J, Bouattour M. Clinical Pharmacokinetics and Pharmacodynamics of Transarterial Chemoembolization and Targeted Therapies in Hepatocellular Carcinoma. Clin Pharmacokinet 2019; 58:983-1014. [PMID: 31093928 DOI: 10.1007/s40262-019-00740-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The management of hepatocellular carcinoma (HCC) is based on a multidisciplinary decision tree. Treatment includes loco-regional therapy, mainly transarterial chemoembolization, for intermediate-stage HCC and systemic therapy with oral tyrosine kinase inhibitors (TKIs) for advanced HCC. Transarterial chemoembolization involves hepatic intra-arterial infusion with either conventional procedure or drug-eluting-beads. The aim of the loco-regional procedure is to deliver treatment as close as possible to the tumor both to embolize the tumor area and to enhance efficacy and minimize systemic toxicity of the anticancer drug. Pharmacokinetic studies applied to transarterial chemoembolization are rare and pharmacodynamic studies even rarer. However, all available studies lead to the same conclusions: use of the transarterial route lowers systemic exposure to the cytotoxic drug and leads to much higher tumor drug concentrations than does a similar dose via the intravenous route. However, reproducibility of the procedure remains a major problem, and no consensus exists regarding the choice of anticancer drug and its dosage. Systemic therapy with TKIs is based on sorafenib and lenvatinib as first-line treatment and regorafenib and cabozantinib as second-line treatment. Clinical use of TKIs is challenging because of their complex pharmacokinetics, with high liver metabolism yielding both active metabolites and their common toxicities. Changes in liver function over time with the progression of HCC adds further complexity to the use of TKIs. The challenges posed by TKIs and the HCC disease process means monitoring of TKIs is required to improve clinical management. To date, only partial data supporting sorafenib monitoring is available. Results from further pharmacokinetic/pharmacodynamic studies of these four TKIs are eagerly awaited and are expected to permit such monitoring and the development of consensus guidelines.
Collapse
Affiliation(s)
- Anne Hulin
- APHP, Laboratory of Pharmacology, GH Henri Mondor, EA7375, University Paris Est Creteil, 94010, Creteil, France
| | - Jeanick Stocco
- APHP, HUPNVS, Department of Clinical Pharmacy and Pharmacology, Beaujon University Hospital, 92110, Clichy, France
| | - Mohamed Bouattour
- APHP, HUPNVS, Department of Digestive Oncology, Beaujon University Hospital, 92110, Clichy, France.
| |
Collapse
|
14
|
Tsuchiya N. Molecular-targeted therapy in advanced renal cell carcinoma based on pharmacokinetics, pharmacodynamics and pharmacogenetics: A proposed strategy. Int J Urol 2018; 26:48-56. [DOI: 10.1111/iju.13805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Norihiko Tsuchiya
- Department of Urology; Yamagata University Faculty of Medicine; Yamagata Japan
| |
Collapse
|
15
|
Liu T, Ivaturi V, Sabato P, Gobburu JVS, Greer JM, Wright JJ, Smith BD, Pratz KW, Rudek MA. Sorafenib Dose Recommendation in Acute Myeloid Leukemia Based on Exposure-FLT3 Relationship. Clin Transl Sci 2018; 11:435-443. [PMID: 29702736 PMCID: PMC6039208 DOI: 10.1111/cts.12555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/14/2018] [Indexed: 01/12/2023] Open
Abstract
Sorafenib administered at the approved dose continuously is not tolerated long-term in patients with acute myeloid leukemia (AML). The purpose of this study was to optimize the dosing regimen by characterizing the sorafenib exposure-response relationship in patients with AML. A one-compartment model with a transit absorption compartment and enterohepatic recirculation described the exposure. The relationship between sorafenib exposure and target modulation of kinase targets (FMS-like tyrosine kinase 3 (FLT3)-ITD and extracellular signal-regulated kinase (ERK)) were described by an inhibitory maximum effect (Emax ) model. Sorafenib could inhibit FLT3-ITD activity by 100% with an IC50 of 69.3 ng/mL and ERK activity by 84% with an IC50 of 85.7 ng/mL (both adjusted for metabolite potency). Different dosing regimens utilizing 200 or 400 mg at varying frequencies were simulated based on the exposure-response relationship. Simulations demonstrate that a 200 mg twice daily (b.i.d.) dosing regimen showed similar FLT3-ITD and ERK inhibitory activity compared with 400 mg b.i.d. and is recommended in further clinical trials in patients with AML.
Collapse
Affiliation(s)
- Tao Liu
- Center for Translational MedicineUniversity of Maryland BaltimoreMarylandUSA
| | - Vijay Ivaturi
- Center for Translational MedicineUniversity of Maryland BaltimoreMarylandUSA
| | - Philip Sabato
- Center for Translational MedicineUniversity of Maryland BaltimoreMarylandUSA
| | | | - Jacqueline M. Greer
- The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
| | - John J. Wright
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMarylandUSA
| | - B. Douglas Smith
- The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
- Department of OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Keith W. Pratz
- The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
- Department of OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michelle A. Rudek
- The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
- Department of OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, Division of Clinical PharmacologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | |
Collapse
|
16
|
MANO N, MAEKAWA M, YAMAGUCHI H. Clinical Chemistry Based on Highly Accurate Separation Analysis Technology. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nariyasu MANO
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | | | | |
Collapse
|
17
|
Differential effects of hepatic cirrhosis on the intrinsic clearances of sorafenib and imatinib by CYPs in human liver. Eur J Pharm Sci 2018; 114:55-63. [DOI: 10.1016/j.ejps.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/19/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
|
18
|
Takasaki S, Tanaka M, Kikuchi M, Maekawa M, Kawasaki Y, Ito A, Arai Y, Yamaguchi H, Mano N. Simultaneous analysis of oral anticancer drugs for renal cell carcinoma in human plasma using liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2018; 32:e4184. [DOI: 10.1002/bmc.4184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/01/2017] [Accepted: 12/17/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Shinya Takasaki
- Department of Pharmaceutical Sciences; Tohoku University Hospital; Sendai Miyagi Japan
| | - Masaki Tanaka
- Department of Pharmaceutical Sciences; Tohoku University Hospital; Sendai Miyagi Japan
| | - Masafumi Kikuchi
- Department of Pharmaceutical Sciences; Tohoku University Hospital; Sendai Miyagi Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences; Tohoku University Hospital; Sendai Miyagi Japan
| | | | - Akihiro Ito
- Department of Urology; Tohoku University Hospital; Sendai Miyagi Japan
| | - Yoichi Arai
- Department of Urology; Tohoku University Hospital; Sendai Miyagi Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences; Tohoku University Hospital; Sendai Miyagi Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences; Tohoku University Hospital; Sendai Miyagi Japan
| |
Collapse
|
19
|
Wang X, Zhang X, Liu F, Wang M, Qin S. The effects of triptolide on the pharmacokinetics of sorafenib in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2017; 55:1863-1867. [PMID: 28614959 PMCID: PMC7011964 DOI: 10.1080/13880209.2017.1340963] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/21/2017] [Accepted: 06/07/2017] [Indexed: 05/20/2023]
Abstract
CONTEXT Combining sorafenib with triptolide could inhibit tumour growth with greater efficacy than single-agent treatment. However, their herb-drug interaction remains unknown. OBJECTIVE This study investigates the herb-drug interaction between triptolide and sorafenib. MATERIALS AND METHODS The effects of triptolide (10 mg/kg) on the pharmacokinetics of different doses of sorafenib (20, 50 and 100 mg/kg) in rats, and blood samples were collected within 48 h and evaluated using LC-MS/MS. The effects of triptolide on the absorption and metabolism of sorafenib were also investigated using Caco-2 cell monolayer model and rat liver microsome incubation systems. RESULTS The results showed that the Cmax (low dose: 72.38 ± 8.76 versus 49.15 ± 5.46 ng/mL; medium dose: 178.65 ± 21.05 versus 109.31 ± 14.17 ng/mL; high dose: 332.81 ± 29.38 versus 230.86 ± 9.68 ng/mL) of sorafenib at different doses increased significantly with the pretreatment of triptolide, and while the oral clearance rate of sorafenib decreased. The t1/2 of sorafenib increased significant (p < 0.05) from 9.02 ± 1.16 to 12.17 ± 2.95 h at low dose with the pretreatment of triptolide. Triptolide has little effect on the absorption of sorafenib in Caco-2 cell transwell model. However, triptolide could significantly decrease the intrinsic clearance rate of sorafenib from 51.7 ± 6.37 to 32.4 ± 4.43 μL/min/mg protein in rat liver microsomes. DISCUSSION AND CONCLUSIONS These results indicated that triptolide could change the pharmacokinetic profiles of sorafenib in rats; these effects might be exerted via decreasing the intrinsic clearance rate of sorafenib in rat liver.
Collapse
Affiliation(s)
- Xianming Wang
- Department of General Surgery, Qianfoshan Hospital affiliated to Shandong University, Shandong, China
| | - Xin Zhang
- Department of General Surgery, Qianfoshan Hospital affiliated to Shandong University, Shandong, China
| | - Fei Liu
- Department of General Surgery, Qianfoshan Hospital affiliated to Shandong University, Shandong, China
| | - Minghai Wang
- Department of General Surgery, Qianfoshan Hospital affiliated to Shandong University, Shandong, China
- Minghai WangDepartment of General Surgery, Qianfoshan Hospital affiliated to Shandong University, Shandong 250014, China
| | - Shiyong Qin
- Department of General Surgery, Qianfoshan Hospital affiliated to Shandong University, Shandong, China
- CONTACT Shiyong Qin
| |
Collapse
|
20
|
Verheijen RB, Yu H, Schellens JHM, Beijnen JH, Steeghs N, Huitema ADR. Practical Recommendations for Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin Pharmacol Ther 2017; 102:765-776. [PMID: 28699160 PMCID: PMC5656880 DOI: 10.1002/cpt.787] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 01/16/2023]
Abstract
Despite the fact that pharmacokinetic exposure of kinase inhibitors (KIs) is highly variable and clear relationships exist between exposure and treatment outcomes, fixed dosing is still standard practice. This review aims to summarize the available clinical pharmacokinetic and pharmacodynamic data into practical guidelines for individualized dosing of KIs through therapeutic drug monitoring (TDM). Additionally, we provide an overview of prospective TDM trials and discuss the future steps needed for further implementation of TDM of KIs.
Collapse
Affiliation(s)
- Remy B Verheijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Huixin Yu
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, Utrecht University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
21
|
Bins S, van Doorn L, Phelps MA, Gibson AA, Hu S, Li L, Vasilyeva A, Du G, Hamberg P, Eskens F, de Bruijn P, Sparreboom A, Mathijssen R, Baker SD. Influence of OATP1B1 Function on the Disposition of Sorafenib-β-D-Glucuronide. Clin Transl Sci 2017; 10:271-279. [PMID: 28371445 PMCID: PMC5504481 DOI: 10.1111/cts.12458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/27/2017] [Indexed: 01/05/2023] Open
Abstract
The oral multikinase inhibitor sorafenib undergoes extensive UGT1A9-mediated formation of sorafenib-β-D-glucuronide (SG). Using transporter-deficient mouse models, it was previously established that SG can be extruded into bile by ABCC2 or follow a liver-to-blood shuttling loop via ABCC3-mediated efflux into the systemic circulation, and subsequent uptake in neighboring hepatocytes by OATP1B-type transporters. Here we evaluated the possibility that this unusual process, called hepatocyte hopping, is also operational in humans and can be modulated through pharmacological inhibition. We found that SG transport by OATP1B1 or murine Oatp1b2 was effectively inhibited by rifampin, and that this agent can significantly increase plasma levels of SG in wildtype mice, but not in Oatp1b2-deficient animals. In human subjects receiving sorafenib, rifampin acutely increased the systemic exposure to SG. Our study emphasizes the need to consider hepatic handling of xenobiotic glucuronides in the design of drug-drug interaction studies of agents that undergo extensive phase II conjugation.
Collapse
Affiliation(s)
- S Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - L van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - M A Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - A A Gibson
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - S Hu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - L Li
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - A Vasilyeva
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - G Du
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - P Hamberg
- Department of Internal Medicine, St. Franciscus Gasthuis, Rotterdam, The Netherlands
| | - Falm Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - P de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - A Sparreboom
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands.,Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Rhj Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - S D Baker
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Gore ME, Jones RJ, Ravaud A, Kuczyk M, Demkow T, Bearz A, Shapiro J, Strauss UP, Porta C. Sorafenib dose escalation in treatment-naïve patients with metastatic renal cell carcinoma: a non-randomised, open-label, Phase 2b study. BJU Int 2017; 119:846-853. [DOI: 10.1111/bju.13740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Robert J. Jones
- Beatson West of Scotland Cancer Centre; University of Glasgow; Glasgow UK
| | | | | | | | - Alessandra Bearz
- Centrum Onkologii-Instytut im. Marii Sklodowskiej-Curie; Warszawa Poland
| | | | - Uwe Phillip Strauss
- IRCCS Policlinico San Matteo, Medicina Interna ed Oncologia Medica; Pavia Italy
| | - Camillo Porta
- Bayer HealthCare Pharmaceuticals Inc.; Whippany NJ USA
| |
Collapse
|
23
|
Anzai K, Tsuruya K, Hirose S, Arase Y, Shiraishi K, Shomura M, Mine T, Kagawa T. Advanced hepatocellular carcinoma with remarkable response to sorafenib dose increment: A case report. KANZO 2017; 58:619-625. [DOI: 10.2957/kanzo.58.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Affiliation(s)
- Kazuya Anzai
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine
| | - Kota Tsuruya
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine
| | - Shunji Hirose
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine
| | - Yoshitaka Arase
- Division of Gastroenterology, Department of Internal Medicine, Tokai University Oiso Hospital
| | - Kouichi Shiraishi
- Division of Gastroenterology, Department of Internal Medicine, Tokai University Oiso Hospital
| | - Masako Shomura
- Department of Nursing, Tokai University School of Health Sciences
| | - Tetsuya Mine
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine
| |
Collapse
|
24
|
Bins S, Lenting A, El Bouazzaoui S, van Doorn L, Oomen-de Hoop E, Eskens FA, van Schaik RH, Mathijssen RH. Polymorphisms in SLCO1B1 and UGT1A1 are associated with sorafenib-induced toxicity. Pharmacogenomics 2016; 17:1483-90. [PMID: 27533851 DOI: 10.2217/pgs-2016-0063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Sorafenib-treated patients display a substantial variation in the incidence of toxicity. We aimed to investigate the association of genetic polymorphisms with observed toxicity on sorafenib. PATIENTS & METHODS We genotyped 114 patients that were treated with sorafenib at the Erasmus MC Cancer Institute, the Netherlands, for SLCO1B1, SLCO1B3, ABCC2, ABCG2, UGT1A1 and UGT1A9. RESULTS The UGT1A1 (rs8175347) polymorphism was associated with hyperbilirubinemia and treatment interruption. Polymorphisms in SLCO1B1 (rs2306283, rs4149056) were associated with diarrhea and thrombocytopenia, respectively. None of the investigated polymorphisms was associated with overall or progression-free survival in hepatocellular cancer patients. CONCLUSION Polymorphisms in SLCO1B1 and UGT1A1 are associated with several different sorafenib side effects.
Collapse
Affiliation(s)
- Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anne Lenting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Samira El Bouazzaoui
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leni van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ferry Alm Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ron Hn van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron Hj Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|