1
|
Ekman N, Grossman AB, Nieckarz A, Jędrzejewski Ł, Wolf J, Dworakowska D. Non-Hypertensive Effects of Aldosterone. Int J Mol Sci 2025; 26:540. [PMID: 39859256 PMCID: PMC11766190 DOI: 10.3390/ijms26020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Aldosterone, the primary adrenal mineralocorticoid hormone, as an integral part of the renin-angiotensin-aldosterone system (RAAS), is crucial in blood pressure regulation and maintaining sodium and potassium levels. It interacts with the mineralocorticoid receptor (MR) expressed in the kidney and promotes sodium and water reabsorption, thereby increasing blood pressure. However, MRs are additionally expressed in other cells, such as cardiomyocytes, the endothelium, neurons, or brown adipose tissue cells. Therefore, aldosterone (especially aldosterone excess) may have other major impacts besides simply regulating blood pressure and circulating ion balance. Recent studies have reported a non-hypertensive impact on the cardiovascular, immune, and metabolic systems, a pro-oxidant effect, and a pro-fibrotic effect. In this review, we emphasise the non-hypertension-related effects of aldosterone, including advances in our understanding of the cellular mechanisms by which aldosterone mediates its cellular effects. We also summarise potential clinical complications related to both the hypertensive and non-hypertensive effects of aldosterone.
Collapse
Affiliation(s)
- Natalia Ekman
- Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (N.E.); (A.N.); (Ł.J.); (J.W.)
| | - Ashley B. Grossman
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Anna Nieckarz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (N.E.); (A.N.); (Ł.J.); (J.W.)
| | - Łukasz Jędrzejewski
- Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (N.E.); (A.N.); (Ł.J.); (J.W.)
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (N.E.); (A.N.); (Ł.J.); (J.W.)
| | - Dorota Dworakowska
- Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (N.E.); (A.N.); (Ł.J.); (J.W.)
| |
Collapse
|
2
|
Shironomae T, Yamazaki Y, Takeyama J, Sakai K, Sasano H, Suzuki T. Development of aldosterone biosynthesis during fetal and pediatric periods; Histological analysis of CYP11B2-positive cell distribution in the zona glomerulosa of human adrenal. J Steroid Biochem Mol Biol 2024; 244:106593. [PMID: 39094666 DOI: 10.1016/j.jsbmb.2024.106593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The distribution of CYP11B2-positive or aldosterone producing adrenocortical cells in human fetuses and children and their age-dependent changes has not been studied. We aimed to explore the changes of aldosterone biosynthesis and age-related histological alterations of the zona glomerulosa in human adrenal gland during fetal and pediatric periods. We first reviewed 125 fetal and pediatric autopsy cases and retrieved 78 adrenals from 70 cases. CYP11B2 immunohistochemistry and quantitative image analysis of its results were performed in all adrenal glands. The ratio of the definitive zone (DZ) or zona glomerulosa (ZG) / the whole adrenocortical areas started to increase in the 2nd trimester, subsequently decreased in the 3rd, increased after birth, peaked in infancy, and then gradually decreased. The ratio of CYP11B2-positive / whole adrenocortical areas remained low during the fetal period but increased after birth, peaked at infancy, and then decreased. The ratio of CYP11B2-positive / DZ or ZG areas and CYP11B2-positive areas / depth of DZ or ZG demonstrated a distinctive bimodal pattern, with one peak in the fetal period and another in the neonatal period to infancy. This is the first study to perform quantitative analysis of the distribution of CYP11B2-positive cells, the histological DZ or ZG, and the development of aldosterone biosynthesis in human adrenal glands during fetal and pediatric periods.
Collapse
Affiliation(s)
- Tsubasa Shironomae
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Urology, Miyagi Children's Hospital, Sendai, Japan
| | - Yuto Yamazaki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Junji Takeyama
- Department of Pathology, Miyagi Children's Hospital, Sendai, Japan
| | - Kiyohide Sakai
- Department of Urology, Miyagi Children's Hospital, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Yiallouris A, Filippou C, Themistocleous SC, Menelaou K, Kalodimou V, Michaeloudes C, Johnson EO. Aging of the adrenal gland and its impact on the stress response. VITAMINS AND HORMONES 2024; 124:341-366. [PMID: 38408802 DOI: 10.1016/bs.vh.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This article discusses the physiological and anatomical changes of adrenal gland with age and the effects this has overall on how the organ responds to stress. Physiological changes entail a decrease in adrenocorticoid hormone secretion however cortisol levels remain intact leading to a disruptive stress response. Additionally, loss of zonation of the organ also occurs. Both characteristics in combination with chronic stress affect overall health. Complex interplay between adrenal aging and stress responsiveness is confounded further by the impact they expel on other systems, such as the thyroid hormone. The body undergoes age-related transformations modifying rate of cellular growth, differentiation, senescence, and hormone production. Given the multiplicity and complexity of hormones, their production must be considered to develop appropriate interventions to mitigate its effect on age related diseases in health.
Collapse
Affiliation(s)
- Andreas Yiallouris
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Charalampos Filippou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Sophia C Themistocleous
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Katerina Menelaou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Vasiliki Kalodimou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Charalambos Michaeloudes
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Elizabeth O Johnson
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus.
| |
Collapse
|
4
|
Xu C. Extra-adrenal aldosterone: a mini review focusing on the physiology and pathophysiology of intrarenal aldosterone. Endocrine 2024; 83:285-301. [PMID: 37847370 DOI: 10.1007/s12020-023-03566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE Accumulating evidence has demonstrated the existence of extra-adrenal aldosterone in various tissues, including the brain, heart, vascular, adipocyte, and kidney, mainly based on the detection of the CYP11B2 (aldosterone synthase, cytochrome P450, family 11, subfamily B, polypeptide 2) expression using semi-quantitative methods including reverse transcription-polymerase chain reaction and antibody-based western blotting, as well as local tissue aldosterone levels by antibody-based immunosorbent assays. This mini-review highlights the current evidence and challenges in extra-adrenal aldosterone, focusing on intrarenal aldosterone. METHODS A narrative review. RESULTS Locally synthesized aldosterone may play a vital role in various physio-pathological processes, especially cardiovascular events. The site of local aldosterone synthesis in the kidney may include the mesangial cells, podocytes, proximal tubules, and collecting ducts. The synthesis of renal aldosterone may be regulated by (pro)renin receptor/(pro)renin, angiotensin II/Angiotensin II type 1 receptor, wnt/β-catenin, cyclooxygenase-2/prostaglandin E2, and klotho. Enhanced renal aldosterone release promotes Na+ reabsorption and K+ excretion in the distal nephron and may contribute to the progress of diabetic nephropathy and salt-related hypertension. CONCLUSIONS Inhibition of intrarenal aldosterone signaling by aldosterone synthase inhibitors or mineralocorticoid receptor antagonists may be a hopeful pharmacological technique for the therapy of diabetic nephropathy and saltrelated hypertension. Yet, current reports are often conflicting or ambiguous, leading many to question whether extra-adrenal aldosterone exists, or whether it is of any physiological and pathophysiological significance.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330002, Jiangxi, China.
| |
Collapse
|
5
|
Trandafir AI, Gheorghe AM, Sima OC, Ciuche A, Petrova E, Nistor C, Carsote M. Cross-Disciplinary Approach of Adrenal Tumors: Insights into Primary Aldosteronism-Related Mineral Metabolism Status and Osteoporotic Fracture Risk. Int J Mol Sci 2023; 24:17338. [PMID: 38139166 PMCID: PMC10743397 DOI: 10.3390/ijms242417338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Our objective was to overview the novel aspects in the field of adrenal gland neoplasms, namely, the management of bone status with respect to primary aldosteronism (PA). In the current narrative review, a PubMed study was conducted from inception until June 2023. The inclusion criteria were: human (clinically relevant) studies of any study design (at least 10 patients per study); English papers; and the following combination of key words within the title and/or abstract: "aldosterone" AND "bone", "skeleton", "osteoporosis", "fracture", "calcium", "parathyroid", "DXA", "osteocalcin", "P1NP", "alkaline phosphatase", "bone marker", "trabecular bone score", or "FRAX". The exclusion criteria were in vitro or animal studies, reviews, and case reports/series. We screened 1027 articles and finally included 23 studies (13 of case-control type, 3 cross-sectional, 5 prospective, 1 observational cohort, and 1 retrospective study). The assessments provided in these studies were as follows: nine studies addressed Dual-Energy X-ray Absorptiometry (DXA), another study pointed out a bone microarchitecture evaluation underlying trabecular bone score (TBS), and seven studies investigated the bone turnover markers (BTMs) profile. Moreover, 14 studies followed the subjects after adrenalectomy versus medical treatment, and 21 studies addressed secondary hyperparathyroidism in PA patients. According to our study on published data during a period of almost 40 years (n = 23, N = 3965 subjects aged between 38 and 64, with a mean age 56.75, and a female-to-male ratio of 1.05), a higher PTH in PA versus controls (healthy persons or subjects with essential hypertension) is expected, secondary hyperparathyroidism being associated in almost half of the adults diagnosed with PA. Additionally, mineral metabolism anomalies in PA may include lower serum calcium and higher urinary calcium output, all these three parameters being reversible under specific therapy for PA, regardless medical or surgical. The PA subgroup with high PTH seems at higher cardiovascular risk, while unilateral rather than bilateral disease was prone to this PTH anomaly. Moreover, bone mineral density (BMD) according to central DXA might show a higher fracture risk only in certain adults, TBS being a promising alternative (with a still unknown perspective of diabetes' influence on DXA-TBS results in PA). However, an overall increased fracture prevalence in PA is described in most studies, especially with respect to the vertebral site, the fracture risk that seems correctable upon aldosterone excess remission. These data recommend PA as a cause of secondary osteoporosis, a treatable one via PA intervention. There is still an area of debate the way to address BMTs profile in PA, the case's selection toward specific bone evaluation in every day practice, and further on, the understanding of the potential genetic influence at the level of bone and mineral complications in PA patients.
Collapse
Affiliation(s)
- Alexandra-Ioana Trandafir
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.T.); (O.-C.S.)
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| | - Ana-Maria Gheorghe
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.T.); (O.-C.S.)
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| | - Oana-Claudia Sima
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.T.); (O.-C.S.)
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| | - Adrian Ciuche
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Thoracic Surgery Department, “Dr. Carol Davila” Central Emergency University Military Hospital, 010825 Bucharest, Romania
| | - Eugenia Petrova
- Department of Endocrinology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.P.); (M.C.)
- Clinical Endocrinology Department, C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| | - Claudiu Nistor
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Thoracic Surgery Department, “Dr. Carol Davila” Central Emergency University Military Hospital, 010825 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.P.); (M.C.)
- Clinical Endocrinology Department, C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| |
Collapse
|
6
|
Gao X, Chang J, Chang Y, Fan L, Liu Z, Zhang C, Shimosawa T, Yang F, Xu Q. Esaxerenone Inhibits Renal Angiogenesis and Endothelial-Mesenchymal Transition via the VEGFA and TGF-β1 Pathways in Aldosterone-Infused Mice. Int J Mol Sci 2023; 24:11766. [PMID: 37511521 PMCID: PMC10380380 DOI: 10.3390/ijms241411766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Renal fibrosis is an inevitable process in the progression of chronic kidney disease (CKD). Angiogenesis plays an important role in this process. Vascular endothelial cells are involved in renal fibrosis by phenotypic transformation and secretion of extracellular matrix. Aldosterone stimulates mineralocorticoid receptor (MR) activation and induces inflammation, which is important for angiogenesis. Clinically, MR blockers (MRBs) have a protective effect on damaged kidneys, which may be associated with inhibition of angiogenesis. In this study, we used aldosterone-infused mice and found that aldosterone induced angiogenesis and that endothelial-mesenchymal transition (EndMT) in neovascular endothelial cells was involved in renal fibrosis. Notably, aldosterone induced inflammation and stimulated macrophages to secrete vascular endothelial growth factor (VEGF) A to regulate angiogenesis by activating MR, whereas EndMT occurred in response to transforming growth factor-β1 (TGF-β1) induction and participated in renal fibrosis. These effects were antagonized by the MRB esaxerenone. These findings suggest that reducing angiogenesis may be an effective strategy for treating renal fibrosis.
Collapse
Affiliation(s)
- Xiaomeng Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jingyue Chang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yi Chang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Lili Fan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ziqian Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Cuijuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
| | - Fan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
7
|
Hu J, Cai X, Zhu Q, Heizhati M, Wen W, Luo Q, Hong J, Dang Y, Yang W, Li N. Relationship Between Plasma Aldosterone Concentrations and Non-Alcoholic Fatty Liver Disease Diagnosis in Patients with Hypertension: A Retrospective Cohort Study. Diabetes Metab Syndr Obes 2023; 16:1625-1636. [PMID: 37304667 PMCID: PMC10257476 DOI: 10.2147/dmso.s408722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Objective To investigate the association between plasma aldosterone concentration (PAC) and non-alcoholic fatty liver disease (NAFLD) diagnosis in Chinese hypertensive patients. Methods We conducted a retrospective study of all patients diagnosed with hypertension between January 1, 2010, and December 31, 2021. We included 3713 hypertensive patients based on the criteria for inclusion and exclusion. PAC measurement was performed using a radioimmunoassay. NAFLD was diagnosed using abdominal ultrasonography. Cox regression analysis was used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for univariable and multivariable models. A generalized additive model was used to identify nonlinear relationships between PAC and NAFLD diagnosis. Results A total of 3713 participants were included in the analysis. Over a median follow-up of 30 months, 1572 hypertensive individuals developed new-onset NAFLD. When PAC was used as a continuous variable, the risk of NAFLD increased by 1.04 and 1.24-fold for each 1 ng/dL and 5 ng/dL increase in PAC, respectively. When PAC was considered a categorical variable, the HR for tertile 3 was 1.71 (95% CI, 1.47-1.98, P < 0.001) compared to tertile 1. Overall, there was a J-shaped relationship between PAC and new-onset NAFLD. By fitting a two-piecewise linear regression model and using a recursive algorithm, we identified a PAC inflection point at 13 ng/dL (log-likelihood ratio test, P = 0.005). In adjusted model 3, for PAC ≥ 13 ng/dL, a 5 ng/dL increase in PAC was associated with a 30% increase in the risk of new-onset NAFLD (95% CI, 1.25-1.35, P < 0.001). Conclusion The study revealed a non-linear relationship between elevated PAC levels and the incidence of NAFLD in hypertensive patients. Notably, the risk of new-onset NAFLD was significantly increased when PAC levels were ≥13 ng/dL. Larger, prospective studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Junli Hu
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Xintian Cai
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Qing Zhu
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Mulalibieke Heizhati
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Wen Wen
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Qin Luo
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Jing Hong
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Yujie Dang
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Wenbo Yang
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Nanfang Li
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
8
|
Takeda Y, Demura M, Kometani M, Karashima S, Yoneda T, Takeda Y. Molecular and Epigenetic Control of Aldosterone Synthase, CYP11B2 and 11-Hydroxylase, CYP11B1. Int J Mol Sci 2023; 24:ijms24065782. [PMID: 36982850 PMCID: PMC10054571 DOI: 10.3390/ijms24065782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Aldosterone and cortisol serve important roles in the pathogenesis of cardiovascular diseases and metabolic disorders. Epigenetics is a mechanism to control enzyme expression by genes without changing the gene sequence. Steroid hormone synthase gene expression is regulated by transcription factors specific to each gene, and methylation has been reported to be involved in steroid hormone production and disease. Angiotensin II or potassium regulates the aldosterone synthase gene, CYP11B2. The adrenocorticotropic hormone controls the 11b-hydroxylase, CYP11B1. DNA methylation negatively controls the CYP11B2 and CYP11B1 expression and dynamically changes the expression responsive to continuous stimulation of the promoter gene. Hypomethylation status of the CYP11B2 promoter region is seen in aldosterone-producing adenomas. Methylation of recognition sites of transcription factors, including cyclic AMP responsive element binding protein 1 or nerve growth factor-induced clone B, diminish their DNA-binding activity. A methyl-CpG-binding protein 2 cooperates directly with the methylated CpG dinucleotides of CYP11B2. A low-salt diet, treatment with angiotensin II, and potassium increase the CYP11B2 mRNA levels and induce DNA hypomethylation in the adrenal gland. A close association between a low DNA methylation ratio and an increased CYP11B1 expression is seen in Cushing's adenoma and aldosterone-producing adenoma with autonomous cortisol secretion. Epigenetic control of CYP11B2 or CYP11B1 plays an important role in autonomic aldosterone or cortisol synthesis.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Mitsuhiro Kometani
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takashi Yoneda
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yoshiyu Takeda
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
- Endocrine and Diabetes Center, Asanogawa General Hospital, Kanazawa 920-0811, Japan
| |
Collapse
|
9
|
Qiang P, Hao J, Yang F, Han Y, Chang Y, Xian Y, Xiong Y, Gao X, Liang L, Shimosawa T, Xu Q. Esaxerenone inhibits the macrophage-to-myofibroblast transition through mineralocorticoid receptor/TGF-β1 pathway in mice induced with aldosterone. Front Immunol 2022; 13:948658. [PMID: 36148244 PMCID: PMC9485811 DOI: 10.3389/fimmu.2022.948658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Renal fibrosis is the inevitable pathway of the progression of chronic kidney disease to end-stage renal disease, which manifests as progressive glomerulosclerosis and renal interstitial fibrosis. In a previous study, we observed severe interstitial fibrosis in the contralateral kidneys of 6-month unilateral ureteral obstruction (UUO) rats, which was accompanied by increased macrophage infiltration and phenotypic transformation; after eplerenone administration, these effects were reduced. Therefore, we hypothesized that this effect was closely related to mineralocorticoid receptor (MR) activation induced by the increased aldosterone (ALD) level. In this study, we used uninephrectomy plus continuous aldosterone infusion in mice to observe whether aldosterone induced macrophage-to-myofibroblast transition (MMT) and renal fibrosis and investigated the signaling pathways. Notably, aldosterone induced predominantly M1 macrophage-to-myofibroblast transition by activating MR and upregulating TGF-β1 expression, which promoted renal fibrosis. These effects were antagonized by the MR blocker esaxerenone. These findings suggest that targeting the MR/TGF-β1 pathway may be an effective therapeutic strategy for renal fibrosis.
Collapse
Affiliation(s)
- Panpan Qiang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Juan Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Fan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yutong Han
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Chang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunqian Xian
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunzhao Xiong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaomeng Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lijuan Liang
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita, Japan
- *Correspondence: Qingyou Xu, ; Tatsuo Shimosawa,
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Qingyou Xu, ; Tatsuo Shimosawa,
| |
Collapse
|
10
|
Mete O, Erickson LA, Juhlin CC, de Krijger RR, Sasano H, Volante M, Papotti MG. Overview of the 2022 WHO Classification of Adrenal Cortical Tumors. Endocr Pathol 2022; 33:155-196. [PMID: 35288842 PMCID: PMC8920443 DOI: 10.1007/s12022-022-09710-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
The new WHO classification of adrenal cortical proliferations reflects translational advances in the fields of endocrine pathology, oncology and molecular biology. By adopting a question-answer framework, this review highlights advances in knowledge of histological features, ancillary studies, and associated genetic findings that increase the understanding of the adrenal cortex pathologies that are now reflected in the 2022 WHO classification. The pathological correlates of adrenal cortical proliferations include diffuse adrenal cortical hyperplasia, adrenal cortical nodular disease, adrenal cortical adenomas and adrenal cortical carcinomas. Understanding germline susceptibility and the clonal-neoplastic nature of individual adrenal cortical nodules in primary bilateral macronodular adrenal cortical disease, and recognition of the clonal-neoplastic nature of incidentally discovered non-functional subcentimeter benign adrenal cortical nodules has led to redefining the spectrum of adrenal cortical nodular disease. As a consequence, the most significant nomenclature change in the field of adrenal cortical pathology involves the refined classification of adrenal cortical nodular disease which now includes (a) sporadic nodular adrenocortical disease, (b) bilateral micronodular adrenal cortical disease, and (c) bilateral macronodular adrenal cortical disease (formerly known primary bilateral macronodular adrenal cortical hyperplasia). This group of clinicopathological entities are reflected in functional adrenal cortical pathologies. Aldosterone producing cortical lesions can be unifocal or multifocal, and may be bilateral with no imaging-detected nodule(s). Furthermore, not all grossly or radiologically identified adrenal cortical lesions may be the source of aldosterone excess. For this reason, the new WHO classification endorses the nomenclature of the HISTALDO classification which uses CYP11B2 immunohistochemistry to identify functional sites of aldosterone production to help predict the risk of bilateral disease in primary aldosteronism. Adrenal cortical carcinomas are subtyped based on their morphological features to include conventional, oncocytic, myxoid, and sarcomatoid subtypes. Although the classic histopathologic criteria for diagnosing adrenal cortical carcinomas have not changed, the 2022 WHO classification underscores the diagnostic and prognostic impact of angioinvasion (vascular invasion) in these tumors. Microscopic angioinvasion is defined as tumor cells invading through a vessel wall and forming a thrombus/fibrin-tumor complex or intravascular tumor cells admixed with platelet thrombus/fibrin. In addition to well-established Weiss and modified Weiss scoring systems, the new WHO classification also expands on the use of other multiparameter diagnostic algorithms (reticulin algorithm, Lin-Weiss-Bisceglia system, and Helsinki scoring system) to assist the workup of adrenal cortical neoplasms in adults. Accordingly, conventional carcinomas can be assessed using all multiparameter diagnostic schemes, whereas oncocytic neoplasms can be assessed using the Lin-Weiss-Bisceglia system, reticulin algorithm and Helsinki scoring system. Pediatric adrenal cortical neoplasms are assessed using the Wieneke system. Most adult adrenal cortical carcinomas show > 5 mitoses per 10 mm2 and > 5% Ki67. The 2022 WHO classification places an emphasis on an accurate assessment of tumor proliferation rate using both the mitotic count (mitoses per 10 mm2) and Ki67 labeling index which play an essential role in the dynamic risk stratification of affected patients. Low grade carcinomas have mitotic rate of ≤ 20 mitoses per 10 mm2, whereas high-grade carcinomas show > 20 mitoses per 10 mm2. Ki67-based tumor grading has not been endorsed in the new WHO classification, since the proliferation indices are continuous variables rather than being static thresholds in tumor biology. This new WHO classification emphasizes the role of diagnostic and predictive biomarkers in the workup of adrenal cortical neoplasms. Confirmation of the adrenal cortical origin of a tumor remains a critical requirement when dealing with non-functional lesions in the adrenal gland which may be mistaken for a primary adrenal cortical neoplasm. While SF1 is the most reliable biomarker in the confirmation of adrenal cortical origin, paranuclear IGF2 expression is a useful biomarker in the distinction of malignancy in adrenal cortical neoplasms. In addition to adrenal myelolipoma, the new classification of adrenal cortical tumors has introduced new sections including adrenal ectopia, based on the potential role of such ectopic tissue as a possible source of neoplastic proliferations as well as a potential mimicker of metastatic disease. Adrenal cysts are also discussed in the new classification as they may simulate primary cystic adrenal neoplasms or even adrenal cortical carcinomas in the setting of an adrenal pseudocyst.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada.
- Endocrine Oncology Site, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald R de Krijger
- Princess Maxima Center for Pediatric Oncology, and Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marco Volante
- Department of Pathology, University of Turin, Turin, Italy
| | | |
Collapse
|
11
|
Cellular Senescence in Adrenocortical Biology and Its Disorders. Cells 2021; 10:cells10123474. [PMID: 34943980 PMCID: PMC8699888 DOI: 10.3390/cells10123474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is considered a physiological process along with aging and has recently been reported to be involved in the pathogenesis of many age-related disorders. Cellular senescence was first found in human fibroblasts and gradually explored in many other organs, including endocrine organs. The adrenal cortex is essential for the maintenance of blood volume, carbohydrate metabolism, reaction to stress and the development of sexual characteristics. Recently, the adrenal cortex was reported to harbor some obvious age-dependent features. For instance, the circulating levels of aldosterone and adrenal androgen gradually descend, whereas those of cortisol increase with aging. The detailed mechanisms have remained unknown, but cellular senescence was considered to play an essential role in age-related changes of the adrenal cortex. Recent studies have demonstrated that the senescent phenotype of zona glomerulosa (ZG) acts in association with reduced aldosterone production in both physiological and pathological aldosterone-producing cells, whereas senescent cortical-producing cells seemed not to have a suppressed cortisol-producing ability. In addition, accumulated lipofuscin formation, telomere shortening and cellular atrophy in zona reticularis cells during aging may account for the age-dependent decline in adrenal androgen levels. In adrenocortical disorders, including both aldosterone-producing adenoma (APA) and cortisol-producing adenoma (CPA), different cellular subtypes of tumor cells presented divergent senescent phenotypes, whereby compact cells in both APA and CPA harbored more senescent phenotypes than clear cells. Autonomous cortisol production from CPA reinforced a local cellular senescence that was more severe than that in APA. Adrenocortical carcinoma (ACC) was also reported to harbor oncogene-induced senescence, which compensatorily follows carcinogenesis and tumor progress. Adrenocortical steroids can induce not only a local senescence but also a periphery senescence in many other tissues. Therefore, herein, we systemically review the recent advances related to cellular senescence in adrenocortical biology and its associated disorders.
Collapse
|
12
|
Kućmierz J, Frąk W, Młynarska E, Franczyk B, Rysz J. Molecular Interactions of Arterial Hypertension in Its Target Organs. Int J Mol Sci 2021; 22:ijms22189669. [PMID: 34575833 PMCID: PMC8471598 DOI: 10.3390/ijms22189669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Arterial hypertension (AH) is a major risk factor for the development of cardiovascular diseases. It is estimated that the disease affects between 10% and 20% of the adult population and is responsible for 5.8% of all deaths worldwide. Several pathophysiologic factors are crucial in AH, including inappropriate activation of the renin-angiotensin-aldosterone system, oxidative stress and inflammation. The heart, kidney, brain, retina and arterial blood vessels are prime targets of hypertensive damage. Uncontrolled and untreated AH accelerates the damage to these organs and could cause their failure. Damage to these organs could also manifest as coronary heart disease, cognitive impairment, retinopathy or optic neuropathy. For better understanding, it is important to analyze molecular factors which take part in pathogenesis of AH and hypertension-related target organ damage. In our paper, we would like to focus on molecular interactions of AH in the heart, blood vessels, brain and kidneys. We focus on matrix metalloproteinases, the role of immune system, the renin-angiotensin-aldosterone system and oxidative stress in hypertensive induced organ damage.
Collapse
|