1
|
Bialon M, Schellenberg L, Herzog N, Kraus S, Jörißen H, Fischer R, Stein C, Nähring J, Barth S, Püttmann C. Cloning murine antibody V-genes with non-degenerate primers and conversion to a recombinant antibody format. Monoclon Antib Immunodiagn Immunother 2016; 33:369-77. [PMID: 25545205 DOI: 10.1089/mab.2014.0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Monoclonal antibodies are produced in cultured hybridoma cell lines, but these cells tend to be unstable; it is therefore necessary to rescue the corresponding genetic information. Here we describe an improved method for the amplification of antibody variable gene (V-gene) information from murine hybridoma cells using a panel of specific, non-degenerate primers. This primer set allows sequences to be rescued from all murine V-genes, except the lambda light chain genes, which rarely contribute to murine immune diversity. We tested the primers against a range of antibodies and recovered specific amplification products in all cases. The heavy and light chain variable regions were subsequently joined by a two-step cloning strategy or by splice overlap extension PCR.
Collapse
Affiliation(s)
- Magdalena Bialon
- 1 Department of Experimental Medicine and Immunotherapy, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Faulin TDES, Guilherme DF, Silva AS, Abdalla DSP, Hering VR, Politi MJ, Maranhão AQ. GFP-SCFV: expression and possible applications as a tool for experimental investigations of atherosclerosis. Biotechnol Prog 2014; 30:1206-13. [PMID: 24911875 DOI: 10.1002/btpr.1935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/21/2014] [Indexed: 12/26/2022]
Abstract
Experimental studies on atherosclerosis are crucial for investigating its pathophysiology, defining new therapeutic targets, and developing new drugs and diagnostic tools. Thus, many imaging markers have been developed and introduced in experimental studies. The main advantage of these new tools is that they allow the noninvasive diagnosis of atherosclerotic vascular disease. Here, we describe the cloning, expression, purification, and stabilization of a chimeric protein specifically designed to probe cells and tissues for the presence of LDL(-), a relevant marker of atherosclerosis. The DNA sequence that encodes the anti-LDL(-) scFv, previously obtained from a hybridoma secreting an anti-LDL(-) monoclonal antibody, was inserted into the bacterial vector pET-28a(+) in tandem with a DNA sequence encoding GFP. The recombinant protein was expressed in high yields in E. coli as inclusion bodies. The applicability of GFP-scFv was assessed by ELISA, which determined its affinity for LDL(-) and confocal microscopy, that showed macrophage uptake of the protein along with LDL(-). In conclusion, our data suggest that the anti-LDL(-) GFP-scFv chimeric protein could be useful in studies on atherogenesis as well as for developing diagnostic tools for atherosclerosis.
Collapse
|
3
|
Wang Z, Chen Y, Li S, Cheng Y, Zhao H, Jia M, Luo Z, Tang Y. Successful construction and stable expression of an anti-CD45RA scFv–EGFP fusion protein in Chinese hamster ovary cells. Protein Expr Purif 2014; 94:1-6. [DOI: 10.1016/j.pep.2013.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
|
4
|
Lombardi A, Gianese G, Arcangeli C, Galeffi P, Sperandei M. Bacterial cytoplasm production of an EGFP-labeled single-chain Fv antibody specific for the HER2 human receptor. J Biomol Struct Dyn 2012; 29:425-39. [PMID: 22066531 DOI: 10.1080/07391102.2011.10507396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human epidermal growth factor receptor 2 (HER2) is the main diagnostic marker of breast and ovary cancers. Here, to obtain a rapid and sensitive immunodiagnostic tool a single-chain antibody (scFv800E6) specific for the HER2 was fused to the N-terminus of the enhanced green fluorescent protein (EGFP) by a flexible linker. The soluble production of the novel scFv800E6-EGFP protein in the cytoplasm of Escherichia coli was investigated at different induction temperatures (25, 30 and 37°C); the intrinsic fluorescent properties and the binding activity to HER2 positive tumour cells of the fusion protein were analysed. Western blotting and fluorescence analysis of SDS-PAGE revealed the presence of two scFv800E6-EGFP forms, with different mobility and optical properties, their ratio depending on the induction temperature. The fluorescent form maintained the optical fluorescence properties of EGFP and exhibited a binding activity to the HER2-expressing cells comparable to that of the non-fused scFv800E6. In addition, to provide an insight into the effect of the induction temperature on the molecular structure, the folding of the fusion protein was assessed at atomic level by performing molecular dynamics simulations of the homology-derived model of scFv800E6-EGFP at 300 K and 310 K. The comparison of the data collected at these two temperatures revealed that the higher temperature affects specific structural elements. To improve the production of the soluble and functional scFv800E6-EGFP protein, "in silico" results could be utilised for ad hoc design of the molecular structure.
Collapse
Affiliation(s)
- Alessio Lombardi
- Institute of Biology and Agrarian Biotechnology (IBBA), National Research Council, via Bassini 15, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
5
|
Zakri AM, Ziegler A, Commandeur U, Fischer R, Torrance L. In vivo expression and binding activity of scFv-RWAV, which recognizes the coat protein of tomato leaf curl New Delhi virus (family Geminiviridae). Arch Virol 2012; 157:1291-9. [PMID: 22491815 DOI: 10.1007/s00705-012-1310-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 03/15/2012] [Indexed: 11/26/2022]
Abstract
Recombinant antibodies expressed in plants have the potential to interrupt virus infections by blocking essential stages of the infection cycle. Here, we show that the expression of a recombinant single-chain variable fragment (scFv) that recognizes the coat protein of tomato leaf curl New Delhi virus (ToLCNDV) in vitro can also bind to a recombinant coat protein in vivo in the reducing environment of the plant cytosol. The scFv and its target were both expressed as fluorescent protein fusions, one incorporating green fluorescent protein (GFP) and the other DsRed. We found that the incorporation of a nuclear localization signal into the scFv construct resulted in the nuclear import of the antibody-antigen complex, as shown by colocalization of the two fluorescent signals. This demonstrates that recombinant antibodies can be targeted to the nucleus and will bind to geminivirus coat proteins therein, allowing the virus infection cycle to be interrupted during its critical replicative phase.
Collapse
Affiliation(s)
- Adel M Zakri
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
6
|
Wang HR, Xiao ZY, Chen M, Wang FL, Liu J, Zhong H, Zhong JH, Ou-Yang RR, Shen YL, Pan SM. Anti-CHMP5 single chain variable fragment antibody retrovirus infection induces programmed cell death of AML leukemic cells in vitro. Acta Pharmacol Sin 2012; 33:809-16. [PMID: 22609838 DOI: 10.1038/aps.2012.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Over-expressed CHMP5 was found to act as oncogene that probably participated in leukemogenesis. In this study, we constructed the CHMP5 single chain variable fragment antibody (CHMP5-scFv) retrovirus and studied the changes of programmed cell death (PCD) of AML leukemic cells after infection by the retrovirus. METHODS The anti-CHMP5 KC14 hybridoma cell line was constructed to generate monoclonal antibody of CHMP5. The protein expression of CHMP5 was studied using immunofluorescence analysis. pMIG-CHMP5 scFv antibody expressible retroviral vector was constructed to prepare CHMP5-scFv retrovirus. AML leukemic U937 cells were infected with the retrovirus, and programmed cell death was studied using confocal microscope, FCM and Western blot. RESULTS We obtained a monoclonal antibody of CHMP5, and found the expression of CHMP5 was up-regulated in the leukemic cells. After U937 cells were infected with CHMP5-scFv retrovirus, CHMP5 protein was neutralized. Moreover, the infection resulted in a significant increase in apoptosis and necrosis of U937 cells. In U937 cells infected with CHMP5-scFv retrovirus, apoptosis-inducing factor (AIF)-mediated caspase-independent necrotic PCD was activated, but autophagic programmed cell death was not observed. Neither the intrinsic nor extrinsic apoptotic PCD pathway was activated. The granzyme B/perforin-mediated caspase-dependent apoptotic PCD pathway was not activated. CONCLUSION CHMP5-scFv retrovirus can neutralize the abnormally high levels of the CHMP5 protein in the cytosol of AML leukemic U937 cells, thereby inducing the programmed cell death of the leukemic cells via AIF-mediated caspase-independent necrosis and apoptosis.
Collapse
|
7
|
Sushma K, Vijayalakshmi MA, Krishnan V, Satheeshkumar PK. Cloning, expression, purification and characterization of a single chain variable fragment specific to tumor necrosis factor alpha in Escherichia coli. J Biotechnol 2011; 156:238-44. [DOI: 10.1016/j.jbiotec.2011.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 11/29/2022]
|
8
|
Markiv A, Beatson R, Burchell J, Durvasula RV, Kang AS. Expression of recombinant multi-coloured fluorescent antibodies in gor -/trxB- E. coli cytoplasm. BMC Biotechnol 2011; 11:117. [PMID: 22129156 PMCID: PMC3280946 DOI: 10.1186/1472-6750-11-117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/30/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Antibody-fluorophore conjugates are invaluable reagents used in contemporary molecular cell biology for imaging, cell sorting and tracking intracellular events. However they suffer in some cases from batch to batch variation, partial loss of binding and susceptibility to photo-bleaching. In theory, these issues can all be addressed by using recombinant antibody fused directly to genetically encoded fluorescent reporters. However, single-chain fragment variable domains linked by long flexible linkers are themselves prone to disassociation and aggregation, and in some cases with isoelectric points incompatible with use in physiologically relevant milieu. Here we describe a general approach that permits fully functional intracellular production of a range of coloured fluorescent recombinant antibodies with optimally orientated VH/VL interfaces and isoelectric points compatible for use in physiological solutions at pH 7.4 with a binding site to fluorophore stoichiometry of 1:1. RESULTS Here we report the design, assembly, intracellular bacterial production and purification of a panel of novel antibody fluorescent protein fusion constructs. The insertion of monomeric fluorescent protein derived from either Discosoma or Aequorea in-between the variable regions of anti-p185HER2-ECD antibody 4D5-8 resulted in optimal VH/VL interface interactions to create soluble coloured antibodies each with a single binding site, with isoelectric points of 6.5- 6. The fluorescent antibodies used in cell staining studies with SK-BR-3 cells retained the fluorophore properties and antibody specificity functions, whereas the conventional 4D5-8 single chain antibody with a (Gly4Ser)3 linker precipitated at physiological pH 7.4. CONCLUSIONS This modular monomeric recombinant fluorescent antibody platform may be used to create a range of recombinant coloured antibody molecules for quantitative in situ, in vivo and ex vivo imaging, cell sorting and cell trafficking studies. Assembling the single chain antibody with monomeric fluorescent protein linker facilitates optimal variable domain pairing and alters the isoelectric point of the recombinant 4D5-8 protein conferring solubility at physiological pH 7.4. The efficient intracellular expression of these functional molecules opens up the possibility of developing an alternative approach for tagging intracellular targets with fluorescent proteins for a range of molecular cell biology imaging studies.
Collapse
Affiliation(s)
- Anatoliy Markiv
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK
| | | | | | | | | |
Collapse
|
9
|
Naumann JM, Küttner G, Bureik M. Expression and Secretion of a CB4-1 scFv–GFP Fusion Protein by Fission Yeast. Appl Biochem Biotechnol 2010; 163:80-9. [DOI: 10.1007/s12010-010-9018-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/17/2010] [Indexed: 11/28/2022]
|
10
|
Yin XL, Yan X, Wen M, Peng ZP, Li SL. Synergistic antitumor effects of 131I-LC-1 IgM and IL-12 vaccine on Lewis lung carcinoma. Int Immunopharmacol 2009; 10:284-9. [PMID: 19951748 DOI: 10.1016/j.intimp.2009.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 11/14/2009] [Accepted: 11/24/2009] [Indexed: 11/16/2022]
Abstract
This study was designed to determine the antitumor effects of iodine-131 labeled monoclonal antibody LC-1 ((131)I-LC-1), interleukin-12 (IL-12) vaccine, or the combination of both on C57BL/6 mice bearing Lewis lung carcinoma (LLC) tumors. Tumor-bearing mice models were randomly divided into 4 groups that were respectively injected intratumorally with phosphate buffered solution (PBS), IL-12 vaccine gene therapy (GT), (131)I-LC-1 radioimmuno-therapy (RIT), or GT+RIT. Tumor volumes were measured before and after treatment. ELISA and RT-PCR determined the expression of IL-l2. LC-1 monoclonal antibody (Mab) was labeled with Na(131)I. Cytolytic T lymphocyte (CTL) activity assay, Natural Killer cell (NK) activity assay and apoptosis analysis were performed. Intratumoral (131)I-LC-1 injection leads to higher delivery of the antibody to the tumor. Tumor apoptosis occurred in the GT, RIT and GT+RIT groups. Tumor growth was inhibited in the GT, RIT and GT+RIT groups. Compared with other groups, the combination of GT+RIT up-regulated the expression of IL-l2 gene and inhibited the tumor growth more effectively than either GT or RIT alone (p<0.05). These results suggest that GT+RIT have the synergistic antitumor effects on tumor-bearing mice.
Collapse
Affiliation(s)
- Xiao Ling Yin
- Department of Radiological Medicine, Chongqing Medical University, Chongqing, PR China
| | | | | | | | | |
Collapse
|
11
|
Safarnejad MR, Fischer R, Commandeur U. Recombinant-antibody-mediated resistance against Tomato yellow leaf curl virus in Nicotiana benthamiana. Arch Virol 2009; 154:457-67. [PMID: 19234665 DOI: 10.1007/s00705-009-0330-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a geminivirus species whose members cause severe crop losses in the tropics and subtropics. We report the expression of a single-chain variable fragment (scFv) antibody that protected Nicotiana benthamiana plants from a prevalent Iranian isolate of the virus (TYLCV-Ir). Two recombinant antibodies (scFv-ScRep1 and scFv-ScRep2) interacting with the multifunctional replication initiator protein (Rep) were obtained from phage display libraries and expressed in plants, both as stand-alone proteins and as N-terminal GFP fusions. Initial results indicated that both scFvs and both fusions accumulated to a detectable level in the cytosol and nucleus of plant cells. Transgenic plants challenged with TYLCV-Ir showed that the scFv-ScRep1, but more so the fusion proteins, were able to suppress TYLCV-Ir replication. These results show that expression of a scFv-ScRep1-GFP fusion protein can attenuate viral DNA replication and prevent the development of disease symptoms. The present article describes the first successful application of a recombinant antibody-mediated resistance approach against a plant DNA virus.
Collapse
Affiliation(s)
- Mohammad Reza Safarnejad
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | | | | |
Collapse
|
12
|
Zhang C, Yu L, Qian R. Characterization of OmpK, GAPDH and their fusion OmpK-GAPDH derived from Vibrio harveyi outer membrane proteins: their immunoprotective ability against vibriosis in large yellow croaker (Pseudosciaena crocea). J Appl Microbiol 2008; 103:1587-99. [PMID: 17953570 DOI: 10.1111/j.1365-2672.2007.03386.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate the immunoprotection of three recombinant proteins derived from the Vibrio harveyi outer membrane proteins (OMPs) OmpK, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and their fusion OmpK-GAPDH as vaccine candidates from vibriosis of large yellow croaker (Pseudosciaena crocea). METHODS The ompK gene, of which the leader sequence was omitted, was fused with the gapdh gene. Three recombinant proteins r-OmpK, r-GAPDH and r-OmpK-GAPDH were expressed and purified. Western blots were carried out to detect the specificity of the antibodies raised against the recombinant proteins; Fish were immunized with recombinant proteins and challenged by native V. harveyi. The immunoresponse to the recombinant proteins were determined by ELISA and phagocytic activity assay. CONCLUSIONS The fusion protein r-OmpK-GAPDH can afford greater protection against the wild V. harveyi than r-OmpK or r-GAPDH alone or their mixture in humoral and cellular immunity, indicating that OmpK and GAPDH could produce a synergistic immunoprotection against vibriosis of large yellow croaker (Pseudosciaena crocea) when fused into OmpK-GAPDH with a linker. SIGNIFICANCE AND IMPACT OF THE STUDY It has been realized that a multi-component OMP antigen can induce a higher frequency of immune effectors than a single OMP. The results presented here bring forth a good suggestion for the subunit vaccine design based on the OMPs of gram-negative pathogens.
Collapse
Affiliation(s)
- C Zhang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
13
|
Huang D, Shusta EV. A yeast platform for the production of single-chain antibody-green fluorescent protein fusions. Appl Environ Microbiol 2006; 72:7748-59. [PMID: 17028228 PMCID: PMC1694270 DOI: 10.1128/aem.01403-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusion proteins comprised of a binding domain and green fluorescent protein (GFP) have the potential to act as one-step binding reagents. In this study, eight single-chain antibodies (scFv) and one single-chain T-cell receptor (scTCR) were secreted as fusions to GFP using a Saccharomyces cerevisiae expression system. Fusion protein secretion levels ranged over 3 orders of magnitude, from 4 microg/liter to 4 mg/liter, and correlated well with the secretion levels of the unfused scFv/scTCR. Three fusion types with various linker lengths and fusion orientations were tested for each scFv/scTCR. Although the fusion protein secretion levels were not significantly affected by the nature of the fusion construct, the properties of the fusion protein were clearly influenced. The fluorescence yield per fusion molecule was increased by separating the scFv/scTCR and GFP with an extended (GGGGS)3 linker, and fusions with scFv/scTCR at the carboxy-terminus were more resistant to degradation. By evaluating leader sequence processing and using GFP fluorescence to track intracellular processing, it was determined that the majority of fusion protein synthesized by the yeast was not secreted and in most cases was accumulating in an immature, although active, endoplasmic-reticulum (ER)-processed form. This contrasted with unfused scFv, which accumulated in both immature ER-processed and mature post-Golgi forms. The results indicated that yeast can be used as an effective host for the secretion of scFv/scTCR-GFP fusion proteins and that as a result of intracellular secretory bottlenecks, there is considerable yeast secretory capacity remaining to be exploited.
Collapse
Affiliation(s)
- Dagang Huang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | | |
Collapse
|
14
|
Lu M, Gong X, Lu Y, Guo J, Wang C, Pan Y. Molecular Cloning and Functional Characterization of a Cell-permeable Superoxide Dismutase Targeted to Lung Adenocarcinoma Cells. J Biol Chem 2006; 281:13620-13627. [PMID: 16551617 DOI: 10.1074/jbc.m600523200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In clinical oncology, many trials with superoxide dismutase (SOD) have failed to demonstrate antitumor ability and in many cases even caused deleterious effects because of low tumor-targeting ability. In the current research, the Nostoc commune Fe-SOD coding sequence was amplified from genomic DNA. In addition, the single chain variable fragment (ScFv) was constructed from the cDNA of an LC-1 hybridoma cell line secreting anti-lung adenocarcinoma monoclonal antibody. After modification, the SOD and ScFv were fused and co-expressed, and the resulting fusion protein produced SOD and LC-1 antibody activity. Tracing SOD-ScFv by fluorescein isothiocyanate and superoxide anions (O2*-) in SPC-A-1 cells showed that the fusion protein could recognize and enter SPC-A-1 cells to eliminate O2*-. The lower oxidative stress resulting from the decrease in cellular O2*- delayed the cell cycle at G1 and significantly slowed SPC-A-1 cell growth in association with the dephosphorylation of the serine-threonine protein kinase Akt and expression of p27kip1. The tumor-targeting fusion protein resulting from this research overcomes two disadvantages of SODs previously used in the clinical setting, the inability to target tumor cells or permeate the cell membrane. These findings lay the groundwork for development of an efficient antitumor drug targeted by the ScFv.
Collapse
Affiliation(s)
- Min Lu
- Institute of Biochemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xingguo Gong
- Institute of Biochemistry, Zhejiang University, Hangzhou, 310027, China.
| | - Yuwen Lu
- Institute of Biochemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jianjun Guo
- Institute of Biochemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chenhui Wang
- Institute of Biochemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjiang Pan
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|