1
|
Chen Y, Yin H, Sun J, Zhang G, Zhang Y, Zeng H. TrxR/Trx inhibitor butaselen ameliorates pulmonary fibrosis by suppressing NF-κB/TGF-β1/Smads signaling. Biomed Pharmacother 2023; 169:115822. [PMID: 37944440 DOI: 10.1016/j.biopha.2023.115822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Pulmonary fibrosis is highly lethal with limited treatments. Butaselen (BS) is an inhibitor of thioredoxin reductase (TrxR)/thioredoxin (Trx) with anti-tumor activity. However, its impact on pulmonary fibrosis and the involved mechanisms remain unclear. Here, we demonstrate that BS is a potential drug for the treatment of pulmonary fibrosis. Specifically, BS can inhibit pulmonary fibrosis both in vitro and in vivo, with comparable efficacy and enhanced safety when compared with pirfenidone. BS and dexamethasone display a synergistic effect in inhibiting pulmonary fibrosis both in vitro and in vivo. Mechanistic studies reveal that BS can inhibit the TrxR activity during pulmonary fibrosis. RNA-sequencing analysis identifies that genes of ECM-related signaling pathways are notably affected by BS. BS can not only inhibit the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and reduce pulmonary fibrosis-related inflammation, but also reduce NF-κB-activated transcriptional expression of transforming growth factor-β1 (TGF-β1), which leads to the inactivation of Smad2/Smad3 and decrease of collagen formation and fibrosis. Moreover, the knockdown of Trx1 with siRNA can also inhibit NF-κB/TGF-β1/Smads signaling. In conclusion, the TrxR/Trx inhibitor butaselen can suppress pulmonary fibrosis by inhibiting NF-κB/TGF-β1/Smads signaling.
Collapse
Affiliation(s)
- Yifan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China; Cancer Center, Peking University Third Hospital, Beijing, China; Biobank, Peking University Third Hospital, Beijing, China
| | - Hanwei Yin
- Shanghai Yuanxi Medicine Corp, Shanghai, China
| | - Jing Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guozhou Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ying Zhang
- Shanghai Yuanxi Medicine Corp, Shanghai, China
| | - Huihui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Han JH, Lee EJ, Park W, Choi JG, Ha KT, Chung HS. Cosmosiin Induces Apoptosis in Colorectal Cancer by Inhibiting PD-L1 Expression and Inducing ROS. Antioxidants (Basel) 2023; 12:2131. [PMID: 38136250 PMCID: PMC10740471 DOI: 10.3390/antiox12122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Immunotherapies, particularly those concerning immune checkpoint inhibitors, have transformed cancer treatment in recent years. Programmed death-ligand 1 (PD-L1) is a key target for immunotherapy that is overexpressed in the cells of colorectal cancer, a widespread malignant cancer that poses a significant healthcare challenge. This study investigated the effects of cosmosiin treatment on colorectal cancer cell lines. Cosmosiin is a naturally occurring flavone glycoside compound that has potential health benefits, including antioxidant and immunomodulatory effects. This study showed that cosmosiin effectively suppresses the expression of PD-L1 and triggers apoptosis, which is facilitated through pathways that are related to reactive oxygen species. These outcomes suggest that cosmosiin could be a promising candidate for an immune checkpoint inhibitor in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (J.H.H.); (E.-J.L.); (J.-G.C.)
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (J.H.H.); (E.-J.L.); (J.-G.C.)
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (W.P.); (K.-T.H.)
| | - Jang-Gi Choi
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (J.H.H.); (E.-J.L.); (J.-G.C.)
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (W.P.); (K.-T.H.)
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (J.H.H.); (E.-J.L.); (J.-G.C.)
- Korean Convergence Medical Science Major, University of Science and Technology (UST), KIOM Campus, Daegu 41062, Republic of Korea
| |
Collapse
|
3
|
Allegra A, Murdaca G, Mirabile G, Gangemi S. Redox Signaling Modulates Activity of Immune Checkpoint Inhibitors in Cancer Patients. Biomedicines 2023; 11:1325. [PMID: 37238995 PMCID: PMC10215686 DOI: 10.3390/biomedicines11051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although immunotherapy is already a staple of cancer care, many patients may not benefit from these cutting-edge treatments. A crucial field of research now focuses on figuring out how to improve treatment efficacy and assess the resistance mechanisms underlying this uneven response. For a good response, immune-based treatments, in particular immune checkpoint inhibitors, rely on a strong infiltration of T cells into the tumour microenvironment. The severe metabolic environment that immune cells must endure can drastically reduce effector activity. These immune dysregulation-related tumour-mediated perturbations include oxidative stress, which can encourage lipid peroxidation, ER stress, and T regulatory cells dysfunction. In this review, we have made an effort to characterize the status of immunological checkpoints, the degree of oxidative stress, and the part that latter plays in determining the therapeutic impact of immunological check point inhibitors in different neoplastic diseases. In the second section of the review, we will make an effort to assess new therapeutic possibilities that, by affecting redox signalling, may modify the effectiveness of immunological treatment.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino IRCCS, University of Genova, Viale Benedetto XV, n. 6, 16132 Genova, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
4
|
Jiao W, Bai M, Yin H, Liu J, Sun J, Su X, Zeng H, Wen J. Therapeutic Effects of an Inhibitor of Thioredoxin Reductase on Liver Fibrosis by Inhibiting the Transforming Growth Factor-β1/Smads Pathway. Front Mol Biosci 2021; 8:690170. [PMID: 34540892 PMCID: PMC8440796 DOI: 10.3389/fmolb.2021.690170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is an important stage in the progression of liver injury into cirrhosis or even liver cancer. Hepatic stellate cells (HSCs) are induced by transforming growth factor-β1 (TGF-β1) to produce α-smooth muscle actin (α-SMA) and collagens in liver fibrosis. Butaselen (BS), which was previously synthesized by our group, is an organic selenium compound that exerts antioxidant and tumor cell apoptosis–promoting effects by inhibiting the thioredoxin (Trx)/thioredoxin reductase (TrxR) system. The aim of this study was to investigate the potential effects of BS on liver fibrosis and explore the underlying molecular mechanisms of its action. Liver fibrosis models were established using male BALB/c mice through intraperitoneal injection of CCl4. BS was administered orally once daily at a dose of 36, 90, or 180 mg/kg. Silymarin (Si), which is a drug used for patients with nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, was administered at a dose of 30 mg/kg per day as a control. The action mechanisms of BS against liver fibrosis progression were examined in HSCs. The study revealed that the activity and expression levels of TrxR were elevated in the mouse liver and serum after CCl4-induced liver fibrosis. Oral administration of BS relieved the pathological state of mice with liver fibrosis, showing significant therapeutic effects against liver fibrosis. Moreover, BS not only induced HSC apoptosis but also inhibited the production of α-SMA and collagens by HSCs by downregulating the TGF-β1 expression and blocking the TGF-β1/Smads pathway. The results of the study indicated that BS inhibited liver fibrosis by regulating the TGF-β1/Smads pathway.
Collapse
Affiliation(s)
- Wenxuan Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Man Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hanwei Yin
- Shanghai Yuanxi Medicine Corp, Shanghai, China
| | - Jiayi Liu
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoxia Su
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Huihui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jinhua Wen
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Bailly C. Regulation of PD-L1 expression on cancer cells with ROS-modulating drugs. Life Sci 2020; 246:117403. [DOI: 10.1016/j.lfs.2020.117403] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
|
6
|
Busker S, Qian W, Haraldsson M, Espinosa B, Johansson L, Attarha S, Kolosenko I, Liu J, Dagnell M, Grandér D, Arnér ESJ, Tamm KP, Page BDG. Irreversible TrxR1 inhibitors block STAT3 activity and induce cancer cell death. SCIENCE ADVANCES 2020; 6:eaax7945. [PMID: 32219156 PMCID: PMC7083616 DOI: 10.1126/sciadv.aax7945] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/23/2019] [Indexed: 05/06/2023]
Abstract
Because of its key role in cancer development and progression, STAT3 has become an attractive target for developing new cancer therapeutics. While several STAT3 inhibitors have progressed to advanced stages of development, their underlying biology and mechanisms of action are often more complex than would be expected from specific binding to STAT3. Here, we have identified and optimized a series of compounds that block STAT3-dependent luciferase expression with nanomolar potency. Unexpectedly, our lead compounds did not bind to cellular STAT3 but to another prominent anticancer drug target, TrxR1. We further identified that TrxR1 inhibition induced Prx2 and STAT3 oxidation, which subsequently blocked STAT3-dependent transcription. Moreover, previously identified inhibitors of STAT3 were also found to inhibit TrxR1, and likewise, established TrxR1 inhibitors block STAT3-dependent transcriptional activity. These results provide new insights into the complexities of STAT3 redox regulation while highlighting a novel mechanism to block aberrant STAT3 signaling in cancer cells.
Collapse
Affiliation(s)
- S. Busker
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - W. Qian
- Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden, Umeå University, Umeå, Sweden
| | - M. Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - B. Espinosa
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - L. Johansson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - S. Attarha
- Department of Oncology and Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - I. Kolosenko
- Department of Oncology and Pathology, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - J. Liu
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M. Dagnell
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - D. Grandér
- Department of Oncology and Pathology, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - E. S. J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - K. Pokrovskaja Tamm
- Department of Oncology and Pathology, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - B. D. G. Page
- Department of Oncology and Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Corresponding author.
| |
Collapse
|
7
|
Wang Y, Wang P, Xu J. Phosphorylation: A Fast Switch For Checkpoint Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:347-398. [PMID: 32185718 DOI: 10.1007/978-981-15-3266-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Checkpoint signaling involves a variety of upstream and downstream factors that participate in the regulation of checkpoint expression, activation, and degradation. During the process, phosphorylation plays a critical role. Phosphorylation is one of the most well-documented post-translational modifications of proteins. Of note, the importance of phosphorylation has been emphasized in aspects of cell activities, including proliferation, metabolism, and differentiation. Here we summarize how phosphorylation of specific molecules affects the immune activities with preference in tumor immunity. Of course, immune checkpoints are given extra attention in this book. There are many common pathways that are involved in signaling of different checkpoints. Some of them are integrated and presented as common activities in the early part of this chapter, especially those associated with PD-1/PD-L1 and CTLA-4, because investigations concerning them are particularly abundant and variant. Their distinct regulation is supplementarily discussed in their respective section. As for checkpoints that are so far not well explored, their related phosphorylation modulations are listed separately in the later part. We hope to provide a clear and systematic view of the phosphorylation-modulated immune signaling.
Collapse
Affiliation(s)
- Yiting Wang
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine, School of Life Sciences and Technology, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Jia JJ, Geng WS, Wang ZQ, Chen L, Zeng XS. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 2019; 84:453-470. [PMID: 31079220 DOI: 10.1007/s00280-019-03869-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/04/2019] [Indexed: 01/16/2023]
Abstract
PURPOSE Cancer, a major public health problem, exhibits significant redox alteration. Thioredoxin (Trx) system, including Trx and Trx reductase (TrxR), as well as Trx-interacting protein (TXNIP) play important roles in controlling the cellular redox balance in cancer cells. In most cancers, Trx and TrxR are usually overexpressed and TXNIP is underexpressed. In recent years, some agents targeting Trx, TrxR, and TXNIP were used to explore a therapy approach for cancer patients. METHODS A systematic search of PMC and the PubMed Database was conducted to summarize the potential of Trx system inhibitors for cancer treatment. RESULTS In this article, we first summarize the functions of Trx, TrxR, and TXNIP in cancers. We also review some small molecule inhibitors of Trx/TrxR and D-allose (TXNIP inducer) and discuss their antitumor mechanisms. We highlight the combined inhibition of Trx system and GSH system in cancer therapy. We expect that a highly specific and selective antitumor agent with no cytotoxicity on human normal cells could be developed in the future. CONCLUSION In conclusion, Trx system may be very promising for clinical therapy of cancer in the future.
Collapse
Affiliation(s)
- Jin-Jing Jia
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Wen-Shuo Geng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Zhan-Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Lei Chen
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Xian-Si Zeng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|