1
|
Kandarakov OF, Polyakova NS, Petrovskaya AV, Bruter AV, Belyavsky AV. CD52/FLAG and CD52/HA Fusion Proteins as Novel Magnetic Cell Selection Markers. Int J Mol Sci 2024; 25:6353. [PMID: 38928060 PMCID: PMC11203882 DOI: 10.3390/ijms25126353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
At present, the magnetic selection of genetically modified cells is mainly performed with surface markers naturally expressed by cells such as CD4, LNGFR (low affinity nerve growth factor receptor), and MHC class I molecule H-2Kk. The disadvantage of such markers is the possibility of their undesired and poorly predictable expression by unmodified cells before or after cell manipulation, which makes it essential to develop new surface markers that would not have such a drawback. Earlier, modified CD52 surface protein variants with embedded HA and FLAG epitope tags (CD52/FLAG and CD52/HA) were developed by the group of Dr. Mazurov for the fluorescent cell sorting of CRISPR-modified cells. In the current study, we tested whether these markers can be used for the magnetic selection of transduced cells. For this purpose, appropriate constructs were created in MigR1-based bicistronic retroviral vectors containing EGFP and DsRedExpress2 as fluorescent reporters. Cytometric analysis of the transduced NIH 3T3 cell populations after magnetic selection evaluated the efficiency of isolation and purity of the obtained populations, as well as the change in the median fluorescence intensity (MFI). The results of this study demonstrate that the surface markers CD52/FLAG and CD52/HA can be effectively used for magnetic cell selection, and their efficiencies are comparable to that of the commonly used LNGFR marker. At the same time, the significant advantage of these markers is the absence of HA and FLAG epitope sequences in cellular proteins, which rules out the spurious co-isolation of negative cells.
Collapse
Affiliation(s)
- Oleg F. Kandarakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia; (O.F.K.); (N.S.P.); (A.V.P.)
| | - Natalia S. Polyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia; (O.F.K.); (N.S.P.); (A.V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Vavilov Str. 32, 119991 Moscow, Russia;
| | - Alexandra V. Petrovskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia; (O.F.K.); (N.S.P.); (A.V.P.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Vavilov Str. 32, 119991 Moscow, Russia;
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, 119334 Moscow, Russia
| | - Alexander V. Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia; (O.F.K.); (N.S.P.); (A.V.P.)
| |
Collapse
|
2
|
Arekatla G, Trenzinger C, Reimann A, Loeffler D, Kull T, Schroeder T. Optogenetic manipulation identifies the roles of ERK and AKT dynamics in controlling mouse embryonic stem cell exit from pluripotency. Dev Cell 2023:S1534-5807(23)00183-1. [PMID: 37207652 DOI: 10.1016/j.devcel.2023.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
ERK and AKT signaling control pluripotent cell self-renewal versus differentiation. ERK pathway activity over time (i.e., dynamics) is heterogeneous between individual pluripotent cells, even in response to the same stimuli. To analyze potential functions of ERK and AKT dynamics in controlling mouse embryonic stem cell (ESC) fates, we developed ESC lines and experimental pipelines for the simultaneous long-term manipulation and quantification of ERK or AKT dynamics and cell fates. We show that ERK activity duration or amplitude or the type of ERK dynamics (e.g., transient, sustained, or oscillatory) alone does not influence exit from pluripotency, but the sum of activity over time does. Interestingly, cells retain memory of previous ERK pulses, with duration of memory retention dependent on duration of previous pulse length. FGF receptor/AKT dynamics counteract ERK-induced pluripotency exit. These findings improve our understanding of how cells integrate dynamics from multiple signaling pathways and translate them into cell fate cues.
Collapse
Affiliation(s)
- Geethika Arekatla
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Christoph Trenzinger
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Andreas Reimann
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
3
|
Abstract
Magnetic cell separation has become a key methodology for the isolation of target cell populations from biological suspensions, covering a wide spectrum of applications from diagnosis and therapy in biomedicine to environmental applications or fundamental research in biology. There now exists a great variety of commercially available separation instruments and reagents, which has permitted rapid dissemination of the technology. However, there is still an increasing demand for new tools and protocols which provide improved selectivity, yield and sensitivity of the separation process while reducing cost and providing a faster response. This review aims to introduce basic principles of magnetic cell separation for the neophyte, while giving an overview of recent research in the field, from the development of new cell labeling strategies to the design of integrated microfluidic cell sorters and of point-of-care platforms combining cell selection, capture, and downstream detection. Finally, we focus on clinical, industrial and environmental applications where magnetic cell separation strategies are amongst the most promising techniques to address the challenges of isolating rare cells.
Collapse
|
4
|
Emadi E, Bordbar AK, Nadri H, Shams A, Taheri-Kafrani A, Kalantar SM. Isolation of HLA-G + cells using MEM-G/9 antibody-conjugated magnetic nanoparticles for prenatal screening: a reliable, fast and efficient method. RSC Adv 2021; 11:30990-31001. [PMID: 35498932 PMCID: PMC9041322 DOI: 10.1039/d1ra05988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
The development of an effective and noninvasive early method for obtaining fetal cells is crucial to prenatal screening. Despite proving the presence of fetal cells in the reproductive tract, their use is limited due to their inability to properly isolate them from maternal cells. Magnetic-activated cell sorting (MACS) is a simple technique to separate cells. The present study aimed to develop a MACS-based platform for the isolation of the HLA-G expressing trophoblast cells. For this purpose, first, the triazine functionalized MNPs were synthesized and characterized. Then, MNPs were directly and indirectly conjugated by the MEM-G/9 antibodies targeting HLA-G+ cells. The antibody amount on the surface of the nanoparticles was determined with the Bradford assay. The cell capture efficiency was also investigated. Various characterization methods confirmed the successful nanoparticle synthesis and antibody conjugation. The optimal initial antibody amount for the immobilization was about 20 μg and the optimal time was 3 h. The antibody-nanoparticles by the indirect method had better targeting and capture efficiency than the direct method. The MNPs indirectly conjugated with antibodies are an efficient tool for cell isolation and present considerable potential to be applied in biomedical fields.
Collapse
Affiliation(s)
- Elaheh Emadi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services Yazd 8916978477 Iran
| | - Abdol-Khalegh Bordbar
- Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
- California Institute for Quantitative Biosciences (QB3), University of California Berkeley CA 94720 USA
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Centre, Shahid Sadoughi University of Medical Sciences and Health Services Yazd 8916978477 Iran
| | - Ali Shams
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services Yazd 8916978477 Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran
| | - Seyed Mehdi Kalantar
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services Yazd 8916978477 Iran
- Research and Clinical Centre for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences Yazd 8916978477 Iran
| |
Collapse
|
5
|
Characterization and Separation of Live and Dead Yeast Cells Using CMOS-Based DEP Microfluidics. MICROMACHINES 2021; 12:mi12030270. [PMID: 33800809 PMCID: PMC8001765 DOI: 10.3390/mi12030270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
This study aims at developing a miniaturized CMOS integrated silicon-based microfluidic system, compatible with a standard CMOS process, to enable the characterization, and separation of live and dead yeast cells (as model bio-particle organisms) in a cell mixture using the DEP technique. DEP offers excellent benefits in terms of cost, operational power, and especially easy electrode integration with the CMOS architecture, and requiring label-free sample preparation. This can increase the likeliness of using DEP in practical settings. In this work the DEP force was generated using an interdigitated electrode arrays (IDEs) placed on the bottom of a CMOS-based silicon microfluidic channel. This system was primarily used for the immobilization of yeast cells using DEP. This study validated the system for cell separation applications based on the distinct responses of live and dead cells and their surrounding media. The findings confirmed the device’s capability for efficient, rapid and selective cell separation. The viability of this CMOS embedded microfluidic for dielectrophoretic cell manipulation applications and compatibility of the dielectrophoretic structure with CMOS production line and electronics, enabling its future commercially mass production.
Collapse
|
6
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
7
|
Vorobyova IG, Shukurov RR, Kozlov DG, Koryagina TB, Antipova NV, Stepanenko VN. Modification of a System Based on the Use of Selection and Sorting Markers for the Screening of Stable Transfectants. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818090077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Yao J, Zhu G, Zhao T, Takei M. Microfluidic device embedding electrodes for dielectrophoretic manipulation of cells-A review. Electrophoresis 2018; 40:1166-1177. [PMID: 30378130 DOI: 10.1002/elps.201800440] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022]
Abstract
Microfluidic device embedding electrodes realizes cell manipulation with the help of dielectrophoresis. Cell manipulation is an important technology for cell sorting and cell population purification. Till now, the theory of dielectrophoresis has been greatly developed. Microfluidic devices with various arrangements of electrodes have been reported from the beginning of the single non-uniform electric field to the later multiple physical fields. This paper reviews the research status of microfluidic device embedding electrodes for cell manipulation based on dielectrophoresis. Firstly, the working principle of dielectrophoresis is explained. Next, cell manipulation approaches based on dielectrophoresis are introduced. Then, different types of electrode arrangements in the microfluidic device for cell manipulation are discussed, including planar, multilayered and microarray dot electrodes. Finally, the future development trend of the dielectrophoresis with the help of microfluidic devices is prospected. With the rapid development of microfluidic technology, in the near future, high precision, high throughput, high efficiency, multifunctional, portable, economical and practical microfluidic dielectrophoresis will be widely used in the fields of biology, medicine, agriculture and so on.
Collapse
Affiliation(s)
- Jiafeng Yao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Guiping Zhu
- College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Tong Zhao
- Faculty of Mechanical and Precision Instrument Engineering, Xi`an University of Technology, Xi'an, 710048, P. R. China
| | - Masahiro Takei
- Department of Mechanical Engineering, Chiba University, Chiba, 263-0022, Japan
| |
Collapse
|
9
|
Zhao JY, Osipovich O, Koues OI, Majumder K, Oltz EM. Activation of Mouse Tcrb: Uncoupling RUNX1 Function from Its Cooperative Binding with ETS1. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28637900 DOI: 10.4049/jimmunol.1700146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T lineage commitment requires the coordination of key transcription factors (TFs) in multipotent progenitors that transition them away from other lineages and cement T cell identity. Two important TFs for the multipotent progenitors to T lineage transition are RUNX1 and ETS1, which bind cooperatively to composite sites throughout the genome, especially in regulatory elements for genes involved in T lymphopoiesis. Activation of the TCR β (Tcrb) locus in committed thymocytes is a critical process for continued development of these cells, and is mediated by an enhancer, Eβ, which harbors two RUNX-ETS composite sites. An outstanding issue in understanding T cell gene expression programs is whether RUNX1 and ETS1 have independent functions in enhancer activation that can be dissected from cooperative binding. We now show that RUNX1 is sufficient to activate the endogenous mouse Eβ element and its neighboring 25 kb region by independently tethering this TF without coincidental ETS1 binding. Moreover, RUNX1 is sufficient for long-range promoter-Eβ looping, nucleosome clearance, and robust transcription throughout the Tcrb recombination center, spanning both DβJβ clusters. We also find that a RUNX1 domain, termed the negative regulatory domain for DNA binding, can compensate for the loss of ETS1 binding at adjacent sites. Thus, we have defined independent roles for RUNX1 in the activation of a T cell developmental enhancer, as well as its ability to mediate specific changes in chromatin landscapes that accompany long-range induction of recombination center promoters.
Collapse
Affiliation(s)
- Jiang-Yang Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Oleg Osipovich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Olivia I Koues
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kinjal Majumder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
10
|
Wolfien M, Rimmbach C, Schmitz U, Jung JJ, Krebs S, Steinhoff G, David R, Wolkenhauer O. TRAPLINE: a standardized and automated pipeline for RNA sequencing data analysis, evaluation and annotation. BMC Bioinformatics 2016; 17:21. [PMID: 26738481 PMCID: PMC4702420 DOI: 10.1186/s12859-015-0873-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/22/2015] [Indexed: 11/23/2022] Open
Abstract
Background Technical advances in Next Generation Sequencing (NGS) provide a means to acquire deeper insights into cellular functions. The lack of standardized and automated methodologies poses a challenge for the analysis and interpretation of RNA sequencing data. We critically compare and evaluate state-of-the-art bioinformatics approaches and present a workflow that integrates the best performing data analysis, data evaluation and annotation methods in a Transparent, Reproducible and Automated PipeLINE (TRAPLINE) for RNA sequencing data processing (suitable for Illumina, SOLiD and Solexa). Results Comparative transcriptomics analyses with TRAPLINE result in a set of differentially expressed genes, their corresponding protein-protein interactions, splice variants, promoter activity, predicted miRNA-target interactions and files for single nucleotide polymorphism (SNP) calling. The obtained results are combined into a single file for downstream analysis such as network construction. We demonstrate the value of the proposed pipeline by characterizing the transcriptome of our recently described stem cell derived antibiotic selected cardiac bodies ('aCaBs'). Conclusion TRAPLINE supports NGS-based research by providing a workflow that requires no bioinformatics skills, decreases the processing time of the analysis and works in the cloud. The pipeline is implemented in the biomedical research platform Galaxy and is freely accessible via www.sbi.uni-rostock.de/RNAseqTRAPLINE or the specific Galaxy manual page (https://usegalaxy.org/u/mwolfien/p/trapline---manual). Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0873-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Markus Wolfien
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057, Rostock, Germany.
| | - Christian Rimmbach
- Reference und Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, 18057, Germany.
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, 2050, Camperdown, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Julia Jeannine Jung
- Reference und Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, 18057, Germany.
| | - Stefan Krebs
- Gene Center Munich, LMU Munich, 81377, Munich, Germany.
| | - Gustav Steinhoff
- Reference und Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, 18057, Germany.
| | - Robert David
- Reference und Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, 18057, Germany.
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057, Rostock, Germany. .,Stellenbosch Institute of Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, 7602, Stellenbosch, South Africa.
| |
Collapse
|
11
|
Lan H, Khismatullin DB. Numerical simulation of the pairwise interaction of deformable cells during migration in a microchannel. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012705. [PMID: 25122333 DOI: 10.1103/physreve.90.012705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 06/03/2023]
Abstract
Leukocytes and other circulating cells deform and move relatively to the channel flow in the lateral and translational directions. Their migratory property is important in immune response, hemostasis, cancer progression, delivery of nutrients, and microfluidic technologies such as cell separation and enrichment, and flow cytometry. Using our three-dimensional computational algorithm for multiphase viscoelastic flow, we have investigated the effect of pairwise interaction on the lateral and translational migration of circulating cells in a microchannel. The numerical simulation data show that when two cells with the same size and small separation distance interact, repulsive interaction take place until they reach the same lateral equilibrium position. During this process, they undergo swapping or passing, depending on the initial separation distance between each other. The threshold value of this distance increases with cell deformation, indicating that the cells experiencing larger deformation are more likely to swap. When a series of closely spaced cells with the same size are considered, they generally undergo damped oscillation in both lateral and translational directions until they reach equilibrium positions where they become evenly distributed in the flow direction (self-assembly phenomenon). A series of cells with a large lateral separation distance could collide repeatedly with each other, eventually crossing the centerline and entering the other side of the channel. For a series of cells with different deformability, more deformable cells, upon impact with less deformable cells, move to an equilibrium position closer to the centerline. The results of our study show that the bulk deformation of circulating cells plays a key role in their migration in a microchannel.
Collapse
Affiliation(s)
- Hongzhi Lan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | - Damir B Khismatullin
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
12
|
McArdle A, Chung MT, Paik KJ, Duldulao C, Chan C, Rennert R, Walmsley GG, Senarath-Yapa K, Hu M, Seo E, Lee M, Wan DC, Longaker MT. Positive selection for bone morphogenetic protein receptor type-IB promotes differentiation and specification of human adipose-derived stromal cells toward an osteogenic lineage. Tissue Eng Part A 2014; 20:3031-40. [PMID: 24854876 DOI: 10.1089/ten.tea.2014.0101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adipose tissue represents an abundant and easily accessible source of multipotent cells that may serve as an excellent building block for tissue engineering. However, adipose-derived stromal cells (ASCs) are a heterogeneous group and subpopulations may be identified with enhanced osteogenic potential. METHODS Human ASC subpopulations were prospectively isolated based on expression of bone morphogenetic protein receptor type-IB (BMPR-IB). Unsorted, BMPR-IB(+), and BMPR-IB(-) cells were analyzed for their osteogenic capacity through histological staining and gene expression. To evaluate their in vivo osteogenic potential, critical-sized calvarial defects were created in immunocompromised mice and treated with unsorted, BMPR-IB(+), or BMPR-IB(-) cells. Healing was assessed using microcomputed tomography and pentachrome staining of specimens at 8 weeks. RESULTS Increased osteogenic differentiation was noted in the BMPR-IB(+) subpopulation, as demonstrated by alkaline phosphatase staining at day 7 and extracellular matrix mineralization with Alizarin red staining at day 14. This was also associated with increased expression for osteocalcin, a late marker of osteogenesis. Radiographic analysis demonstrated significantly enhanced healing of critical-sized calvarial defects treated with BMPR-IB(+) ASCs compared with unsorted or BMPR-IB(-) cells. This was confirmed through pentachrome staining, which revealed more robust bone regeneration in the BMPR-IB(+) group. CONCLUSION BMPR-IB(+) human ASCs have an enhanced ability to form bone both in vitro and in vivo. These data suggest that positive selection for BMPR-IB(+) and manipulation of the BMP pathway in these cells may yield a highly osteogenic subpopulation of cells for bone tissue engineering.
Collapse
Affiliation(s)
- Adrian McArdle
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jung JJ, Husse B, Rimmbach C, Krebs S, Stieber J, Steinhoff G, Dendorfer A, Franz WM, David R. Programming and isolation of highly pure physiologically and pharmacologically functional sinus-nodal bodies from pluripotent stem cells. Stem Cell Reports 2014; 2:592-605. [PMID: 24936448 PMCID: PMC4050488 DOI: 10.1016/j.stemcr.2014.03.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/16/2022] Open
Abstract
Therapeutic approaches for “sick sinus syndrome” rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via “biological pacemakers” derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells. These induced sinoatrial bodies (iSABs) exhibited highly increased beating rates (300–400 bpm), coming close to those found in mouse hearts, and were able to robustly pace myocardium ex vivo. Our study introduces iSABs as highly pure, functional nodal tissue that is derived from PSCs and may be important for future cell therapies and drug testing in vitro. TBX3 plus Myh6-promoter antibiotic selection yields pacemaker cells from PSCs Induced sinoatrial bodies (iSABs) consist of >80% functional pacemaker cells iSABs showed highly increased beating rates and were able to pace myocardium ex vivo iSABs represent highly pure functional nodal tissue derived from PSCs
Collapse
Affiliation(s)
- Julia Jeannine Jung
- Referenz und Translationszentrum für Kardiale Stammzelltherapie (RTC) der Universität Rostock, 18057 Rostock, Germany
| | - Britta Husse
- Universitätsklinik für Innere Medizin III, Kardiologie und Angiologie, 6020 Innsbruck, Austria ; Walter Brendel Centre, LMU Munich, 81377 Munich, Germany
| | - Christian Rimmbach
- Referenz und Translationszentrum für Kardiale Stammzelltherapie (RTC) der Universität Rostock, 18057 Rostock, Germany
| | - Stefan Krebs
- Gene Center Munich, LMU Munich, 81377 Munich, Germany
| | - Juliane Stieber
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gustav Steinhoff
- Referenz und Translationszentrum für Kardiale Stammzelltherapie (RTC) der Universität Rostock, 18057 Rostock, Germany
| | - Andreas Dendorfer
- Walter Brendel Centre, LMU Munich, 81377 Munich, Germany ; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Wolfgang-Michael Franz
- Universitätsklinik für Innere Medizin III, Kardiologie und Angiologie, 6020 Innsbruck, Austria
| | - Robert David
- Referenz und Translationszentrum für Kardiale Stammzelltherapie (RTC) der Universität Rostock, 18057 Rostock, Germany
| |
Collapse
|
14
|
Xu T, Yang K, You H, Chen A, Wang J, Xu K, Gong C, Shao J, Ma Z, Guo F, Qi J. Regulation of PTHrP expression by cyclic mechanical strain in postnatal growth plate chondrocytes. Bone 2013; 56:304-11. [PMID: 23831868 DOI: 10.1016/j.bone.2013.06.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 01/17/2023]
Abstract
Mechanical loading has been widely considered to be a crucial regulatory factor for growth plate development, but the exact mechanisms of this regulation are still not completely understood. In the growth plate, parathyroid hormone-related protein (PTHrP) regulates chondrocyte differentiation and longitudinal growth. Cyclic mechanical strain has been demonstrated to influence growth plate chondrocyte differentiation and metabolism, whereas the relationship between cyclic mechanical strain and PTHrP expression is not clear. The objective of this study was to investigate whether short-term cyclic tensile strain regulates PTHrP expression in postnatal growth plate chondrocytes in vitro and to explore whether the organization of cytoskeletal F-actin microfilaments is involved in this process. To this end, we obtained growth plate chondrocytes from 2-week-old Sprague-Dawley rats and sorted prehypertrophic and hypertrophic chondrocytes using immunomagnetic beads coated with anti-CD200 antibody. The sorted chondrocytes were subjected to cyclic tensile strain of varying magnitude and duration at a frequency of 0.5 Hz. We found that cyclic strain regulates PTHrP expression in a magnitude- and time-dependent manner. Incubation of chondrocytes with cytochalasin D, an actin microfilament-disrupting reagent, blocked the induction of PTHrP expression in response to strain. The results suggest that short-term cyclic tensile strain induces PTHrP expression in postnatal growth plate prehypertrophic and hypertrophic chondrocytes and that PTHrP expression by these chondrocytes may subsequently affect growth plate development. The results also support the idea that the organization of cytoskeletal F-actin microfilaments plays an important role in mechanotransduction.
Collapse
Affiliation(s)
- Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen W, Zhang WW, Shi C, Lian X, Yi S, Yang T. Enrichment of epidermal stem cells of rats by Vario magnetic activated cell sorting system. In Vitro Cell Dev Biol Anim 2013; 49:583-8. [PMID: 23949742 DOI: 10.1007/s11626-013-9632-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/01/2013] [Indexed: 12/23/2022]
Abstract
Epidermal stem cells (ESCs) play an important role in skin homeostasis, wound repair, and tumorigensis which have great potential in scientific research and clinical application. So, the efficient isolation of these infrequent stem cells is very important for researchers to solve the problem of low purity and insufficient quantity of stem cells in vitro. The aim of this study was to investigate a method for the enrichment of ESCs by magnetic activated cell sorting system. The isolation strategy was CD71 depletion followed by α6-integrin positive selection. The percentage of α6(bri)CD71(dim) cells in isolated cells was 94.59%. Transmission electron microscopy results revealed that α6(bri) CD71(dim) cells exhibited some typical characteristics like progenitor cells, such as big nucleus, obvious nucleolus, large nuclear-cytoplasm ratio, and few organelles in cytoplasm. When cultured in vitro, the α6(bri)CD71(dim) cells had greater proliferating potential and higher colony-forming ability, and high levels of epidermal stem cell markers were expressed in our positive cells. ESCs have been successfully isolated from neonatal epidermis using Vario MACS and cultured in vitro. This isolation method is simple, fast, and inexpensive, providing an important tool for tissue engineering and cell transplantation studies.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, Xinqiao Hospital, The Third Military Medical University, Chongqing, 400037, China
| | | | | | | | | | | |
Collapse
|
16
|
Positron emission tomography based in-vivo imaging of early phase stem cell retention after intramyocardial delivery in the mouse model. Eur J Nucl Med Mol Imaging 2013; 40:1730-8. [DOI: 10.1007/s00259-013-2480-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/03/2013] [Indexed: 01/13/2023]
|
17
|
Brenner C, David R, Franz WM. Cardiovascular Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
18
|
Promising iron oxide-based magnetic nanoparticles in biomedical engineering. Arch Pharm Res 2012; 35:2045-61. [PMID: 23263800 DOI: 10.1007/s12272-012-1203-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/11/2012] [Accepted: 08/21/2012] [Indexed: 12/28/2022]
Abstract
For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.
Collapse
|
19
|
David R, Schwarz F, Rimmbach C, Nathan P, Jung J, Brenner C, Jarsch V, Stieber J, Franz WM. Selection of a common multipotent cardiovascular stem cell using the 3.4-kb MesP1 promoter fragment. Basic Res Cardiol 2012. [DOI: 10.1007/s00395-012-0312-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Lee MY, Lufkin T. Development of the "Three-step MACS": a novel strategy for isolating rare cell populations in the absence of known cell surface markers from complex animal tissue. J Biomol Tech 2012; 23:69-77. [PMID: 22951961 DOI: 10.7171/jbt.12-2302-003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To circumvent the difficulty of isolating specific cell populations by MACS from dissociated complex animal tissue, when their proportions reached levels similar to that of the background, we developed the "Three-step MACS" strategy. Cells of interest are defined by their expression of a particular gene(s) of interest rather by than their natural cell surface markers or size. A two-component transgenic cell surface protein, for two sequential rounds of MACS, is expressed under the promoter control of the endogenous gene of interest by means of gene targeting and the generation of transgenic tissue. An initial step to remove dead cells is also used. Here, we describe proof-of-concept experiments, using the biotin acceptor peptide (BAP)-low-affinity nerve growth factor receptor as the two-component protein. The first component, the BAP, can be biotinylated in specific subsets of cells expressing a particular gene by expressing the biotinylating enzyme, hBirA = humanized BirA (hBirA), under the promoter control of another gene defining the specific subpopulation. We showed that a rare population of cells (1.1% of the 13.5 days postcoital mouse embryo) could be enriched to a sufficiently high purity (84.4%). From another sample with 0.1% of our cells of interest, we achieved a 40.3% pure sample. The low cost, speed, and technical ease of the Three-step MACS also make it scalable and hence, an ideal method for preparing sufficient quantities of biological samples for sensitive, high-throughput assays.
Collapse
Affiliation(s)
- Mathia Y Lee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore
| | | |
Collapse
|
21
|
Abstract
Differentiated adult cardiomyocytes (CMs) lack significant regenerative potential, which is one reason why degenerative heart diseases are the leading cause of death in the western world. For future cardiac repair, stem cell-based therapeutic strategies may become alternatives to donor heart transplantation. The principle of reprogramming adult terminally differentiated cells (iPSC) had a major impact on stem cell biology. One can now generate autologous pluripotent cells that highly resemble embryonic stem cells (ESC) and that are ethically inoffensive as opposed to human ESC. Yet, due to genetic and epigenetic aberrations arising during the full reprogramming process, it is questionable whether iPSC will enter the clinic in the near future. Therefore, the recent achievement of directly reprogramming fibroblasts into cardiomyocytes via a milder approach, thereby avoiding an initial pluripotent state, may become of great importance. In addition, various clinical scenarios will depend on the availability of specific cardiac cellular subtypes, for which a first step was achieved via our own programming approach to achieve cardiovascular cell subtypes. In this review, we discuss recent progress in the cardiovascular stem cell field addressing the above mentioned aspects.
Collapse
Affiliation(s)
- Robert David
- 1st Medical Department, University of Munich, Campus Grosshadern, Munich, Germany
| | | |
Collapse
|
22
|
Han H, Liu Q, He W, Ong K, Liu X, Gao B. An efficient vector system to modify cells genetically. PLoS One 2011; 6:e26380. [PMID: 22096482 PMCID: PMC3214020 DOI: 10.1371/journal.pone.0026380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
The transfer of foreign genes into mammalian cells has been essential for understanding the functions of genes and mechanisms of genetic diseases, for the production of coding proteins and for gene therapy applications. Currently, the identification and selection of cells that have received transferred genetic material can be accomplished by methods, including drug selection, reporter enzyme detection and GFP imaging. These methods may confer antibiotic resistance, or be disruptive, or require special equipment. In this study, we labeled genetically modified cells with a cell surface biotinylation tag by co-transfecting cells with BirA, a biotin ligase. The modified cells can be quickly isolated for downstream applications using a simple streptavidin bead method. This system can also be used to screen cells expressing two sets of genes from separate vectors.
Collapse
Affiliation(s)
- Huamin Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qingjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wen He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Kristy Ong
- UCL Institute of Child Health, London, United Kingdom
| | - Xiaoli Liu
- Epigen Biotec Ltd, Beijing, People's Republic of China
| | - Bin Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- China-Japan Joint Laboratory of Molecular Immunology and Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
23
|
Brenner C, Franz WM. The use of stem cells for the repair of cardiac tissue in ischemic heart disease. Expert Rev Med Devices 2011; 8:209-25. [PMID: 21381911 DOI: 10.1586/erd.10.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ischemic heart diseases are the leading cause of death in the Western world. With increasing numbers of patients surviving their acute myocardial infarction owing to effective heart catheter techniques and intensive care treatment, congestive heart failure has become an increasing health concern. With therapeutic options for the prevention and treatment of ischemic heart disease being limited at present, huge efforts have been made in the field of stem cell research to try to establish new approaches for myocardial tissue regeneration. Owing to their pronounced differentiation potential, pluripotent stem cells seem to represent the most promising cell source for future engineering of myocardial replacement tissue. However, several crucial hurdles regarding cell yield and purity of the cultured cardiovascular progenitor cells have still not been overcome to facilitate a clinical application today. By contrast, plenty of adult stem and progenitor cells have already been well characterized and investigated in human disease. However, all of these heterogeneous cell lines primarily seem to work in a paracrine manner on ischemic myocardial tissue, rather than transdifferentiating into contractile cardiomyocytes. This article will focus on the production, application and present limitations of stem cells potentially applicable for myocardial repair.
Collapse
Affiliation(s)
- Christoph Brenner
- Department of Internal Medicine I, Munich University Hospital, Campus Grosshadern, Marchioninistr. 15, 81377 Munich, Germany
| | | |
Collapse
|
24
|
David R, Jarsch VB, Schwarz F, Nathan P, Gegg M, Lickert H, Franz WM. Induction of MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell. Cardiovasc Res 2011; 92:115-22. [PMID: 21632880 DOI: 10.1093/cvr/cvr158] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Our recent work demonstrated that common cardiovascular progenitor cells are characterized and induced by the expression of the transcription factor mesoderm posterior1 (MesP1) in vertebrate embryos and murine embryonic stem cells. As the proliferative potential of stem cell-derived cardiomyocytes is limited, it is crucial to understand how MesP1 expression is mediated in order to achieve reasonable and reliable yields for novel stem cell-based therapeutic options. As potential upstream regulators of MesP1, we therefore analysed Eomes and Brachyury(T), which had been controversially discussed as being crucial for cardiovasculogenic lineage formation. METHODS AND RESULTS Wild-type and transgenic murine embryonic stem cell lines, mRNA analyses, embryoid body formation, and cell sorting revealed that the MesP1 positive population emerges from the Brachyury(T) positive fraction. In situ hybridizations using wild-type mouse embryos confirmed that Brachyury(T) colocalises with MesP1 in vivo. Likewise, shRNA-based loss of Brachyury(T) causes a dramatic decrease in MesP1 expression accompanied by reduced cardiac markers in differentiating embryonic stem cells, which is reflected in vivo via in situ hybridizations using Brachyury(T) knock-out embryos where MesP1 mRNA is greatly abolished. We finally defined a 3.4 kb proximal MesP1-promoter fragment which is directly bound and activated by Brachyury(T) via a T responsive element as shown via bandshift, chromatin immuneprecipitation, and reporter assays. CONCLUSION Our work contributes to the understanding of the earliest cardiovasculogenic events and may become an important prerequisite for cell therapy, tissue engineering, and pharmacological testing in the culture dish using pluripotent stem cell-derived as well as directly reprogrammed cardiovascular cell types.
Collapse
Affiliation(s)
- Robert David
- Medizinische Klinik und Poliklinik I, Klinikum Großhadern der LMU, Marchioninistr. 15, D-81377 München, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Pascut FC, Goh HT, Welch N, Buttery LD, Denning C, Notingher I. Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells. Biophys J 2011; 100:251-9. [PMID: 21190678 PMCID: PMC3010010 DOI: 10.1016/j.bpj.2010.11.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/09/2010] [Accepted: 11/23/2010] [Indexed: 10/25/2022] Open
Abstract
Raman microspectroscopy (RMS) was used to detect and image molecular markers specific to cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs). This technique is noninvasive and thus can be used to discriminate individual live CMs within highly heterogeneous cell populations. Principal component analysis (PCA) of the Raman spectra was used to build a classification model for identification of individual CMs. Retrospective immunostaining imaging was used as the gold standard for phenotypic identification of each cell. We were able to discriminate CMs from other phenotypes with >97% specificity and >96% sensitivity, as calculated with the use of cross-validation algorithms (target 100% specificity). A comparison between Raman spectral images corresponding to selected Raman bands identified by the PCA model and immunostaining of the same cells allowed assignment of the Raman spectral markers. We conclude that glycogen is responsible for the discrimination of CMs, whereas myofibril proteins have a lesser contribution. This study demonstrates the potential of RMS for allowing the noninvasive phenotypic identification of hESC progeny. With further development, such label-free optical techniques may enable the separation of high-purity cell populations with mature phenotypes, and provide repeated measurements to monitor time-dependent molecular changes in live hESCs during differentiation in vitro.
Collapse
Affiliation(s)
- Flavius C. Pascut
- School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Huey T. Goh
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nathan Welch
- School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Lee D. Buttery
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Cardiovascular Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Tatsumi R, Suzuki Y, Sumi T, Sone M, Suemori H, Nakatsuji N. Simple and highly efficient method for production of endothelial cells from human embryonic stem cells. Cell Transplant 2010; 20:1423-30. [PMID: 21176397 DOI: 10.3727/096368910x547444] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endothelial cells derived from human embryonic stem cells (hESC-ECs) hold much promise as a valuable tool for basic vascular research and for medical application such as cell transplantation or regenerative medicine. Here we have developed an efficient approach for the production of hESC-ECs. Using a differentiation method consisting of a stepwise combination of treatment with glycogen synthase kinase-3β (GSK-3β) inhibitor and culturing in vascular endothelial growth factor (VEGF)-supplemented medium, hESC-ECs are induced in 5 days with about 20% efficiency. These cells express vascular endothelial cadherin (VE-cadherin), VEGF receptor-2 (VEGFR-2), CD34, and platelet endothelial cell adhesion molecule-1 (PECAM-1). These hESC-ECs can then be isolated with 95% purity using a magnetic sorting system, and expanded to more than 100-fold within a month. The hESC-ECs thus produced exhibit the endothelial morphological characteristics and specific functions such as capillary tube formation and acetylated low-density lipoprotein uptake. We propose that our methodology is useful for efficient and large-scale production of hESC-ECs.
Collapse
Affiliation(s)
- Rie Tatsumi
- Stem Cell and Drug Discovery Institute, Kyoto Research Park, Shimogyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT. Microfluidics for cell separation. Med Biol Eng Comput 2010; 48:999-1014. [DOI: 10.1007/s11517-010-0611-4] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 04/01/2010] [Indexed: 12/19/2022]
|
29
|
Akiyama H, Ito A, Kawabe Y, Kamihira M. Cell-patterning using poly (ethylene glycol)-modified magnetite nanoparticles. J Biomed Mater Res A 2010; 92:1123-30. [PMID: 19306262 DOI: 10.1002/jbm.a.32313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Development of cell-patterning techniques is a major challenge for the construction of functional tissues and organs in tissue engineering. Recent progress in surface chemistry has enabled spatial control of cell adhesion onto cultural substrates by varying hydrophilicity, for example, by using poly (ethylene glycol) (PEG). In the present study, we developed a novel cell-patterning procedure using PEG-modified magnetite particles (PEG-Mags) and magnetic force. Using an array-patterned magnet, PEG-Mags were magnetically patterned on the surface of a tissue culture dish. The resultant substrate surface consisted of two regions: the PEG-Mag surface that acts as a cell-resistant region and the native substrate surface that promotes cell adhesion. When human keratinocyte HaCaT cells were seeded onto the PEG-Mag-patterned surface, cells adhered only to the native substrate surface, resulting in cell-patterning on the tissue culture dish. The patterned PEG-Mags were then washed away to expose the native substrate surface, and thereafter, when mouse myoblast C2C12 cells were seeded to the dish, cells adhered to the exposed substrate surface, resulting in a patterned coculture of heterotypic cells. Moreover, it is worth noting that the magnetic force-based cell-patterning procedure is not limited by the property of cultural substrate surfaces, and that cell-patterning of mouse fibroblast NIH3T3 cells on a monolayer of HaCaT cells was successfully achieved using PEG-Mags and magnetic force. These results indicate that this procedure provides a novel concept for cell-patterning and may be useful for tissue engineering and cell biology.
Collapse
Affiliation(s)
- Hirokazu Akiyama
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | | | | | | |
Collapse
|
30
|
Morsi GAM. Tissue engineering in vesical reconstruction. AFRICAN JOURNAL OF UROLOGY 2010. [DOI: 10.1007/s12301-010-0001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
31
|
Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials 2009; 30:3915-25. [DOI: 10.1016/j.biomaterials.2009.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 03/26/2009] [Indexed: 11/20/2022]
|
32
|
David R, Stieber J, Fischer E, Brunner S, Brenner C, Pfeiler S, Schwarz F, Franz WM. Forward programming of pluripotent stem cells towards distinct cardiovascular cell types. Cardiovasc Res 2009; 84:263-72. [DOI: 10.1093/cvr/cvp211] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
33
|
Rust W, Balakrishnan T, Zweigerdt R. Cardiomyocyte enrichment from human embryonic stem cell cultures by selection of ALCAM surface expression. Regen Med 2009; 4:225-37. [PMID: 19317642 DOI: 10.2217/17460751.4.2.225] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS The production of a homogenous population of human cardiomyocytes that can be expanded in vitro may facilitate development of replacement tissue lost as a result of cardiac disease and injury. MATERIALS AND METHODS We evaluated the utility of activated leukocyte cell-adhesion molecule, CD166 (ALCAM) expression as a marker for isolating cardiomyocytes from differentiating cultures of human embryonic stem cells (hESCs). Using RT-qPCR, immunohistochemistry and DNA methylation studies, we evaluated the developmental age of hESC-derived cardiomyocytes. RESULTS AND CONCLUSIONS We demonstrate that cardiomyocytes derived from hESC cultures express ALCAM and that this surface antigen can be used to select a population of differentiated cells that are enriched for cardiomyocytes. Expression of contractile proteins and ion channels, and DNA methylation patterns, suggest that ALCAM-enriched cardiomyocytes have an embryonic phenotype. Selected cardiomyocyte populations survive sorting, adhere to collagen-coated tissue culture plastic and proliferate in short-term culture. Long-term in vitro survival of cardiomyocytes was achieved by culturing cells in 3D aggregates.
Collapse
Affiliation(s)
- William Rust
- Lonza Walkersville, Inc., 8830 Biggs Ford Road, Walkersville, MD 21793, USA.
| | | | | |
Collapse
|
34
|
Bosio A, Huppert V, Donath S, Hennemann P, Malchow M, Heinlein UAO. Isolation and enrichment of stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 114:23-72. [PMID: 19347268 DOI: 10.1007/10_2008_38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stem cells have the potential to revolutionize tissue regeneration and engineering. Both general types of stem cells, those with pluripotent differentiation potential as well as those with multipotent differentiation potential, are of equal interest. They are important tools to further understanding of general cellular processes, to refine industrial applications for drug target discovery and predictive toxicology, and to gain more insights into their potential for tissue regeneration. This chapter provides an overview of existing sorting technologies and protocols, outlines the phenotypic characteristics of a number of different stem cells, and summarizes their potential clinical applications.
Collapse
Affiliation(s)
- Andreas Bosio
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429, Bergisch Gladbach, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The field of regenerative medicine continues to make substantial advancements in therapeutic strategies addressing urologic diseases. Tissue engineering borrows principles from the fields of cell biology, materials science, transplantation and engineering in an effort to repair or replace damaged tissues. This review is intended to provide a current overview of the use of stem cells and tissue engineering technologies specifically in the treatment of genitourinary diseases. Current themes in the field include the use of adult stem cells seeded onto biocompatible resorbable matrices for implantation as tissue substitutes, which is conducive to host tissue in-growth. Injection therapy of adult stem cells for organ rehabilitation is also making strong headway toward the restoration of organ structure and function. With new data describing the molecular mechanisms for differentiation, work has begun on targeting tissues for regeneration by genetic modification methods. Promising laboratory discoveries portend the emergence of a new class of clinical therapies for regenerative medicine applications in the genitourinary tract.
Collapse
Affiliation(s)
- Jonathan L Yamzon
- Department of Urology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
36
|
David R, Brenner C, Stieber J, Schwarz F, Brunner S, Vollmer M, Mentele E, Müller-Höcker J, Kitajima S, Lickert H, Rupp R, Franz WM. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol 2008; 10:338-45. [PMID: 18297060 DOI: 10.1038/ncb1696] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/28/2008] [Indexed: 12/22/2022]
Abstract
ES-cell-based cardiovascular repair requires an in-depth understanding of the molecular mechanisms underlying the differentiation of cardiovascular ES cells. A candidate cardiovascular-fate inducer is the bHLH transcription factor MesP1. As one of the earliest markers, it is expressed specifically in almost all cardiovascular precursors and is required for cardiac morphogenesis. Here we show that MesP1 is a key factor sufficient to induce the formation of ectopic heart tissue in vertebrates and increase cardiovasculogenesis by ES cells. Electrophysiological analysis showed all subtypes of cardiac ES-cell differentiation. MesP1 overexpression and knockdown experiments revealed a prominent function of MesP1 in a gene regulatory cascade, causing Dkk-1-mediated blockade of canonical Wnt-signalling. Independent evidence from ChIP and in vitro DNA-binding studies, expression analysis in wild-type and MesP knockout mice, and reporter assays confirm that Dkk-1 is a direct target of MesP1. Further analysis of the regulatory networks involving MesP1 will be required to preprogramme ES cells towards a cardiovascular fate for cell therapy and cardiovascular tissue engineering. This may also provide a tool to elicit cardiac transdifferentiation in native human adult stem cells.
Collapse
Affiliation(s)
- R David
- Medizinische Klinik und Poliklinik I, Klinikum Grosshadern der LMU, D-81377 München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oh SK, Choo AB. Advances and perspectives in human and mouse embryonic stem cell bioprocessing. DRUG DISCOVERY TODAY. TECHNOLOGIES 2008; 5:e105-e148. [PMID: 24125544 DOI: 10.1016/j.ddtec.2008.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
38
|
Sievert KD, Amend B, Stenzl A. Tissue Engineering for the Lower Urinary Tract: A Review of a State of the Art Approach. Eur Urol 2007; 52:1580-9. [PMID: 17889986 DOI: 10.1016/j.eururo.2007.08.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/23/2007] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Tissue engineering (TE) has become synonymous with physiological and functional reconstructive approaches in medicine. Although the goals of TE are ambitious and have not yet been attained, significant milestones have been achieved and future possibilities are great. To examine these possibilities with a special emphasis on the lower urinary tract, we provide a review of the development of TE techniques and a high-level overview of related regulatory and legal issues. METHODS Current trends in the field of TE, including the use of stem cells, scaffold optimization, and acellular tissue and growth factors, were reviewed and critically assessed through a comprehensive literature review using the PubMed database. Because of the rapid development of new TE approaches, recent abstracts from international urology conventions were included. A review of 2007 European Medicines Agency and Commission for Advanced Therapies legal regulations was also performed. RESULTS Although several clinical TE approaches have been developed, most lack objective validation. A variety of TE techniques are currently under development or investigation, but thus far, no one approach is clearly superior on the basis of significant long-term studies. A medical product based on TE and stem cells can be successfully developed only with careful consideration of legal and ethical regulations. CONCLUSIONS TE holds the promise for a tremendous impact on reconstructive urology. However, research must be focused and intensified for the full potential clinical benefits to be made widely available. Because the product development is affected by legal regulations, consensus must be achieved.
Collapse
|
39
|
Groebner M, David R, Franz WM. [Embryonic stem cells. Future perspectives]. Internist (Berl) 2006; 47:502, 504-8. [PMID: 16609891 DOI: 10.1007/s00108-006-1613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.
Collapse
Affiliation(s)
- M Groebner
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, München-Grosshadern
| | | | | |
Collapse
|