1
|
Watanabe N, Hirose M, Hasegawa A, Mochida K, Ogura A, Inoue K. Derivation of embryonic stem cells from wild-derived mouse strains by nuclear transfer using peripheral blood cells. Sci Rep 2023; 13:11175. [PMID: 37430017 DOI: 10.1038/s41598-023-38341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Wild-derived mouse strains have been extensively used in biomedical research because of the high level of inter-strain polymorphisms and phenotypic variations. However, they often show poor reproductive performance and are difficult to maintain by conventional in vitro fertilization and embryo transfer. In this study, we examined the technical feasibility of derivation of nuclear transfer embryonic stem cells (ntESCs) from wild-derived mouse strains for their safe genetic preservation. We used leukocytes collected from peripheral blood as nuclear donors without sacrificing them. We successfully established 24 ntESC lines from two wild-derived strains of CAST/Ei and CASP/1Nga (11 and 13 lines, respectively), both belonging to Mus musculus castaneus, a subspecies of laboratory mouse. Most (23/24) of these lines had normal karyotype, and all lines examined showed teratoma formation ability (4 lines) and pluripotent marker gene expression (8 lines). Two male lines examined (one from each strain) were proven to be competent to produce chimeric mice following injection into host embryos. By natural mating of these chimeric mice, the CAST/Ei male line was confirmed to have germline transmission ability. Our results demonstrate that inter-subspecific ntESCs derived from peripheral leukocytes could provide an alternative strategy for preserving invaluable genetic resources of wild-derived mouse strains.
Collapse
Affiliation(s)
- Naomi Watanabe
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michiko Hirose
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Ayumi Hasegawa
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Keiji Mochida
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Kimiko Inoue
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Moura MT. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol Biol 2023; 2647:1-35. [PMID: 37041327 DOI: 10.1007/978-1-0716-3064-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes initiates nuclear reprogramming of lineage-committed cells to totipotency. Pioneer SCNT work culminated with cloned amphibians from tadpoles, while technical and biology-driven advances led to cloned mammals from adult animals. Cloning technology has been addressing fundamental questions in biology, propagating desired genomes, and contributing to the generation of transgenic animals or patient-specific stem cells. Nonetheless, SCNT remains technically complex and cloning efficiency relatively low. Genome-wide technologies revealed barriers to nuclear reprogramming, such as persistent epigenetic marks of somatic origin and reprogramming resistant regions of the genome. To decipher the rare reprogramming events that are compatible with full-term cloned development, it will likely require technical advances for large-scale production of SCNT embryos alongside extensive profiling by single-cell multi-omics. Altogether, cloning by SCNT remains a versatile technology, while further advances should continuously refresh the excitement of its applications.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Chemical Biology Graduate Program, Federal University of São Paulo - UNIFESP, Campus Diadema, Diadema - SP, Brazil
| |
Collapse
|
3
|
Navarro M, Halstead MM, Rincon G, Mutto AA, Ross PJ. bESC from cloned embryos do not retain transcriptomic or epigenetic memory from somatic donor cells. Reproduction 2022; 164:243-257. [PMID: 35951478 DOI: 10.1530/rep-22-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
In brief Epigenetic reprogramming after mammalian somatic cell nuclear transfer is often incomplete, resulting in low efficiency of cloning. However, gene expression and histone modification analysis indicated high similarities in transcriptome and epigenomes of bovine embryonic stem cells from in vitro fertilized and somatic cell nuclear transfer embryos. Abstract Embryonic stem cells (ESC) indefinitely maintain the pluripotent state of the blastocyst epiblast. Stem cells are invaluable for studying development and lineage commitment, and in livestock, they constitute a useful tool for genomic improvement and in vitro breeding programs. Although these cells have been recently derived from bovine blastocysts, a detailed characterization of their molecular state is lacking. Here, we apply cutting-edge technologies to analyze the transcriptomic and epigenomic landscape of bovine ESC (bESC) obtained from in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. bESC were efficiently derived from SCNT and IVF embryos and expressed pluripotency markers while retaining genome stability. Transcriptome analysis revealed that only 46 genes were differentially expressed between IVF- and SCNT-derived bESC, which did not reflect significant deviation in cellular function. Interrogating histone 3 lysine 4 trimethylation, histone 3 lysine 9 trimethylation, and histone 3 lysine 27 trimethylation with cleavage under targets and tagmentation, we found that the epigenomes of both bESC groups were virtually indistinguishable. Minor epigenetic differences were randomly distributed throughout the genome and were not associated with differentially expressed or developmentally important genes. Finally, the categorization of genomic regions according to their combined histone mark signal demonstrated that all bESC shared the same epigenomic signatures, especially at gene promoters. Overall, we conclude that bESC derived from SCNT and IVF embryos are transcriptomically and epigenetically analogous, allowing for the production of an unlimited source of pluripotent cells from high genetic merit organisms without resorting to transgene-based techniques.
Collapse
Affiliation(s)
- M Navarro
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
- Department of Animal Science, University of California, Davis, California, USA
| | - M M Halstead
- Department of Animal Science, University of California, Davis, California, USA
| | | | - A A Mutto
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
| | - P J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
4
|
Wakayama S, Ito D, Hayashi E, Ishiuchi T, Wakayama T. Healthy cloned offspring derived from freeze-dried somatic cells. Nat Commun 2022; 13:3666. [PMID: 35790715 PMCID: PMC9256722 DOI: 10.1038/s41467-022-31216-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Maintaining biodiversity is an essential task, but storing germ cells as genetic resources using liquid nitrogen is difficult, expensive, and easily disrupted during disasters. Our aim is to generate cloned mice from freeze-dried somatic cell nuclei, preserved at -30 °C for up to 9 months after freeze drying treatment. All somatic cells died after freeze drying, and nucleic DNA damage significantly increased. However, after nuclear transfer, we produced cloned blastocysts from freeze-dried somatic cells, and established nuclear transfer embryonic stem cell lines. Using these cells as nuclear donors for re-cloning, we obtained healthy cloned female and male mice with a success rate of 0.2-5.4%. Here, we show that freeze-dried somatic cells can produce healthy, fertile clones, suggesting that this technique may be important for the establishment of alternative, cheaper, and safer liquid nitrogen-free bio-banking solutions.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| | - Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| |
Collapse
|
5
|
Dirks RAM, van Mierlo G, Kerstens HHD, Bernardo AS, Kobolák J, Bock I, Maruotti J, Pedersen RA, Dinnyés A, Huynen MA, Jouneau A, Marks H. Allele-specific RNA-seq expression profiling of imprinted genes in mouse isogenic pluripotent states. Epigenetics Chromatin 2019; 12:14. [PMID: 30767785 PMCID: PMC6376749 DOI: 10.1186/s13072-019-0259-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic imprinting, resulting in parent-of-origin specific gene expression, plays a critical role in mammalian development. Here, we apply allele-specific RNA-seq on isogenic B6D2F1 mice to assay imprinted genes in tissues from early embryonic tissues between E3.5 and E7.25 and in pluripotent cell lines to evaluate maintenance of imprinted gene expression. For the cell lines, we include embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) derived from fertilized embryos and from embryos obtained after nuclear transfer (NT) or parthenogenetic activation (PGA). RESULTS As homozygous genomic regions of PGA-derived cells are not compatible with allele-specific RNA-seq, we developed an RNA-seq-based genotyping strategy allowing identification of informative heterozygous regions. Global analysis shows that proper imprinted gene expression as observed in embryonic tissues is largely lost in the ESC lines included in this study, which mainly consisted of female ESCs. Differentiation of ESC lines to embryoid bodies or NPCs does not restore monoallelic expression of imprinted genes, neither did reprogramming of the serum-cultured ESCs to the pluripotent ground state by the use of 2 kinase inhibitors. Fertilized EpiSC and EpiSC-NT lines largely maintain imprinted gene expression, as did EpiSC-PGA lines that show known paternally expressed genes being silent and known maternally expressed genes consistently showing doubled expression. Notably, two EpiSC-NT lines show aberrant silencing of Rian and Meg3, two critically imprinted genes in mouse iPSCs. With respect to female EpiSC, most of the lines displayed completely skewed X inactivation suggesting a (near) clonal origin. CONCLUSIONS Altogether, our analysis provides a comprehensive overview of imprinted gene expression in pluripotency and provides a benchmark to allow identification of cell lines that faithfully maintain imprinted gene expression and therefore retain full developmental potential.
Collapse
Affiliation(s)
- René A M Dirks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Hindrik H D Kerstens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Andreia S Bernardo
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust- Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK.,Mill Hill Laboratory, The Ridgeway, The Francis Crick Institute, London, NW7 1AA, UK
| | | | | | - Julien Maruotti
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France.,Phenocell SAS, Evry, France
| | - Roger A Pedersen
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust- Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary.,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, Hungary
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
7
|
Liu Q, Wang G, Lyu Y, Bai M, Jiapaer Z, Jia W, Han T, Weng R, Yang Y, Yu Y, Kang J. The miR-590/Acvr2a/Terf1 Axis Regulates Telomere Elongation and Pluripotency of Mouse iPSCs. Stem Cell Reports 2018; 11:88-101. [PMID: 29910124 PMCID: PMC6066996 DOI: 10.1016/j.stemcr.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
During reprogramming, telomere re-elongation is important for pluripotency acquisition and ensures the high quality of induced pluripotent stem cells (iPSCs), but the regulatory mechanism remains largely unknown. Our study showed that fully reprogrammed mature iPSCs or mouse embryonic stem cells expressed higher levels of miR-590-3p and miR-590-5p than pre-iPSCs. Ectopic expression of either miR-590-3p or miR-590-5p in pre-iPSCs improved telomere elongation and pluripotency. Activin receptor II A (Acvr2a) is the downstream target and mediates the function of miR-590. Downregulation of Acvr2a promoted telomere elongation and pluripotency. Overexpression of miR-590 or inhibition of ACTIVIN signaling increased telomeric repeat binding factor 1 (Terf1) expression. The p-SMAD2 showed increased binding to the Terf1 promoter in pre-iPSCs compared with mature iPSCs. Downregulation of Terf1 blocked miR-590- or shAcvr2a-mediated promotion of telomere elongation and pluripotency in pre-iPSCs. This study elucidated the role of the miR-590/Acvr2a/Terf1 signaling pathway in modulating telomere elongation and pluripotency in pre-iPSCs. miR-590 is critical for telomere elongation and pluripotency of pre-iPSCs miR-590 can target Acvr2a to upregulate the expression of Terf1 miR-590/Acvr2a/Terf1 axis regulates the elongation and pluripotency of pre-iPSCs
Collapse
Affiliation(s)
- Qidong Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yao Lyu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Mingliang Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Tong Han
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Rong Weng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yangyang Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China.
| |
Collapse
|
8
|
El-Gammal Z, AlOkda A, El-Badri N. Role of human oocyte-enriched factors in somatic cell reprograming. Mech Ageing Dev 2018; 175:88-99. [PMID: 29890177 DOI: 10.1016/j.mad.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Cellular reprograming paves the way for creating functional patient-specific tissues to eliminate immune rejection responses by applying the same genetic profile. However, the epigenetic memory of a cell remains a challenge facing the current reprograming methods and does not allow transcription factors to bind properly. Because somatic cells can be reprogramed by transferring their nuclear contents into oocytes, introducing specific oocyte factors into differentiated cells is considered a promising approach for mimicking the reprograming process that occurs during fertilization. Mammalian metaphase II oocyte possesses a superior capacity to epigenetically reprogram somatic cell nuclei towards an embryonic stem cell-like state than the current factor-based reprograming approaches. This may be due to the presence of specific factors that are lacking in the current factor-based reprograming approaches. In this review, we focus on studies identifying human oocyte-enriched factors aiming to understand the molecular mechanisms mediating cellular reprograming. We describe the role of oocyte-enriched factors in metabolic switch, chromatin remodelling, and global epigenetic transformation. This is critical for improving the quality of resulting reprogramed cells, which is crucial for therapeutic applications.
Collapse
Affiliation(s)
- Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Abdelrahman AlOkda
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt.
| |
Collapse
|
9
|
Gao F, Li J, Zhang H, Yang X, An T. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2018; 13:532-541. [PMID: 28063063 DOI: 10.1007/s12015-016-9704-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.
Collapse
Affiliation(s)
- Fang Gao
- College of Life Science, Northeast Forestry University, Harbin, China, 150040
- College of Life Science, Northeast Agricultural University, Harbin, China, 150030
| | - Jingyu Li
- College of Life Science, Northeast Agricultural University, Harbin, China, 150030
- Chong Qing Reproductive and Genetics Institute, Chongqing Obstetrics and Gynecology Hospital, 64 Jing Tang ST, Yu Zhong District , Chongqing, China, 400013
| | - Heng Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xu Yang
- College of Life Science, Northeast Agricultural University, Harbin, China, 150030
| | - Tiezhu An
- College of Life Science, Northeast Forestry University, Harbin, China, 150040.
| |
Collapse
|
10
|
Cito M, Pellegrini S, Piemonti L, Sordi V. The potential and challenges of alternative sources of β cells for the cure of type 1 diabetes. Endocr Connect 2018; 7:R114-R125. [PMID: 29555660 PMCID: PMC5861368 DOI: 10.1530/ec-18-0012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
The experience in the field of islet transplantation shows that it is possible to replace β cells in a patient with type 1 diabetes (T1D), but this cell therapy is limited by the scarcity of organ donors and by the danger associated to the immunosuppressive drugs. Stem cell therapy is becoming a concrete opportunity to treat various diseases. In particular, for a disease like T1D, caused by the loss of a single specific cell type that does not need to be transplanted back in its originating site to perform its function, a stem cell-based cell replacement therapy seems to be the ideal cure. New and infinite sources of β cells are strongly required. In this review, we make an overview of the most promising and advanced β cell production strategies. Particular hope is placed in pluripotent stem cells (PSC), both embryonic (ESC) and induced pluripotent stem cells (iPSC). The first phase 1/2 clinical trials with ESC-derived pancreatic progenitor cells are ongoing in the United States and Canada, but a successful strategy for the use of PSC in patients with diabetes has still to overcome several important hurdles. Another promising strategy of generation of new β cells is the transdifferentiation of adult cells, both intra-pancreatic, such as alpha, exocrine and ductal cells or extra-pancreatic, in particular liver cells. Finally, new advances in gene editing technologies have given impetus to research on the production of human organs in chimeric animals and on in situ reprogramming of adult cells through in vivo target gene activation.
Collapse
Affiliation(s)
- Monia Cito
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele UniversityMilan, Italy
| | - Valeria Sordi
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proc Natl Acad Sci U S A 2017; 114:E11111-E11120. [PMID: 29203658 DOI: 10.1073/pnas.1708991114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Patient-specific pluripotent stem cells (PSCs) can be generated via nuclear reprogramming by transcription factors (i.e., induced pluripotent stem cells, iPSCs) or by somatic cell nuclear transfer (SCNT). However, abnormalities and preclinical application of differentiated cells generated by different reprogramming mechanisms have yet to be evaluated. Here we investigated the molecular and functional features, and drug response of cardiomyocytes (PSC-CMs) and endothelial cells (PSC-ECs) derived from genetically relevant sets of human iPSCs, SCNT-derived embryonic stem cells (nt-ESCs), as well as in vitro fertilization embryo-derived ESCs (IVF-ESCs). We found that differentiated cells derived from isogenic iPSCs and nt-ESCs showed comparable lineage gene expression, cellular heterogeneity, physiological properties, and metabolic functions. Genome-wide transcriptome and DNA methylome analysis indicated that iPSC derivatives (iPSC-CMs and iPSC-ECs) were more similar to isogenic nt-ESC counterparts than those derived from IVF-ESCs. Although iPSCs and nt-ESCs shared the same nuclear DNA and yet carried different sources of mitochondrial DNA, CMs derived from iPSC and nt-ESCs could both recapitulate doxorubicin-induced cardiotoxicity and exhibited insignificant differences on reactive oxygen species generation in response to stress condition. We conclude that molecular and functional characteristics of differentiated cells from human PSCs are primarily attributed to the genetic compositions rather than the reprogramming mechanisms (SCNT vs. iPSCs). Therefore, human iPSCs can replace nt-ESCs as alternatives for generating patient-specific differentiated cells for disease modeling and preclinical drug testing.
Collapse
|
12
|
Abstract
Induced pluripotency defines the process by which somatic cells are converted into induced pluripotent stem cells (iPSCs) upon overexpression of a small set of transcription factors. In this article, we put transcription factor-induced pluripotency into a historical context, review current methods to generate iPSCs, and discuss mechanistic insights that have been gained into the process of reprogramming. In addition, we focus on potential therapeutic applications of induced pluripotency and emerging technologies to efficiently engineer the genomes of human pluripotent cells for scientific and therapeutic purposes.
Collapse
Affiliation(s)
- Konrad Hochedlinger
- Howard Hughes Medical Institute at Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, Boston, Massachusetts 02114
| | - Rudolf Jaenisch
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|
13
|
Abstract
Nuclear transfer (NT) technique provides a powerful experimental tool to study the mechanisms of reprogramming processes and to derive NT-embryonic stem (ntES) cells from living or frozen animals. The Piezo-driven direct microinjection NT method has proved to be a valid technique to clone mice and other species. In addition, this method has been broadly used as a versatile tool for many fields of mouse micromanipulation. This chapter describes the "one step method" protocol of nuclear transfer in mouse, which combines injection of a donor cell nucleus and enucleation of MII metaphase in a single manipulation procedure. This protocol describes the isolation and collection of oocytes, treatment of donor cells, visualization of spindle-chromosomal complex, direct injection and enucleation, activation of reconstructed embryos and their in vitro culture and transfer into pseudopregnant mice.
Collapse
Affiliation(s)
- Vincent Brochard
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, 78350, France
| | | |
Collapse
|
14
|
Nakanishi MO, Hayakawa K, Nakabayashi K, Hata K, Shiota K, Tanaka S. Trophoblast-specific DNA methylation occurs after the segregation of the trophectoderm and inner cell mass in the mouse periimplantation embryo. Epigenetics 2014; 7:173-82. [DOI: 10.4161/epi.7.2.18962] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
15
|
Lin CJ, Amano T, Tang Y, Tian X. Improved derivation efficiency and pluripotency of stem cells from the refractory inbred C57BL/6 mouse strain by small molecules. PLoS One 2014; 9:e106916. [PMID: 25211343 PMCID: PMC4161378 DOI: 10.1371/journal.pone.0106916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/02/2014] [Indexed: 12/29/2022] Open
Abstract
The ability of small molecules to maintain self-renewal and to inhibit differentiation of pluripotent stem cells has been well-demonstrated. Two widely used molecules are PD 98059 (PD), an inhibitor of extracellular-signal-regulated kinase 1 (ERK), and SC1 (Pluripotin), which inhibits the RasGAP and ERK pathways. However, no studies have been conducted to compare their effects on the pluripotency and derivation of embryonic stem (ES) cells from inbred mice C57BL/6, an important mouse strain frequently used to model behavior, cognitive functions, immune system, and metabolic disorders in humans and also the first mouse strain chosen to be sequenced for its entire genome. We found significantly increased derivation efficiency of ES cells from in vivo fertilized embryos (fES) of C57BL/6 with the use of PD (71.4% over the control of 35.3%). Because fES and ES from cloned embryos (ntES) are not distinguishable in transcription or translation profiles, we used ntES cells to compare the effect of small molecules on their in vitro characteristics, in vitro differentiation ability, and the ability to generate full-term ntES-4N pups by tetraploid complementation. NtES cells exhibited typical ES characteristics and up-regulated Sox2 expression in media with either small-molecule. Higher rates of full term ntES-4N pup were generated by the supplementation of PD or SC1. We obtained the highest efficiency of ntES-4N pup generation ever reported from this strain by supplementing ES medium with SC1. Lastly, we compared the pluripotency of fES, ntES and induced pluripotent stem (iPS) cells of C57BL/6 background using the tetraploid complementation assay. A significant increase in implantation sites and the number of full-term pups were obtained when fES, ntES, and iPS cells were cultured with SC1 compared to the control ES medium. In conclusion, supplementing ES cell culture medium with PD and SC1 increases the derivation efficiency and pluripotency, respectively, of stem cells derived from the refractory inbred C57BL/6 strain.
Collapse
Affiliation(s)
- Chih-Jen Lin
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, United States of America
| | - Tomokazu Amano
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, United States of America
| | - Yong Tang
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiuchun Tian
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
16
|
Gonzalez-Muñoz E, Arboleda-Estudillo Y, Otu HH, Cibelli JB. Cell reprogramming. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming. Science 2014; 345:822-5. [PMID: 25035411 DOI: 10.1126/science.1254745] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unfertilized oocytes have the intrinsic capacity to remodel sperm and the nuclei of somatic cells. The discoveries that cells can change their phenotype from differentiated to embryonic state using oocytes or specific transcription factors have been recognized as two major breakthroughs in the biomedical field. Here, we show that ASF1A, a histone-remodeling chaperone specifically enriched in the metaphase II human oocyte, is necessary for reprogramming of human adult dermal fibroblasts (hADFs) into undifferentiated induced pluripotent stem cell. We also show that overexpression of just ASF1A and OCT4 in hADFs exposed to the oocyte-specific paracrine growth factor GDF9 can reprogram hADFs into pluripotent cells. Our Report underscores the importance of studying the unfertilized MII oocyte as a means to understand the molecular pathways governing somatic cell reprogramming.
Collapse
Affiliation(s)
- Elena Gonzalez-Muñoz
- LARCEL, Laboratorio Andaluz de Reprogramación Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Andalucía, 29590, Spain
| | - Yohanna Arboleda-Estudillo
- LARCEL, Laboratorio Andaluz de Reprogramación Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Andalucía, 29590, Spain
| | - Hasan H Otu
- Department of Genetics and Bioengineering, Istanbul Bilgi University 34060, Istanbul, Turkey. Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jose B Cibelli
- LARCEL, Laboratorio Andaluz de Reprogramación Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Andalucía, 29590, Spain. Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA. Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
17
|
Abstract
Recent years have challenged the view that adult somatic cells reach a state of terminal differentiation. Although the ultimate example of this, somatic cell nuclear transfer, has not proven feasible in human beings, dedifferentiation of mature cell types to a more primitive state, direct reprogramming from one mature state to another, and the reprogramming of any adult cell type to a pluripotent state via enforced expression of key transcription factors now all have been shown. The implications of these findings for kidney disease include the re-creation of key renal cell types from more readily available and expandable somatic cell sources. The feasibility of such an approach recently was shown with the dedifferentiation of proximal tubule cells to nephrogenic mesenchyme. In this review, we examine the technical and clinical challenges that remain to such an approach and how new reprogramming approaches also may be useful for kidney disease.
Collapse
Affiliation(s)
- Minoru Takasato
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jessica M Vanslambrouck
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Melissa H Little
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
18
|
Yamada M, Johannesson B, Sagi I, Burnett LC, Kort DH, Prosser RW, Paull D, Nestor MW, Freeby M, Greenberg E, Goland RS, Leibel RL, Solomon SL, Benvenisty N, Sauer MV, Egli D. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 2014; 510:533-6. [PMID: 24776804 DOI: 10.1038/nature13287] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/27/2014] [Indexed: 12/18/2022]
Abstract
The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.
Collapse
Affiliation(s)
- Mitsutoshi Yamada
- 1] The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA [2]
| | - Bjarki Johannesson
- 1] The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA [2]
| | - Ido Sagi
- Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lisa Cole Burnett
- Naomi Berrie Diabetes Center, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Daniel H Kort
- 1] Center for Women's Reproductive Care, College of Physicians and Surgeons, Columbia University, New York 10019, USA [2] Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, New York 10032, USA
| | - Robert W Prosser
- 1] Center for Women's Reproductive Care, College of Physicians and Surgeons, Columbia University, New York 10019, USA [2] Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, New York 10032, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA
| | - Michael W Nestor
- The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA
| | - Matthew Freeby
- Naomi Berrie Diabetes Center, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Ellen Greenberg
- Naomi Berrie Diabetes Center, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Robin S Goland
- Naomi Berrie Diabetes Center, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Susan L Solomon
- The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA
| | - Nissim Benvenisty
- Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mark V Sauer
- 1] Center for Women's Reproductive Care, College of Physicians and Surgeons, Columbia University, New York 10019, USA [2] Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, New York 10032, USA
| | - Dieter Egli
- The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA
| |
Collapse
|
19
|
Langerova A, Fulka H, Fulka J. Somatic Cell Nuclear Transfer–Derived Embryonic Stem Cell Lines in Humans: Pros and Cons. Cell Reprogram 2013; 15:481-3. [DOI: 10.1089/cell.2013.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
| | - Helena Fulka
- Institute of Animal Science, 104 00 Prague 10, Czech Republic
| | - Josef Fulka
- Institute of Animal Science, 104 00 Prague 10, Czech Republic
| |
Collapse
|
20
|
Fröhlich T, Kösters M, Graf A, Wolf E, Kobolak J, Brochard V, Dinnyés A, Jouneau A, Arnold GJ. iTRAQ proteome analysis reflects a progressed differentiation state of epiblast derived versus inner cell mass derived murine embryonic stem cells. J Proteomics 2013; 90:38-51. [DOI: 10.1016/j.jprot.2013.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/26/2013] [Accepted: 03/19/2013] [Indexed: 12/26/2022]
|
21
|
Cao F, Fukuda A, Watanabe H, Kono T. The transcriptomic architecture of mouse Sertoli cell clone embryos reveals temporal–spatial-specific reprogramming. Reproduction 2013; 145:277-88. [PMID: 23580949 PMCID: PMC3607486 DOI: 10.1530/rep-12-0435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatic cell nuclear transfer, a technique used to generate clone embryos by transferring the nucleus of a somatic cell into an enucleated oocyte, is an excellent approach to study the reprogramming of the nuclei of differentiated cells. Here, we conducted a transcriptomic study by performing microarray analysis on single Sertoli cell nuclear transfer (SeCNT) embryos throughout preimplantation development. The extensive data collected from the oocyte to the blastocyst stage helped to identify specific genes that were incorrectly reprogrammed at each stage, thereby providing a novel perspective for understanding reprogramming progression in SeCNT embryos.This attempt provided an opportunity to discuss the possibility that ectopic gene expression could be involved in the developmental failure of SeCNT embryos. Network analysis at each stage suggested that in total, 127 networks were involved in developmental and functional disorders in SeCNT embryos. Furthermore, chromosome mapping using our time-lapse expression data highlighted temporal–spatial changes of the abnormal expression, showing the characteristic distribution of the genes on each chromosome.Thus, the present study revealed that the preimplantation development of SeCNT embryos appears normal; however, the progression of incorrect reprogramming is concealed throughout development.
Collapse
Affiliation(s)
- Feng Cao
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | |
Collapse
|
22
|
Abstract
Conversion of somatic cells to pluripotency by defined factors is a long and complex process that yields embryonic-stem-cell-like cells that vary in their developmental potential. To improve the quality of resulting induced pluripotent stem cells (iPSCs), which is important for potential therapeutic applications, and to address fundamental questions about control of cell identity, molecular mechanisms of the reprogramming process must be understood. Here we discuss recent discoveries regarding the role of reprogramming factors in remodelling the genome, including new insights into the function of MYC, and describe the different phases, markers and emerging models of reprogramming.
Collapse
|
23
|
Nowak-Imialek M, Niemann H. Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev 2013; 25:103-28. [PMID: 23244833 DOI: 10.1071/rd12265] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pluripotent cells, such as embryonic stem (ES) cells, embryonic germ cells and embryonic carcinoma cells are a unique type of cell because they remain undifferentiated indefinitely in in vitro culture, show self-renewal and possess the ability to differentiate into derivatives of the three germ layers. These capabilities make them a unique in vitro model for studying development, differentiation and for targeted modification of the genome. True pluripotent ESCs have only been described in the laboratory mouse and rat. However, rodent physiology and anatomy differ substantially from that of humans, detracting from the value of the rodent model for studies of human diseases and the development of cellular therapies in regenerative medicine. Recently, progress in the isolation of pluripotent cells in farm animals has been made and new technologies for reprogramming of somatic cells into a pluripotent state have been developed. Prior to clinical application of therapeutic cells differentiated from pluripotent stem cells in human patients, their survival and the absence of tumourigenic potential must be assessed in suitable preclinical large animal models. The establishment of pluripotent cell lines in farm animals may provide new opportunities for the production of transgenic animals, would facilitate development and validation of large animal models for evaluating ESC-based therapies and would thus contribute to the improvement of human and animal health. This review summarises the recent progress in the derivation of pluripotent and reprogrammed cells from farm animals. We refer to our recent review on this area, to which this article is complementary.
Collapse
Affiliation(s)
- Monika Nowak-Imialek
- Institut of Farm Animal Genetics, Friedrich-Loefller-Institut (FLI), Biotechnology, Höltystrasse 10, Mariensee, 31535 Neustadt, Germany.
| | | |
Collapse
|
24
|
Awe JP, Byrne JA. Identifying candidate oocyte reprogramming factors using cross-species global transcriptional analysis. Cell Reprogram 2013; 15:126-33. [PMID: 23458164 DOI: 10.1089/cell.2012.0060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is mounting evidence to suggest that the epigenetic reprogramming capacity of the oocyte is superior to that of the current factor-based reprogramming approaches and that some factor-reprogrammed induced pluripotent stem cells (iPSCs) retain a degree of epigenetic memory that can influence differentiation capacity and may be linked to the observed expression of immunogenicity genes in iPSC derivatives. One hypothesis for this differential reprogramming capacity is the "chromatin loosening/enhanced reprogramming" concept, as previously described by John Gurdon and Ian Wilmut, as well as others, which postulates that the oocyte possesses factors that loosen the somatic cell chromatin structure, providing the epigenetic and transcriptional regulatory factors more ready access to repressed genes and thereby significantly increasing epigenetic reprogramming. However, to empirically test this hypothesis a list of candidate oocyte reprogramming factors (CORFs) must be ascertained that are significantly expressed in metaphase II oocytes. Previous studies have focused on intraspecies or cross-species transcriptional analysis of up to two different species of oocytes. In this study, we have identified eight CORFs (ARID2, ASF1A, ASF1B, DPPA3, ING3, MSL3, H1FOO, and KDM6B) based on unbiased global transcriptional analysis of oocytes from three different species (human, rhesus monkey, and mouse) that both demonstrate significant (p<0.05, FC>3) expression in oocytes of all three species and have well-established roles in loosening/opening up chromatin structure. We also identified an additional 15 CORFs that fit within our proposed "chromatin opening/fate transformative" (COFT) model. These CORFs may be able to augment Shinya Yamanaka's previously identified reprogramming factors (OCT4, SOX2, KLF4, and cMYC) and potentially facilitate the removal of epigenetic memory in iPSCs and/or reduce the expression of immunogenicity genes in iPSC derivatives, and may have applications in future personalized pluripotent stem cell based therapeutics.
Collapse
Affiliation(s)
- Jason P Awe
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
25
|
Abstract
The nuclear transfer (NT) technique in the mouse has enabled us to generate cloned mice and to establish NT embryonic stem (ntES) cells. Direct nuclear injection into mouse oocytes with a piezo impact drive unit can aid in the bypass of several steps of the original cell fusion procedure. It is important to note that only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification as well as generating live animals from single cells. Thus, these techniques could also be applied to the preservation of genetic material from any mouse strain instead of preserving embryos or gametes. Moreover, with this technique, we can use not only living cells but also the nuclei of dead cells from frozen mouse carcasses for NT. This chapter describes our most recent protocols of NT into the mouse oocyte for cloning mice and for the establishment of ntES cells from cloned embryos.
Collapse
Affiliation(s)
- Eiji Mizutani
- Center for Developmental Biology, RIKEN Kobe institute, Kobe, Japan,
| | | | | |
Collapse
|
26
|
Jiang J, Lv W, Ye X, Wang L, Zhang M, Yang H, Okuka M, Zhou C, Zhang X, Liu L, Li J. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Res 2012; 23:92-106. [PMID: 23147797 DOI: 10.1038/cr.2012.157] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem (iPS) cells generated using Yamanaka factors have great potential for use in autologous cell therapy. However, genomic abnormalities exist in human iPS cells, and most mouse iPS cells are not fully pluripotent, as evaluated by the tetraploid complementation assay (TCA); this is most likely associated with the DNA damage response (DDR) occurred in early reprogramming induced by Yamanaka factors. In contrast, nuclear transfer can faithfully reprogram somatic cells into embryonic stem (ES) cells that satisfy the TCA. We thus hypothesized that factors involved in oocyte-induced reprogramming may stabilize the somatic genome during reprogramming, and improve the quality of the resultant iPS cells. To test this hypothesis, we screened for factors that could decrease DDR signals during iPS cell induction. We determined that Zscan4, in combination with the Yamanaka factors, not only remarkably reduced the DDR but also markedly promoted the efficiency of iPS cell generation. The inclusion of Zscan4 stabilized the genomic DNA, resulting in p53 downregulation. Furthermore, Zscan4 also enhanced telomere lengthening as early as 3 days post-infection through a telomere recombination-based mechanism. As a result, iPS cells generated with addition of Zscan4 exhibited longer telomeres than classical iPS cells. Strikingly, more than 50% of iPS cell lines (11/19) produced via this "Zscan4 protocol" gave rise to live-borne all-iPS cell mice as determined by TCA, compared to 1/12 for lines produced using the classical Yamanaka factors. Our findings provide the first demonstration that maintaining genomic stability during reprogramming promotes the generation of high quality iPS cells.
Collapse
Affiliation(s)
- Jing Jiang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sun B, Ito M, Mendjan S, Ito Y, Brons IGM, Murrell A, Vallier L, Ferguson-Smith AC, Pedersen RA. Status of genomic imprinting in epigenetically distinct pluripotent stem cells. Stem Cells 2012; 30:161-8. [PMID: 22109880 DOI: 10.1002/stem.793] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse epiblast stem cells (EpiSCs) derived from postimplantation embryos are developmentally and functionally different from embryonic stem cells (ESCs) generated from blastocysts. EpiSCs require Activin A and FGF2 signaling for self-renewal, similar to human ESCs (hESCs), while mouse ESCs require LIF and BMP4. Unlike ESCs, EpiSCs have undergone X-inactivation, similar to the tendency of hESCs. The shared self-renewal and X-inactivation properties of EpiSCs and hESCs suggest that they have an epigenetic state distinct from ESCs. This hypothesis predicts that EpiSCs would have monoallelic expression of most imprinted genes, like that observed in hESCs. Here, we confirm this prediction. By contrast, we find that mouse induced pluripotent stem cells (iPSCs) tend to lose imprinting similar to mouse ESCs. These findings reveal that iPSCs have an epigenetic status associated with their pluripotent state rather than their developmental origin. Our results also reinforce the view that hESCs and EpiSCs are in vitro counterparts, sharing an epigenetic status distinct from ESCs and iPSCs.
Collapse
Affiliation(s)
- Bowen Sun
- The Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Balbach ST, Esteves TC, Houghton FD, Siatkowski M, Pfeiffer MJ, Tsurumi C, Kanzler B, Fuellen G, Boiani M. Nuclear reprogramming: kinetics of cell cycle and metabolic progression as determinants of success. PLoS One 2012; 7:e35322. [PMID: 22530006 PMCID: PMC3329427 DOI: 10.1371/journal.pone.0035322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 03/14/2012] [Indexed: 01/16/2023] Open
Abstract
Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI). Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development.
Collapse
Affiliation(s)
| | | | - Franchesca Dawn Houghton
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Marcin Siatkowski
- German Center for Neurodegenerative Disorders, DZNE, Rostock, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, Germany
| | | | - Chizuko Tsurumi
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Benoit Kanzler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- * E-mail:
| |
Collapse
|
29
|
|
30
|
Abstract
Reprogramming of adult somatic cells into pluripotent stem cells may provide an attractive source of stem cells for regenerative medicine. It has emerged as an invaluable method for generating patient-specific stem cells of any cell lineage without the use of embryonic stem cells. A revolutionary study in 2006 showed that it is possible to convert adult somatic cells directly into pluripotent stem cells by using a limited number of pluripotent transcription factors and is called as iPS cells. Currently, both genomic integrating viral and nonintegrating nonviral methods are used to generate iPS cells. However, the viral-based technology poses increased risk of safety, and more studies are now focused on nonviral-based technology to obtain autologous stem cells for clinical therapy. In this review, the pros and cons of the present iPS cell technology and the future direction for the successful translation of this technology into the clinic are discussed.
Collapse
|
31
|
Kobolak J, Horsch M, Geissler S, Mamo S, Beckers J, Dinnyes A. Comparative analysis of nuclear transfer embryo-derived mouse embryonic stem cells. Part II: gene regulation. Cell Reprogram 2011; 14:68-78. [PMID: 22204593 DOI: 10.1089/cell.2011.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a mouse model nuclear transfer embryo-derived embryonic stem cell lines (ntESCs) of various genetic backgrounds and donor cell types were compared with reference ESCs and analyzed comprehensively at molecular level as a second part of a larger study. Expression profiles of ntESCs established by different NT-methods (piezoelectric microinjection or zona-free) were indistinguishable. However, expression profiling analyses identified differentially regulated genes between reference ESCs and ntESCs from different genetic backgrounds. A number of pluripotency and stemness marker genes significantly differed at the mRNA level between the cell lines. However, cluster and lineage analyses revealed that such differences had no effect on cell differentiation and cell fate. Regardless of the donor cell type, gene expression profiles of ntESCs were more similar to each other than to their counterpart fertilized embryo-derived ESCs of the same genotype. Overall, the results indicated that expression profile differences may be related to the genotype rather than to technical variations.
Collapse
Affiliation(s)
- Julianna Kobolak
- Genetic Reprogramming Group, Agricultural Biotechnology Center, Gödöllő, Hungary
| | | | | | | | | | | |
Collapse
|
32
|
Kobolak J, Mamo S, Rungsiwiwut R, Ujhelly O, Csonka E, Hadlaczky G, Dinnyes A. Comparative analysis of nuclear transfer embryo-derived mouse embryonic stem cells. Part I: cellular characterization. Cell Reprogram 2011; 14:56-67. [PMID: 22204592 DOI: 10.1089/cell.2011.0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Embryonic stem cells derived from nuclear transfer embryos (ntESCs) are particularly valuable for regenerative medicine, as they are a patient-specific and histocompatible cell source for the treatment of varying diseases. However, currently, little is known about their cellular and molecular profile. In the present study, in a mouse model different donor cell-derived ntESCs from various genetic backgrounds were compared with reference ESCs and analyzed comprehensively at the cellular level. A number of pluripotency marker genes were compared by flow cytometry and immunocytochemistry analysis. Significant differences at the protein level were observed for POU5F1, SOX2, FGF4, NANOG, and SSEA-1. However, such differences had no effect on in vitro cell differentiation and cell fate: derivatives of the three germ layers were detected in all ntESC lines. The neural and cardiac in vitro differentiation revealed minor differences between the cell lines, both at the mRNA and protein level. Karyotype analyses and cell growth studies did not reveal any significant variations. Despite some differences observed, the present study revealed that ntESC lines had similar differentiation competences compared to other ESCs. The results indicate that the observed differences may be related to the genotype rather than to the nuclear transfer technology.
Collapse
Affiliation(s)
- Julianna Kobolak
- Genetic Reprogramming Group, Agricultural Biotechnology Center, Gödöllő, Hungary
| | | | | | | | | | | | | |
Collapse
|
33
|
Pasque V, Jullien J, Miyamoto K, Halley-Stott RP, Gurdon J. Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet 2011; 27:516-25. [PMID: 21940062 PMCID: PMC3814186 DOI: 10.1016/j.tig.2011.08.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 12/16/2022]
Abstract
Patient-specific somatic cell reprogramming is likely to have a large impact on medicine by providing a source of cells for disease modelling and regenerative medicine. Several strategies can be used to reprogram cells, yet they are generally characterised by a low reprogramming efficiency, reflecting the remarkable stability of the differentiated state. Transcription factors, chromatin modifications, and noncoding RNAs can increase the efficiency of reprogramming. However, the success of nuclear reprogramming is limited by epigenetic mechanisms that stabilise the state of gene expression in somatic cells and thereby resist efficient reprogramming. We review here the factors that influence reprogramming efficiency, especially those that restrict the natural reprogramming mechanisms of eggs and oocytes. We see this as a step towards understanding the mechanisms by which nuclear reprogramming takes place.
Collapse
Affiliation(s)
- Vincent Pasque
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- These authors contributed equally to this work
| | - Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- These authors contributed equally to this work
| | - Richard P. Halley-Stott
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- These authors contributed equally to this work
| | - J.B. Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
34
|
Experimental limitations using reprogrammed cells for hematopoietic differentiation. J Biomed Biotechnol 2011; 2011:895086. [PMID: 22187531 PMCID: PMC3237023 DOI: 10.1155/2011/895086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/27/2011] [Indexed: 01/13/2023] Open
Abstract
We review here our experiences with the in vitro reprogramming of somatic cells to induced pluripotent stem cells (iPSC) and subsequent in vitro development of hematopoietic cells from these iPSC and from embryonic stem cells (ESC). While, in principle, the in vitro reprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical settings of hematopoietic stem cell (HSC) transplantations.
Collapse
|
35
|
Lin J, Shi L, Zhang M, Yang H, Qin Y, Zhang J, Gong D, Zhang X, Li D, Li J. Defects in trophoblast cell lineage account for the impaired in vivo development of cloned embryos generated by somatic nuclear transfer. Cell Stem Cell 2011; 8:371-5. [PMID: 21474101 DOI: 10.1016/j.stem.2011.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 01/09/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The low success rate of somatic nuclear transfer (NT) is hypothesized to be mainly due to functional defects in the trophoblast cell lineage rather than the inner cell mass (ICM); this hypothesis, however, remains to be tested directly. Here we separated the ICMs from cloned blastocysts and aggregated the cloned ICM with two fertilization-derived (FD) tetraploid (4N) embryos. We found that the full-term development of cloned ICMs was dramatically improved after the trophoblast cells in the cloned blastocysts were replaced by cells from tetraploid embryos, thus providing direct evidence that defects in trophoblast cell lineage underlie the low success rate of somatic NT.
Collapse
Affiliation(s)
- Jiangwei Lin
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jiang J, Ding G, Lin J, Zhang M, Shi L, Lv W, Yang H, Xiao H, Pei G, Li Y, Wu J, Li J. Different developmental potential of pluripotent stem cells generated by different reprogramming strategies. J Mol Cell Biol 2011; 3:197-9. [DOI: 10.1093/jmcb/mjr012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
George A, Sharma R, Singh KP, Panda SK, Singla SK, Palta P, Manik R, Chauhan MS. Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts. Cell Reprogram 2011; 13:263-72. [PMID: 21548826 DOI: 10.1089/cell.2010.0094] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Here, we report the isolation and characterization of embryonic stem (ES) cell-like cells from cloned blastocysts, generated using fibroblasts derived from an adult buffalo (BAF). These nuclear transfer embryonic stem cell-like cells (NT-ES) grew in well-defined and dome-shaped colonies. The expression pattern of pluripotency marker genes was similar in both NT-ES and in vitro fertilization (IVF) embryo-derived embryonic stem cell-like cells (F-ES). Upon spontaneous differentiation via embryoid body formation, cells of different morphology were observed, among which predominant were endodermal-like and epithelial-like cell types. The ES cell-like cells could be passaged only mechanically and did not form colonies when plated as single cell suspension at different concentrations. When F-ES cell-like, NT-ES cell-like, and BAF cells of same genotype were used for hand-made cloning (HMC), no significant difference (p > 0.05) was observed in cleavage and blastocyst rate. Following transfer of HMC embryos to synchronized recipients, pregnancies were established only with F-ES cell-like and BAF cell-derived embryos, and one live calf was born from F-ES cell-like cells. Further, when transfected NT-ES cell-like cells and BAF were used for HMC, no significant difference (p > 0.05) was observed between cleavage and blastocyst rate. In conclusion, here we report for the first time the derivation of ES cell-like cells from an adult buffalo, and its genetic modification. We also report the birth of a live cloned calf from buffalo ES cell-like cells.
Collapse
Affiliation(s)
- Aman George
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pelosi E, Forabosco A, Schlessinger D. Germ cell formation from embryonic stem cells and the use of somatic cell nuclei in oocytes. Ann N Y Acad Sci 2011; 1221:18-26. [PMID: 21401625 DOI: 10.1111/j.1749-6632.2011.05982.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Embryonic stem cells (ESCs) have remarkable properties of pluripotency and self-renewal, along with the retention of chromosomal integrity. Germ cells function as a kind of "transgenerational stem cells," transmitting genetic information from one generation to the next. The formation of putative primordial germ cells (PGCs) and germ cells from mouse and human ESCs (hESCs) has, in fact, been shown, and the apparent derivation of functional mouse male gametes has also been described. Additionally, investigators have successfully reprogrammed somatic nuclei into a pluripotent state by inserting them into ESCs or oocytes. This would enable the generation of ESCs genetically identical to the somatic cell donor and their use in cell therapy. However, these methodologies are still inefficient and their mechanisms poorly understood. Until full comprehension of these processes is obtained, clinical applications remain remote. Nevertheless, they represent promising tools in the future, enhancing methods of therapeutic cloning and infertility treatment.
Collapse
Affiliation(s)
- Emanuele Pelosi
- Laboratory of Genetics, National Institute on Aging/NIH Intramural Research Program, Baltimore, Maryland, USA.
| | | | | |
Collapse
|
39
|
Park MR, Lee AR, Bui HT, Park C, Park KK, Cho SG, Song H, Kim JH, Nguyen VT, Kim JH. Chromosome remodeling and differentiation of tetraploid embryos during preimplantation development. Dev Dyn 2011; 240:1660-9. [PMID: 21547981 DOI: 10.1002/dvdy.22653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2011] [Indexed: 11/07/2022] Open
Abstract
Although it is known that the tetraploid embryo contributes only to the placenta, the question of why tetraploid embryos differentiate into placenta remains unclear. To study the effect of electrofusion on the development of mouse tetraploid oocytes, mouse two-cell embryos were fused and cultured in vitro in Chatot-Ziomek-Bavister medium. After electrofusion, two chromosome sets from the tetraploid blastomere were individually duplicated before nuclear fusion. At 8-10 hr after electrofusion, each chromosome set was condensing and the nuclear membrane was breaking down. Around 12-14 hr after electrofusion, the two chromosome sets had combined together and had reached the second mitotic metaphase, at this point with 8n sets of chromosomes. Interestingly, we discovered that expression of OCT4, an inner cell mass cells biomarker, is lost by the tetraploid expanded blastocysts, but that CDX2, a trophectoderm cells biomarker, is strongly expressed at this stage. This observation provides evidence clarifying why tetraploid embryos contribute only to trophectoderm.
Collapse
Affiliation(s)
- Mi-Ryung Park
- Department of Animal Biotechnology, KonKuk University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Riaz A, Javeed A, Zhou Q. Therapeutic cloning by xenotransplanted oocytes, supplemented with species specific reprogramming factors. Med Hypotheses 2011; 76:527-9. [DOI: 10.1016/j.mehy.2010.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/18/2010] [Indexed: 11/24/2022]
|
41
|
Imberti B, Casiraghi F, Cugini D, Azzollini N, Cassis P, Todeschini M, Solini S, Sebastiano V, Zuccotti M, Garagna S, Redi CA, Noris M, Morigi M, Remuzzi G. Embryonic stem cells, derived either after in vitro fertilization or nuclear transfer, prolong survival of semiallogeneic heart transplants. THE JOURNAL OF IMMUNOLOGY 2011; 186:4164-74. [PMID: 21389254 DOI: 10.4049/jimmunol.1000654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tolerance induction toward allogeneic organ grafts represents one of the major aims of transplantation medicine. Stem cells are promising candidates for promoting donor-specific tolerance. In this study, we investigated the immunomodulatory properties of murine embryonic stem cells (ESCs), obtained either by in vitro fertilization (IVF-ESCs) or by nuclear transfer (NT-ESCs), in heart transplant mouse models. IVF-ESCs did not prolong the survival of fully allogeneic cardiac transplants but significantly prolonged the survival of semiallogeneic hearts from the same ESC donor strain for >100 d in 44% of the animals. However, 28% of transplanted animals infused with IVF-ESCs experienced development of a teratoma. NT-ESCs similarly prolonged semiallogeneic heart graft survival (>100 d in 40% of the animals) but were less teratogenic. By in vitro studies, IVF-ESC and NT-ESC immunoregulation was mediated both by cell contact-dependent mechanisms and by the release of soluble factors. By adding specific inhibitors, we identified PGE(2) as a soluble mediator of ESC immunoregulation. Expansion of regulatory T cells was found in lymphoid organs and in the grafts of IVF-ESC- and NT-ESC-tolerized mice. Our study demonstrates that both IVF-ESCs and NT-ESCs modulate recipient immune response toward tolerance to solid organ transplantation, and that NT-ESCs exhibit a lower tendency for teratoma formation. Because NT-ESCs are obtained by NT of a somatic cell from living individuals into an enucleated oocyte, they could represent a source of donor-derived stem cells to induce tolerance to solid organ allograft.
Collapse
Affiliation(s)
- Barbara Imberti
- Department of Molecular Medicine, Mario Negri Institute for Pharmacological Research, Bergamo 24125, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hirata S, Fukasawa H, Wakayama S, Wakayama T, Hoshi K. Generation of Healthy Cloned Mice Using Enucleated Cryopreserved Oocytes. Cell Reprogram 2011; 13:7-11. [DOI: 10.1089/cell.2010.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Shuji Hirata
- Department of Obstetrics and Gynecology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hiroko Fukasawa
- Department of Obstetrics and Gynecology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sayaka Wakayama
- Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Teruhiko Wakayama
- Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Kazuhiko Hoshi
- Vice-President, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
43
|
Hai T, Hao J, Wang L, Jouneau A, Zhou Q. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histone deacetylase inhibitor TSA. Cell Reprogram 2011; 13:47-56. [PMID: 21241188 DOI: 10.1089/cell.2010.0042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.
Collapse
Affiliation(s)
- Tang Hai
- State Key Laboratory of Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Desmarais JA, Demers SP, Suzuki J, Laflamme S, Vincent P, Laverty S, Smith LC. Trophoblast stem cell marker gene expression in inner cell mass-derived cells from parthenogenetic equine embryos. Reproduction 2011; 141:321-32. [PMID: 21209071 DOI: 10.1530/rep-09-0536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although putative horse embryonic stem (ES)-like cell lines have been obtained recently from in vivo-derived embryos, it is currently not known whether it is possible to obtain ES cell (ESC) lines from somatic cell nuclear transfer (SCNT) and parthenogenetic (PA) embryos. Our aim is to establish culture conditions for the derivation of autologous ESC lines for cell therapy studies in an equine model. Our results indicate that both the use of early-stage blastocysts with a clearly visible inner cell mass (ICM) and the use of pronase to dissect the ICM allow the derivation of a higher proportion of primary ICM outgrowths from PA and SCNT embryos. Primary ICM outgrowths express the molecular markers of pluripotency POU class 5 homeobox 1 (POU5F1) and (sex determining region-Y)-box2 (SOX2), and in some cases, NANOG. Cells obtained after the passages of PA primary ICM outgrowths display alkaline phosphatase (AP) activity and POU5F1, SOX2, caudal-related homeobox-2 (CDX2) and eomesodermin (EOMES) expression, but may lose NANOG. Cystic embryoid body-like structures expressing POU5F1, CDX2 and EOMES were produced from these cells. Immunohistochemical analysis of equine embryos reveals the presence of POU5F1 in trophectoderm, primitive endoderm and ICM. These results suggest that cells obtained after passages of primary ICM outgrowths are positive for trophoblast stem cell markers while expressing POU5F1 and displaying AP activity. Therefore, these cells most likely represent trophoblast cells rather than true ESCs. This study represents an important first step towards the production of autologous equine ESCs for pre-clinical cell therapy studies on large animal models.
Collapse
Affiliation(s)
- Joëlle A Desmarais
- Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Centre de Recherche en Reproduction Animale, University of Montreal, 3200 Sicotte, St-Hyacinthe, Quebec J2S 7C6, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Cui XS, Shen XH, Lee CK, Kang YK, Wakayama T, Kim NH. Analysis of proteomic profiling of mouse embryonic stem cells derived from fertilized, parthenogenetic and androgenetic blastocysts. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/scd.2011.11001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Drummond RJ, Kunath T, Mee PJ, Ross JA. Induced pluripotent stem cell technology and stem cell therapy for diabetes. Exp Ther Med 2010; 2:3-7. [PMID: 22977463 DOI: 10.3892/etm.2010.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/10/2010] [Indexed: 12/12/2022] Open
Abstract
Although diabetes can be managed clinically with the use of insulin injections, it remains an incurable and inconvenient disorder. In the long-term, it is associated with a number of clinical complications, such as cardiovascular disease, resulting in a desire for the development of new methodologies to replace defective cells and provide a lasting normality without the need for drug treatment. Stem cells, including induced pluripotent stem cells, offer the possibility of generating cells suitable for transplantation due to their capacity to differentiate into all tissue lineages. However, many issues must be addressed before this type of treatment becomes a reality, including the need for a greater understanding of the underlying biology involved in the onset of diabetes.
Collapse
Affiliation(s)
- Robert J Drummond
- Tissue Injury and Repair Group, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland EH16 4SB
| | | | | | | |
Collapse
|
47
|
|
48
|
Wei Y, Zhu J, Huan Y, Liu Z, Yang C, Zhang X, Mu Y, Xia P, Liu Z. Aberrant expression and methylation status of putatively imprinted genes in placenta of cloned piglets. Cell Reprogram 2010; 12:213-22. [PMID: 20677935 DOI: 10.1089/cell.2009.0090] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unlike embryos derived from fertilization, most cloned embryos die during postimplantation development, and those that survive to term are frequently defective. Many of the observed defects involve placenta. Abnormal placentation has been described in several cloned species. Imprinted genes are important regulators of placenta growth, and may be subjected to faulty reprogramming during somatic cell nuclear transfer. We aimed to determine the expression levels and methylation patterns of imprinted genes in placentas of live cloned piglets and dead ones. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that the expression of all four imprinted genes (IGF2, H19, PEG3, and GRB10) was significantly reduced in placentas of dead clones compared with placentas of live cloned piglets and controls (p < 0.05). In contrast, both live and dead cloned piglets exhibited steady-state mRNA levels for these genes within the control range (p > 0.05). Transcript levels for these genes in live clones rarely differed from those of controls in both piglets and placentas. Examination of the methylation status of DMR2 of IGF2 and CTCF3 of H19 genes revealed that both genes exhibited significant high methylation levels in placentas of dead clones compared with placentas of live clones and controls. In contrast, both genes showed a normal differential methylation pattern in live cloned piglets and their placentas compared with controls. Importantly, dead cloned piglets also showed a normal pattern. Our results suggest that abnormal expression of imprinted genes in placenta may contribute to the development failure in pig somatic cell nuclear transfer (SCNT), which may be caused by abnormal methylation patterns in differentially methylated regions (DMRs) of imprinted genes as a result of incomplete reprogramming during SCNT.
Collapse
Affiliation(s)
- Yanchang Wei
- College of Life Science, Northeast Agricultural University , Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010; 24:2239-63. [PMID: 20952534 DOI: 10.1101/gad.1963910] [Citation(s) in RCA: 557] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The generation of induced pluripotent stem cells (iPSCs) from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the enforced expression of a few embryonic transcription factors. This discovery has raised fundamental questions about the mechanisms by which transcription factors influence the epigenetic conformation and differentiation potential of cells during reprogramming and normal development. In addition, iPSC technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and possible treatment of degenerative disorders with autologous cells. In this review, we summarize the progress that has been made in the iPSC field over the last 4 years, with an emphasis on understanding the mechanisms of cellular reprogramming and its potential applications in cell therapy.
Collapse
Affiliation(s)
- Matthias Stadtfeld
- Howard Hughes Medical Institute, Harvard University and Harvard Medical School, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
50
|
Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns. Stem Cell Res Ther 2010; 1:24. [PMID: 20699013 PMCID: PMC2941116 DOI: 10.1186/scrt24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells.
Collapse
|