1
|
Colella A, Biondi G, Marrano N, Francioso E, Fracassi L, Crovace AM, Recchia A, Natalicchio A, Paradies P. Generation of Insulin-Producing Cells from Canine Bone Marrow-Derived Mesenchymal Stem Cells: A Preliminary Study. Vet Sci 2024; 11:380. [PMID: 39195834 PMCID: PMC11359947 DOI: 10.3390/vetsci11080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Cell-based therapy using insulin-producing cells (IPCs) is anticipated as an alternative treatment option to insulin injection or pancreatic islet transplantation for the treatment of diabetes mellitus in both human and veterinary medicine. Several protocols were reported for the differentiation of mesenchymal stem cells (MSCs) into IPCs; to date, glucose-responsive IPCs have only been obtained from canine adipose tissue-derived MSCs (cAD-MSCs), but not from canine bone marrow-derived MSCs (cBM-MSCs). Therefore, this study aims to generate in vitro glucose-responsive IPCs from cBM-MSCs using two differentiation protocols: a two-step protocol using trichostatin (TSA) and a three-step protocol using mercaptoethanol to induce pancreatic and duodenal homeobox gene 1 (PDX-1) expression. A single experiment was carried out for each protocol. BM-MSCs from one dog were successfully cultured and expanded. Cells exposed to the two-step protocol appeared rarely grouped to form small clusters; gene expression analysis showed a slight increase in PDX-1 and insulin expression, but no insulin protein production nor secretion in the culture medium was detected either under basal conditions or following glucose stimulation. Conversely, cells exposed to the three-step protocol under a 3D culture system formed colony-like structures; insulin gene expression was upregulated compared to undifferentiated control and IPCs colonies secreted insulin in the culture medium, although insulin secretion was not enhanced by high-glucose culture conditions. The single experiment results suggest that the three-step differentiation protocol could generate IPCs from cBM-MSCs; however, further experiments are needed to confirm these data. The ability of IPCs from cBM- MSCs to produce insulin, described here for the first time, is a preliminary interesting result. Nevertheless, the IPCs' unresponsiveness to glucose, if confirmed, would affect its clinical application. Further studies are necessary to establish a differentiation protocol in this perspective.
Collapse
Affiliation(s)
- Antonella Colella
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Edda Francioso
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Laura Fracassi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Alberto M. Crovace
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Alessandra Recchia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Paola Paradies
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| |
Collapse
|
2
|
Abd El Kader MA, Gabr MM, Khater SM, Ghanem RA, Abou El Naga AM. Impact of insulin producing cells derived from adipose tissue mesenchymal stem cells on testicular dysfunction of diabetic rats. Heliyon 2021; 7:e08316. [PMID: 34820536 PMCID: PMC8601995 DOI: 10.1016/j.heliyon.2021.e08316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/06/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
The present study is to clarify the effect of insulin-producing cells (IPCs) derived from adipose tissue mesenchymal stem cells (AT-MSCs) on diabetic-induced impairments as the abnormalities of testicular tissues, oxidative stress of testes, and defects of spermatogenesis. Diabetes was stimulated by streptozotocin (STZ) injection in male adult Sprague Dawley (SD) rats. Diabetes was confirmed by taking two highly consecutive fasting blood sugar readings; more than 300 mg/dl; within one week. Five million of IPCs derived from AT-MSCs; encased in TheraCyte capsule; were then directly transplanted (one implant for each rat) subcutaneously in diabetic rats. Implants were maintained for 3 months and the fasting blood sugar of the transplanted rats was observed every month. At the end of the experiment; serum testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were also estimated. The sperm parameters (count, motility, and abnormality) were recorded. In testicular tissue; GPX4, Bcl2, and Bax levels were evaluated, while oxidative stress and antioxidant enzymes activities were measured in the testes homogenate. Also, histopathological alterations were examined in the testes cross-section. In the results, it was found that IPCs treatment enhanced the serum testosterone, FSH, and LH levels. Diabetic-induced impairments in the sperm parameters were noticeably improved post-IPCs transplantation in the diabetic rats. Moreover, the treatment improved the diabetic-associated testicular oxidative stress. Also, it was recognized that the Bax expression decreased, while, GPX4 and Bcl2 expression increased in the treated rats. Meanwhile, the abnormalities showed in the histopathological studies of the hyperglycemic rat's testes were attenuated post-treatment. So, IPCs transplantation improved diabetes and consequently protected against hyperglycemia-induced testicular damages.
Collapse
Affiliation(s)
- Mai A Abd El Kader
- Department of Biotechnology, Urology and Nephrology Center, Mansoura, Egypt
| | - Mahmoud M Gabr
- Department of Biotechnology, Urology and Nephrology Center, Mansoura, Egypt
| | - Sherry M Khater
- Department of Pathology, Urology and Nephrology Center, Mansoura, Egypt
| | - Reham A Ghanem
- Division of Molecular Biology, Faculty of Dentistry, Delta University, Mansoura, Egypt
| | | |
Collapse
|
3
|
Huang Q, Huang Y, Liu J. Mesenchymal Stem Cells: An Excellent Candidate for the Treatment of Diabetes Mellitus. Int J Endocrinol 2021; 2021:9938658. [PMID: 34135959 PMCID: PMC8178013 DOI: 10.1155/2021/9938658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells (ASCs) known for repairing damaged cells, exerting anti-inflammatory responses and producing immunoregulatory effects that can be significantly induced into insulin-producing cells (IPCs), providing an inexhaustible supply of functional β cells for cell replacement therapy and disease modeling for diabetes. MSC therapy may be the most promising strategy for diabetes mellitus because of these significant merits. In this paper, we focused on MSC therapy for diabetes.
Collapse
Affiliation(s)
- Qiulan Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanting Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Liu
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Ghoneim MA, Refaie AF, Elbassiouny BL, Gabr MM, Zakaria MM. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Progress and Challenges. Stem Cell Rev Rep 2020; 16:1156-1172. [PMID: 32880857 PMCID: PMC7667138 DOI: 10.1007/s12015-020-10036-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are an attractive option for cell therapy for type 1 diabetes mellitus (DM). These cells can be obtained from many sources, but bone marrow and adipose tissue are the most studied. MSCs have distinct advantages since they are nonteratogenic, nonimmunogenic and have immunomodulatory functions. Insulin-producing cells (IPCs) can be generated from MSCs by gene transfection, gene editing or directed differentiation. For directed differentiation, MSCs are usually cultured in a glucose-rich medium with various growth and activation factors. The resulting IPCs can control chemically-induced diabetes in immune-deficient mice. These findings are comparable to those obtained from pluripotent cells. PD-L1 and PD-L2 expression by MSCs is upregulated under inflammatory conditions. Immunomodulation occurs due to the interaction between these ligands and PD-1 receptors on T lymphocytes. If this function is maintained after differentiation, life-long immunosuppression or encapsulation could be avoided. In the clinical setting, two sites can be used for transplantation of IPCs: the subcutaneous tissue and the omentum. A 2-stage procedure is required for the former and a laparoscopic procedure for the latter. For either site, cells should be transplanted within a scaffold, preferably one from fibrin. Several questions remain unanswered. Will the transplanted cells be affected by the antibodies involved in the pathogenesis of type 1 DM? What is the functional longevity of these cells following their transplantation? These issues have to be addressed before clinical translation is attempted. Graphical Abstract Bone marrow MSCs are isolated from the long bone of SD rats. Then they are expanded and through directed differentiation insulin-producing cells are formed. The differentiated cells are loaded onto a collagen scaffold. If one-stage transplantation is planned, a drug delivery system must be incorporated to ensure immediate oxygenation, promote vascularization and provide some growth factors. Some mechanisms involved in the immunomodulatory function of MSCs. These are implemented either by cell to cell contact or by the release of soluble factors. Collectively, these pathways results in an increase in T-regulatory cells.
Collapse
|
5
|
Generation of Insulin-Producing Cells from Canine Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8841865. [PMID: 33133196 PMCID: PMC7591982 DOI: 10.1155/2020/8841865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
The potential of mesenchymal stem cells (MSCs) to differentiate into nonmesodermal cells such as pancreatic beta cells has been reported. New cell-based therapy using MSCs for diabetes mellitus is anticipated as an alternative treatment option to insulin injection or islet transplantation in both human and veterinary medicine. Several protocols were reported for differentiation of MSCs into insulin-producing cells (IPCs), but no studies have reported IPCs generated from canine MSCs. The purpose of this study was to generate IPCs from canine adipose tissue-derived MSCs (AT-MSCs) in vitro and to investigate the effects of IPC transplantation on diabetic mice in vivo. Culturing AT-MSCs with the differentiation protocol under a two-dimensional culture system did not produce IPCs. However, spheroid-like small clusters consisting of canine AT-MSCs and human recombinant peptide μ-pieces developed under a three-dimensional (3D) culture system were successfully differentiated into IPCs. The generated IPCs under 3D culture condition were stained with dithizone and anti-insulin antibody. Canine IPCs also showed gene expression typical for pancreatic beta cells and increased insulin secretion in response to glucose stimulation. The blood glucose levels in streptozotocin-induced diabetic mice were decreased after injection with the supernatant of canine IPCs, but the hyperglycemic states of diabetic mice were not improved after transplanting IPCs subcutaneously or intramesenterically. The histological examination showed that the transplanted small clusters of IPCs were successfully engrafted to the mice and included cells positive for insulin by immunofluorescence. Several factors, such as the transplanted cell number, the origin of AT-MSCs, and the differentiation protocol, were considered potential reasons for the inability to improve the hyperglycemic state after IPC transplantation. These findings suggest that canine AT-MSCs can be differentiated into IPCs under a 3D culture system and IPC transplantation may be a new treatment option for dogs with diabetes mellitus.
Collapse
|
6
|
β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev 2020; 163:103634. [PMID: 32711047 DOI: 10.1016/j.mod.2020.103634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
All pancreatic cell populations arise from the standard gut endoderm layer in developing embryos, requiring a regulatory gene network to originate and maintain endocrine lineages and endocrine function. The pancreatic organogenesis is regulated by the temporal expression of transcription factors and plays a diverse role in the specification, development, differentiation, maturation, and functional maintenance. Altered expression and activity of these transcription factors are often associated with diabetes mellitus. Recent advancements in the stem cells and invitro derived islets to treat diabetes mellitus has attracted a great deal of interest in the understanding of factors regulating the development, differentiation, and functions of islets including transcription factors. This review discusses the myriad of transcription factors regulating the development of the pancreas, differentiation of β-islets, and how these factors regulated in normal and disease states. Exploring these factors in such critical context and exogenous or endogenous expression of development and differentiation-specific transcription factors with improved epigenetic plasticity/signaling axis in diabetic milieu would useful for the development of β-cells from other cell sources.
Collapse
|
7
|
Subcutaneous transplantation of bone marrow derived stem cells in macroencapsulation device for treating diabetic rats; clinically transplantable site. Heliyon 2020; 6:e03914. [PMID: 32395661 PMCID: PMC7210428 DOI: 10.1016/j.heliyon.2020.e03914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background/aim Diabetes mellitus (DM) is a serious, chronic and epidemic disease. Its effective therapy with exogenous insulin places an overwhelming burden on the patient's lifestyle. Moreover, pancreatic islet transplantation is limited by the scarceness of donors and the need for chronic immunosuppression. Cell-based therapy is considered an alternative source of insulin-producing cells (IPCs); encapsulating such cellular grafts in immunoisolating devices would protect the graft from immune attack without the need for immunosuppression. Herein, we investigate the ability of TheraCyte capsule as an immunoisolating device to promote the maturation of differentiated rat bone marrow derived mesenchymal stem cells (BM-MSCs), transplanted subcutaneously to treat diabetic rats in comparison with intratesticular transplantation. Main methods Rat BM-MSC were differentiated into IPCs, and either encapsulated in TheraCyte capsules for subcutaneous transplantation or transplanted intratesticular into diabetic rats. Serum insulin, C-peptide & blood glucose levels of transplanted animals were monitored. Retrieved cells were further characterized by immunofluorescence staining and gene expression analysis. Key findings Differentiated rat BM-MSC were able to produce insulin in vitro, ameliorate hyperglycemia in vivo and survive for 6 months post transplantation. Transplanted cells induced higher levels of insulin and C-peptide, lower levels of blood glucose in the cured animals of both experimental groups. Gene expression revealed a further in vivo maturation of the implanted cells. Significance These data suggest that TheraCyte encapsulation of allogeneic differentiated stem cells are capable of reversing hyperglycemia, which holds a great promise as a new cell based, clinically applicable therapies for diabetes.
Collapse
|
8
|
PRDX6 Promotes the Differentiation of Human Mesenchymal Stem (Stromal) Cells to Insulin-Producing Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7103053. [PMID: 32051828 PMCID: PMC6995490 DOI: 10.1155/2020/7103053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) can be differentiated in vitro to form insulin-producing cells (IPCs). However, the proportion of induced cells is modest. Extracts from injured pancreata of rodents promoted this differentiation, and three upregulated proteins were identified in these extracts. The aim of this study was to evaluate the potential benefits of adding these proteins to the differentiation medium alone or in combination. Our results indicate that the proportion of IPCs among the protein(s)-supplemented samples was significantly higher than that in the samples with no added proteins. The yield from samples supplemented with PRDX6 alone was 4-fold higher than that from samples without added protein. These findings were also supported by the results of fluorophotometry. Gene expression profiles revealed higher levels among protein-supplemented samples. Significantly higher levels of GGT, SST, Glut-2, and MafB expression were noted among PRDX6-treated samples. There was a stepwise increase in the release of insulin and c-peptide, as a function of increasing glucose concentrations, indicating that the differentiated cells were glucose sensitive and insulin responsive. PRDX6 exerts its beneficial effects as a result of its biological antioxidant properties. Considering its ease of use as a single protein, PRDX6 is now routinely used in our differentiation protocols.
Collapse
|
9
|
Schröder C, Khatri R, Petry SF, Linn T. Class I and II Histone Deacetylase Inhibitor LBH589 Promotes Endocrine Differentiation in Bone Marrow Derived Human Mesenchymal Stem Cells and Suppresses Uncontrolled Proliferation. Exp Clin Endocrinol Diabetes 2020; 129:357-364. [PMID: 32052390 DOI: 10.1055/a-1103-1900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells are useful tools employed in clinical and preclinical medicine. Their beneficial potential in especially degenerative as well as autoimmune diseases is a constant focus of research. Regarding diabetes mellitus, transplantation of stem cells is seen as a possible therapeutic approach to overcome the loss of endocrine pancreatic cells. It was reported that co-transplantation of mesenchymal stem cells with pancreatic islet cells improves function and survival of the graft. However, these multipotent progenitors may be able to form tumors, especially under immunosuppressed conditions. Histone deacetylase inhibitors might offer the potential to overcome this issue. These small molecules can induce cell differentiation and control proliferation. Their potential to control lineage development of stem cells has been distinctly demonstrated in the treatment of cancer, mainly in hematopoietic neoplasias.In this study, we demonstrate that human bone marrow-derived mesenchymal stem cells exhibit low carcinogenic potential in an immunosuppressed condition in vivo. Further, the effect of histone deacetylase inhibitors LBH589, MS-275, and MGCD0103 was examined after normalizing histone deacetylase activities in culture. Interestingly, transcripts of insulin gene enhancer protein and paired-box-gene 6, two markers of pancreatic endocrine differentiation were constitutively expressed in the cell line. The broad spectrum inhibitor of class I and class II histone deacetylases LBH589 upregulated the expression of these transcription factors in a significant way, whereas addition of selective class I histone deacetylase inhibitors MS-275 and MGCD0103 did not result in significant changes in gene expression.In conclusion, we deliver evidence that a combined class I and II histone deacetylase inhibition is able to modulate the transcripts of differentiation markers of mesenchymal stem cells. The treatment holds the capability to facilitate endocrine differentiation in future approaches to replace endocrine cells by stem cell therapy.
Collapse
Affiliation(s)
- Christoph Schröder
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Germany.,Medizinische Hochschule Hannover, Hannover, Germany
| | - Rahul Khatri
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Germany
| | | | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Germany
| |
Collapse
|
10
|
Pavathuparambil Abdul Manaph N, Sivanathan KN, Nitschke J, Zhou XF, Coates PT, Drogemuller CJ. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther 2019; 10:293. [PMID: 31547868 PMCID: PMC6757413 DOI: 10.1186/s13287-019-1396-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The field of regenerative medicine provides enormous opportunities for generating beta cells from different stem cell sources for cellular therapy. Even though insulin-secreting cells can be generated from a variety of stem cell types like pluripotent stem cells and embryonic stem cells, the ideal functional cells should be generated from patients' own cells and expanded to considerable levels by non-integrative culture techniques. In terms of the ease of isolation, plasticity, and clinical translation to generate autologous cells, mesenchymal stem cell stands superior. Furthermore, small molecules offer a great advantage in terms of generating functional beta cells from stem cells. Research suggests that most of the mesenchymal stem cell-based protocols to generate pancreatic beta cells have small molecules in their cocktail. However, most of the protocols generate cells that mimic the characteristics of human beta cells, thereby generating "beta cell-like cells" as opposed to mature beta cells. Diabetic therapy becomes feasible only when there are robust, functional, and safe cells for replacing the damaged or lost beta cells. In this review, we discuss the current protocols used to generate beta cells from mesenchymal cells, with emphasis on small molecule-mediated conversion into insulin-producing beta cell-like cells. Our data and the data presented from the references within this review would suggest that although mesenchymal stem cells are an attractive cell type for cell therapy they are not readily converted into functional mature beta cells.
Collapse
Affiliation(s)
- Nimshitha Pavathuparambil Abdul Manaph
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia. .,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia. .,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Kisha N Sivanathan
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jodie Nitschke
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Patrick T Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher John Drogemuller
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
11
|
Rashed S, Gabr M, Abdel-Aziz AA, Zakaria M, Khater S, Ismail A, Fouad A, Refaie A. Differentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:1-13. [PMID: 32195201 DOI: 10.22088/ijmcm.bums.8.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
Abstract
The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous diseases and disorders. Recent phenotypic analysis has shown heterogeneity of MSCs. Nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone marrow MSCs, and differentiate these cells into functional insulin producing cells (IPCs) compared with nestin (-) cells. Manual magnetic separation was performed to obtain nestin (+) cells from MSCs. Approximately 91±3.3% of nestin (+) cells were positive for anti-nestin antibody. Pluripotent genes were overexpressed in nestin (+) cells compared with nestin (-) cells as revealed by quantitative real time-PCR (qRT-PCR). Following in vitro differentiation, flow cytometric analysis showed that 2.7±0.5% of differentiated nestin (+) cells were positive for anti-insulin antibody in comparison with 0.08±0.02% of nestin (-) cells. QRT-PCR showed higher expression of insulin and other endocrine genes in comparison with nestin (-) cells. While immunofluorescence technique showed the presence of insulin and C-peptide granules in nestin (+) cells. Therefore, our results introduced nestin (+) cells as a pluripotent subpopulation within human MSCs which is capable to differentiate and produce functional IPCs.
Collapse
Affiliation(s)
- Sahar Rashed
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mahmoud Gabr
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Abdel-Aziz Abdel-Aziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mahmoud Zakaria
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Sherry Khater
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Amani Ismail
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ali Fouad
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ayman Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
In vitro differentiation of human multilineage differentiating stress-enduring (Muse) cells into insulin producing cells. J Genet Eng Biotechnol 2018; 16:433-440. [PMID: 30733757 PMCID: PMC6354004 DOI: 10.1016/j.jgeb.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/09/2018] [Indexed: 12/30/2022]
Abstract
Mesenchymal stem cells (MSCs) is a heterogeneous population. Muse cells is a rare pluripotent subpopulation within MSCs. This study aims to evaluate the pulirpotency and the ability of Muse cells to generate insulin producing cells (IPCs) after in vitro differentiation protocol compared to the non-Muse cells. Muse cells were isolated by FACSAria III cell sorter from adipose-derived MSCs and were evaluated for its pluripotency. Following in vitro differentiation, IPCs derived from Muse and non-Muse cells were evaluated for insulin production. Muse cells comprised 3.2 ± 0.7% of MSCs, approximately 82% of Muse cells were positive for anti stage-specific embryonic antigen-3 (SSEA-3). Pluripotent markers were highly expressed in Muse versus non-Muse cells. The percentage of generated IPCs by flow cytometric analysis was higher in Muse cells. Under confocal microscopy, Muse cells expressed insulin and c-peptide while it was undetected in non-Muse cells. Our results introduced Muse cells as a new adult pluripotent subpopulation, which is capable to produce higher number of functional IPCs.
Collapse
|
13
|
Belame Shivakumar S, Bharti D, Baregundi Subbarao R, Park JM, Son YB, Ullah I, Choe YH, Lee HJ, Park BW, Lee SL, Rho GJ. Pancreatic endocrine-like cells differentiated from human umbilical cords Wharton's jelly mesenchymal stem cells using small molecules. J Cell Physiol 2018; 234:3933-3947. [PMID: 30343506 DOI: 10.1002/jcp.27184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
Following success of pancreatic islet transplantation in the treatment of Type I diabetes mellitus, there is a growing interest in using cell-based treatment approaches. However, severe shortage of donor islets-pancreas impeded the growth, and made researchers to search for an alternative treatment approaches. In this context, recently, stem cell-based therapy has gained more attention. The current study demonstrated that epigenetic modification improves the in vitro differentiation of Wharton's jelly mesenchymal stem cells (WJMSCs) into pancreatic endocrine-like cells. Here we used two histone deacetylase (HDAC) inhibitors namely trichostatin A (TSA) and TMP269. TSA inhibits both class I and II HDACs whereas TMP269 inhibits only class IIa HDACs. WJMSCs were differentiated using a multistep protocol in a serum-free condition with or without TSA pretreatment. A marginal improvement in differentiation was observed after TSA pretreatment though it was not significant. However, exposing endocrine precursor-like cells derived from WJMSCs to TMP269 alone has significantly improved the differentiation toward insulin-producing cells. Further, increase in the expression of paired box 4 (PAX4), insulin, somatostatin, glucose transporter 2 (GLUT2), MAF bZIP transcription factor A (MAFA), pancreatic duodenal homeobox 1 (PDX-1), and NKX6.1 was observed both at messenger RNA and protein levels. Nevertheless, TMP269-treated cells secreted higher insulin upon glucose challenge, and demonstrated increased dithizone staining. These findings suggest that TMP269 may improve the in vitro differentiation of WJMSCs into insulin-producing cells.
Collapse
Affiliation(s)
- Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ju-Mi Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choe
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeong-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
14
|
Sun J, Zhao F, Zhang W, Lv J, Lv J, Yin A. BMSCs and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway. J Cell Mol Med 2018; 22:4840-4855. [PMID: 30024097 PMCID: PMC6156290 DOI: 10.1111/jcmm.13747] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
BMSCs are important in replacement therapy of diabetic nephropathy (DN). MiR‐124a exerts effect on the differentiation capability of pancreatic progenitor cells. The objective of this study was to explore the molecular mechanisms, the functions of miR‐124a and bone marrow mesenchymal stem cells (BMSCs) in the treatment of DN. Characterizations of BMSCs were identified using the inverted microscope and flow cytometer. The differentiations of BMSCs were analysed by immunofluorescence assay and DTZ staining. The expression levels of islet cell‐specific transcription factors, apoptosis‐related genes, podocytes‐related genes and Notch signalling components were detected using quantitative real‐time reverse transcription PCR (qRT‐PCR) and Western blot assays. The production of insulin secretion was detected by adopting radioimmunoassay. Cell proliferation and apoptosis abilities were detected by CCK‐8, flow cytometry and TUNEL assays. We found that BMSCs was induced into islet‐like cells and that miR‐124a could promote the BMSCs to differentiate into islet‐like cells. BMSCs in combination with miR‐124a regulated islet cell‐specific transcription factors, apoptosis‐related genes, podocytes‐related genes as well as the activity of Notch signalling pathway. However, BMSCs in combination with miR‐124a relieved renal lesion caused by DN and decreased podocyte apoptosis caused by HG. The protective effect of BMSCs in combination with miR‐124a was closely related to the inactivation of Notch signalling pathway. MSCs in combination with miR‐124a protected kidney tissue from impairment and inhibited nephrocyte apoptosis in DN.
Collapse
Affiliation(s)
- Jiping Sun
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Fei Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Wenjing Zhang
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jia Lv
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jing Lv
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Aiping Yin
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Gabr MM, Zakaria MM, Refaie AF, Ismail AM, Khater SM, Ashamallah SA, Azzam MM, Ghoneim MA. Insulin-producing Cells from Adult Human Bone Marrow Mesenchymal Stromal Cells Could Control Chemically Induced Diabetes in Dogs: A Preliminary Study. Cell Transplant 2018; 27:937-947. [PMID: 29860900 PMCID: PMC6050912 DOI: 10.1177/0963689718759913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/20/2018] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
Ten mongrel dogs were used in this study. Diabetes was chemically induced in 7 dogs, and 3 dogs served as normal controls. For each diabetic dog, 5 million human bone marrow-derived mesenchymal stem cells/kg were differentiated to form insulin-producing cells using a trichostatin-based protocol. Cells were then loaded in 2 TheraCyte capsules which were transplanted under the rectus sheath. One dog died 4 d postoperatively from pneumonia. Six dogs were followed up with for 6 to 18 mo. Euglycemia was achieved in 4 dogs. Their glucose tolerance curves exhibited a normal pattern demonstrating that the encapsulated cells were glucose sensitive and insulin responsive. In the remaining 2 dogs, the fasting blood sugar levels were reduced but did not reach normal values. The sera of all transplanted dogs contained human insulin and C-peptide with a negligible amount of canine insulin. Removal of the transplanted capsules was followed by prompt return of diabetes. Intracytoplasmic insulin granules were seen by immunofluorescence in cells from the harvested capsules. Furthermore, all pancreatic endocrine genes were expressed. This study demonstrated that the TheraCyte capsule or a similar device can provide adequate immunoisolation, an important issue when stem cells are considered for the treatment of type 1 diabetes mellitus.
Collapse
|
16
|
Jang S, Jeong HS. Histone deacetylase inhibition-mediated neuronal differentiation via the Wnt signaling pathway in human adipose tissue-derived mesenchymal stem cells. Neurosci Lett 2018; 668:24-30. [PMID: 29307599 DOI: 10.1016/j.neulet.2018.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/06/2023]
Abstract
Histone deacetylase (HDAC) inhibitors, which have an effect on cell homeostasis, cell cycle progression, and terminal differentiation, can act to promote self-renewal and enhance directed differentiation of several lineages of stem cells. However, the roles of HDAC inhibitors on neurogenic differentiation and the mechanisms of Wnt signaling following treatment with HDAC inhibitors remain unclear in stem cells. We hypothesized that HDAC inhibitors regulate downstream Wnt signaling and neurogenic differentiation of mesenchymal stem cells. Following neural induction with supplementary factors, human adipose tissue-derived mesenchymal stem cells (hADSCs) were differentiated into neurogenic cells in vitro. We examined the neurogenic differentiation induced by the HDAC inhibitors, MS-275, sodium butyrate (NaB), trichostatin A (TSA), and valproic acid (VPA), by RT-PCR and western blot analysis. Based on RT-PCR analysis, the expressions of NEUROG2 and NEFL were highly increased following HDAC inhibitor treatment compared with control medium. Most of the neuronal marker genes were expressed when neural-induced hADSCs (NI-hADSCs) were treated with the HDAC inhibitors individually. Interestingly, expression of most of the Wnt-related genes were highly increased following treatment with the HDAC inhibitors, especially with MS-275 treatment. Further, the protein level of Wnt5 was upregulated after neurogenic induction with MS-275 and VPA treatment, based on western blot analysis. Furthermore, we found that c-Jun expression was increased after treatment with the HDAC inhibitors, except with NaB. The protein levels of phosphor-JNK and phosphor-GSK-3β were upregulated considerably. In conclusion, the HDAC inhibitors could induce neurogenic differentiation of hADSCs by activating canonical Wnt or non-canonical Wnt signaling pathways.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| |
Collapse
|
17
|
Zhang Q, Dai Y, Cai Z, Mou L. HDAC Inhibitors: Novel Immunosuppressants for Allo- and Xeno- Transplantation. ChemistrySelect 2018. [DOI: 10.1002/slct.201702295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qing Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Yifan Dai
- Department Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing, Jiangsu 210029 China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| |
Collapse
|
18
|
Abstract
The novel genome-wide assays of epigenetic marks have resulted in a greater understanding of how genetics and the environment interact in the development and inheritance of diabetes. Chronic hyperglycemia induces epigenetic changes in multiple organs, contributing to diabetic complications. Specific epigenetic-modifying compounds have been developed to erase these modifications, possibly slowing down the onset of diabetes-related complications. The current review is an update of the previously published paper, describing the most recent advances in the epigenetics of diabetes.
Collapse
Affiliation(s)
- Adriana Fodor
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
- County Emergency Clinical Hospital, Department of Diabetes, Nutrition & Metabolic Diseases, Cluj-Napoca, Romania
| | - Angela Cozma
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
- Clinical Hospital CF, Department of Internal Medicine, Cluj-Napoca, Romania
| | - Eddy Karnieli
- The Institute of Endocrinology, Diabetes & Metabolism, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
19
|
From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3854232. [PMID: 28584815 PMCID: PMC5444016 DOI: 10.1155/2017/3854232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/24/2022]
Abstract
The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.
Collapse
|
20
|
Co-microencapsulation of BMSCs and mouse pancreatic β cells for improving the efficacy of type I diabetes therapy. Int J Artif Organs 2017; 40:169-175. [PMID: 28362046 DOI: 10.5301/ijao.5000555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION To overcome the shortcomings of pancreas transplantation and insulin injection treatment for type I diabetes, biocompatible materials were used to prepare alginate-chitosan-alginate microcapsules that co-encapsulated bone marrow mesenchymal stem cells and mouse pancreatic β cells to treat diabetic mice. METHODS Blank alginate-chitosan-alginate (ACA) microcapsules and co-microencapsulated cells were prepared using a high-voltage electrostatic method and then characterized using an inverted microscope. Cell viability was evaluated using AO/EB staining. ELISA kit was used to detect insulin secretion. Peri-orbital blood samples were obtained from the mice for blood glucose determination every week for one month. RESULTS After 28 days of in vitro culture, the secretion of insulin following co-microencapsulation was higher than that observed for microencapsulated beta-TC-6 cells alone. On the 28th day after transplantation, the blood glucose level was 6.86 mmol/L in the microencapsulated beta-TC-6 group. On the 14th day, the blood glucose level was 6.80 mmol/L in the co-microencapsulated BMSC/beta-TC-6 group, which was close to the normal blood glucose level of healthy mice. These results indicated that the efficacy in reducing blood glucose was better in the co-microencapsulated BMSC/beta-TC-6 group. CONCLUSIONS This primary study indicated that combining microencapsulation technology and co-culture of stem cells and somatic cells shows promise for the treatment of type I diabetes mellitus.
Collapse
|
21
|
Suchanek J, Nasry SA, Soukup T. The Differentiation Potential of Human Natal Dental Pulp Stem Cells into Insulin-Producing Cells. Folia Biol (Praha) 2017; 63:132-138. [PMID: 29256855 DOI: 10.14712/fb2017063040132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Mesenchymal stem cells have the ability to differentiate into insulin-producing cells, raising the hope for diabetes mellitus treatment. The aim of this research was to study the ability of stem cells from discarded natal teeth to differentiate into insulinproducing cells. Two vital human natal teeth were obtained from a healthy 2-day-old female. Stem cells from the dental pulp were isolated, cultured under xenogenic-free conditions, propagated and characterized. Proliferative activity, population doubling time and viability were measured, and the multipotent differentiation ability was investigated. A twostep protocol was used to induce the human natal dental pulp stem cells to differentiate into insulinproducing cells. Phenotypic analysis was done using flow cytometry. Immunohistochemistry was performed to detect insulin and C-peptide. PDX1, HES1 and Glut2 gene expression analysis was performed by quantitative reverse transcription-polymerase chain reaction. Human natal dental pulp stem cells were able to undergo osteogenic, chondrogenic and adipogenic differentiation upon exposure to the specific differentiation media for each lineage. Their differentiation into insulin-producing cells was confirmed by expression of C-peptide and insulin, as well as by 975.4 % higher expression of PDX-1 and 469.5 % higher expression of HES1 in comparison to the cells cultivated in standard cultivation media. Glut2 transporter mRNA was absent in the non-differentiated cells, and differentiation of the stem cells into insulin-producing cells induced appearance of the mRNA of this transporter. We were the first to demonstrate that stem cells obtained from the pulp of natal teeth could be differentiated into insulinproducing cells, which might prove useful in the stem cell therapy for type 1 diabetes.
Collapse
Affiliation(s)
- J Suchanek
- Department of Dentistry, Charles University - Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - S A Nasry
- Department of Surgery and Oral Medicine, Oro-dental division, National Research Centre, Cairo, Egypt
| | - T Soukup
- Department of Histology and Embryology, Charles University - Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
22
|
Pradhan P, Upadhyay N, Tiwari A, Singh LP. Genetic and epigenetic modifications in the pathogenesis of diabetic retinopathy: a molecular link to regulate gene expression. ACTA ACUST UNITED AC 2016; 2:192-204. [PMID: 28691104 DOI: 10.15761/nfo.1000145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intensification in the frequency of diabetes and the associated vascular complications has been a root cause of blindness and visual impairment worldwide. One such vascular complication which has been the prominent cause of blindness; retinal vasculature, neuronal and glial abnormalities is diabetic retinopathy (DR), a chronic complicated outcome of Type 1 and Type 2 diabetes. It has also become clear that "genetic" variations in population alone can't explain the development and progression of diabetes and its complications including DR. DR experiences engagement of foremost mediators of diabetes such as hyperglycemia, oxidant stress, and inflammatory factors that lead to the dysregulation of "epigenetic" mechanisms involving histone acetylation and histone and DNA methylation, chromatin remodeling and expression of a complex set of stress-regulated and disease-associated genes. In addition, both elevated glucose concentration and insulin resistance leave a robust effect on epigenetic reprogramming of the endothelial cells too, since endothelium associated with the eye aids in maintaining the vascular homeostasis. Furthermore, several studies conducted on the disease suggest that the modifications of the epigenome might be the fundamental mechanism(s) for the proposed metabolic memory' resulting into prolonged gene expression for inflammation and cellular dysfunction even after attaining the glycemic control in diabetics. Henceforth, the present review focuses on the aspects of genetic and epigenetic alterations in genes such as vascular endothelial growth factor and aldose reductase considered being associated with DR. In addition, we discuss briefly the role of the thioredoxin-interacting protein TXNIP, which is strongly induced by high glucose and diabetes, in cellular oxidative stress and mitochondrial dysfunction potentially leading to chromatin remodeling and ocular complications of diabetes. The identification of disease-associated genes and their epigenetic regulations will lead to potential new drugs and gene therapies as well as personalized medicine to prevent or slow down the progression of DR.
Collapse
Affiliation(s)
- Priya Pradhan
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Nisha Upadhyay
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Lalit P Singh
- Departments of Anatomy/Cell Biology and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
23
|
Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts. Stem Cells Int 2016; 2016:7654321. [PMID: 27403168 PMCID: PMC4925994 DOI: 10.1155/2016/7654321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/22/2016] [Accepted: 05/08/2016] [Indexed: 01/15/2023] Open
Abstract
Reprogramming can occur by the introduction of key transcription factors (TFs) as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) combined with a chromatin remodeling medium (CRM) induced expression of a number of definitive endoderm and early and late pancreatic marker genes. When CRM was omitted, endoderm/pancreatic marker genes were not induced. Furthermore, treatment with DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (5AZA) CRM did not affect gene expression changes, and when 5AZA was combined with TSA, no further increase in gene expression of endoderm, pancreatic endoderm, and endocrine markers was seen over levels induced with TSA alone. Interestingly, TSA-CRM did not affect expression of pluripotency and hepatocyte genes but induced some mesoderm transcripts. Upon removal of TSA-CRM, the endoderm/pancreatic gene expression profile returned to baseline. Our findings underscore the role epigenetic modification in transdifferentiation of one somatic cell into another. However, full reprogramming of fibroblasts to β-cells will require combination of this approach with TF overexpression and/or culture of the partially reprogrammed cells under β-cell specific conditions.
Collapse
|
24
|
Mu C, Wang T, Wang X, Tian H, Liu Y. Identification of microRNAs regulating Hlxb9 gene expression during the induction of insulin-producing cells. Cell Biol Int 2016; 40:515-23. [PMID: 26801823 DOI: 10.1002/cbin.10586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023]
Abstract
Bone marrow mesenchymal stem cells (bMSCs) with the capacity of self- renewal and multilineage differentiation are promising sources for cell replacement therapy in diabetes. Here, we developed an effective method with activin A, conophylline, and nicotinamide to induce mouse bMSCs to differentiate into insulin-producing cells (IPCs). The homeobox gene Hlxb9 (encoding HB9) is prominently expressed in adult human pancreas, which can also play a key role during the induction of IPCs. To find the microRNAs (miRNAs) regulating Hlxb9 gene expression, we respectively used miRanda and TargetScan to predict and got the intersection, miR-200a and miR-141, further identified by the Dual-Luciferase assay. The results illustrated miR-200a and miR-141 could inhibit the expression of Hlxb9 by binding to its mRNA 3'UTR. Furthermore, the expression of miR-200a and miR-141 was almost reciprocal to that of Hlxb9. Overexpression of miR-200a and miR-141 downregulated the expression of pancreatic progenitor cell markers Hlxb9 and Pdx1. Therefore, miR-200a and miR-141 may directly or indirectly regulate the expression of pancreatic islet transcription factors to control the differentiation of IPCs.
Collapse
Affiliation(s)
- Changzheng Mu
- Institute of Neurobiology, Xi'an Jiaotong University Basic Medical Sciences, Xi'an, 710061, China.,Department of Histology and Embryology, Liaoning Medical University, Jinzhou, 121000, China
| | - Tao Wang
- Medical Treatment College, Liaoning Medical University, Jinzhou, 121013, China
| | - Xiaomei Wang
- Department of Geriatrics, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, 121001, China
| | - He Tian
- Department of Histology and Embryology, Liaoning Medical University, Jinzhou, 121000, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Basic Medical Sciences, Xi'an, 710061, China
| |
Collapse
|
25
|
Wang Y, Hai T, Liu L, Liu Z, Zhou Q. Cell therapy in diabetes: current progress and future prospects. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0844-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Abstract
Epigenetic regulation of gene expression allows the organism to respond/adapt to environmental conditions without changing the gene coding sequence. Epigenetic modifications have also been found to control gene expression in various diseases, including diabetes. Epigenetic changes induced by hyperglycemia in multiple target organs contribute to metabolic memory of diabetic complications. The long-lasting development of diabetic complications even after achieving glucose control has been partly attributed to epigenetic changes in target cells. Specific epigenetic drugs might rescue chromatin conformation associated to hyperglycemia possibly slowing down the onset of diabetes-related complications. The current review will describe the updated epigenetics in diabetes that can be used to personalize a more focused treatment.
Collapse
Affiliation(s)
- Adriana Fodor
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| | - Angela Cozma
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| | - Eddy Karnieli
- Institute of Endocrinology, Diabetes & Metabolism, Rambam Medical Center, Haifa, Israel
- Galil Center for Personalized Medicine & Medical Informatics, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
27
|
Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Insulin-Producing Cells: Evidence for Further Maturation In Vivo. BIOMED RESEARCH INTERNATIONAL 2015; 2015:575837. [PMID: 26064925 PMCID: PMC4443784 DOI: 10.1155/2015/575837] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/11/2015] [Indexed: 12/24/2022]
Abstract
The aim of this study was to provide evidence for further in vivo maturation of insulin-producing cells (IPCs) derived from human bone marrow-derived mesenchymal stem cells (HBM-MSCs). HBM-MSCs were obtained from three insulin-dependent type 2 diabetic volunteers. Following expansion, cells were differentiated according to a trichostatin-A/GLP protocol. One million cells were transplanted under the renal capsule of 29 diabetic nude mice. Blood glucose, serum human insulin and c-peptide levels, and glucose tolerance curves were determined. Mice were euthanized 1, 2, 4, or 12 weeks after transplantation. IPC-bearing kidneys were immunolabeled, number of IPCs was counted, and expression of relevant genes was determined. At the end of in vitro differentiation, all pancreatic endocrine genes were expressed, albeit at very low values. The percentage of IPCs among transplanted cells was small (≤3%). Diabetic animals became euglycemic 8 ± 3 days after transplantation. Thereafter, the percentage of IPCs reached a mean of ~18% at 4 weeks. Relative gene expression of insulin, glucagon, and somatostatin showed a parallel increase. The ability of the transplanted cells to induce euglycemia was due to their further maturation in the favorable in vivo microenvironment. Elucidation of the exact mechanism(s) involved requires further investigation.
Collapse
|
28
|
Cencioni C, Spallotta F, Greco S, Martelli F, Zeiher AM, Gaetano C. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol 2014; 51:155-8. [PMID: 24786298 DOI: 10.1016/j.biocel.2014.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 12/13/2022]
Abstract
Recently the concept emerged that prolonged exposure to altered metabolic conditions, including hyperglycemia, may epigenetically imprint human cells permitting vertical or horizontal transfer to "descendants". Although mechanistically ill understood, the hyperglycemic/epigenetic memory may represent one of the major limitations for the application of cell therapy to treatment of chronic heart disease where a relatively prolonged period of ex vivo cellular expansion is required. Hyperglycemic memory, in fact, seems to contribute to the establishment of an epigenetic "reminiscence" of the altered metabolic state, to which, cells from diseased bodies have been exposed. This review summarizes the most relevant concepts and observations about the mechanisms underlying the onset of stable information inside the epigenome leading to the development of a diseased phenotype. Special attention is given to epigenetic drugs and how they have been used in experimental, preclinical and clinical settings to treat dysmetabolism, diabetes and their complications.
Collapse
Affiliation(s)
- Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan 20097, Italy.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan 20097, Italy.
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| |
Collapse
|
29
|
Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols. BIOMED RESEARCH INTERNATIONAL 2014; 2014:832736. [PMID: 24818157 PMCID: PMC4000976 DOI: 10.1155/2014/832736] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/03/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022]
Abstract
Introduction. Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs) to form insulin-producing cells (IPCs). We compared the relative efficiency of three differentiation protocols. Methods. Human bone marrow-derived MSCs (HBM-MSCs) were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol), trichostatin-A-based (two-step protocol), and β-mercaptoethanol-based (three-step protocol). At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. Results. By immunolabeling, the proportion of generated IPCs was modest (≃3%) in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. Conclusion. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.
Collapse
|
30
|
Abstract
The lack of transplantable pancreatic islets is a serious problem that affects the treatment of patients with type 1 diabetes mellitus. Beta cells can be induced from various sources of stem or progenitor cells, including induced pluripotent stem cells in the near future; however, the reconstitution of islets from β cells in culture dishes is challenging. The generation of highly functional islets may require three-dimensional spherical cultures that resemble intact islets. This review discusses recent advances in the reconstitution of islets. Several factors affect the reconstitution of pseudoislets with higher functions, such as architectural similarity, cell-to-cell contact, and the production method. The actual transplantation of naked or encapsulated pseudoislets and islet-like cell clusters from various stem cell sources is also discussed. Advancing our understanding of the methods used to reconstitute pseudoislets should expand the range of potential strategies available for developing de novo islets for therapeutic applications.
Collapse
Affiliation(s)
- Nobuhiko Kojima
- Graduate School of Nanobioscience; Yokohama City University; Yokohama, Japan
| |
Collapse
|
31
|
Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells. Neurosci Lett 2013; 554:22-7. [PMID: 24021810 DOI: 10.1016/j.neulet.2013.08.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that the inhibition of histone deacetylases (HDACs) induces the differentiation of diverse cancer and stem cells, which suggests HDAC inhibitors may be good candidates for the induction of stem cell differentiation. In this study, we investigated the effects of a HDAC inhibitor, valproic acid (VPA), for the neuronal differentiation of human bone marrow-mesenchymal stromal cells (hBM-MSCs). VPA-treated MSCs had significant increases in their expression of the neuro-progenitor marker Nestin, Musashi, CD133, and GFAP, as measured by real-time PCR and immunoblot analysis. When VPA-pretreated MSCs were differentiated with neuronal induction media (VPA-dMSCs), they exhibited a cell body and dendritic morphology similar to neurons. The number and neurite length of these VPA-dMSCs significantly increased compared to differentiated MSCs (dMSCs). The VPA-dMSCs and dMSCs had significantly increased transcripts of neuronal-specific marker genes, including Nestin, Musashi, CD133, GFAP, NeuN, MAP-2, NF-M, KCNH1, and KCNH5. The cells also showed a higher expression of the neuronal marker proteins Nestin and NF-M from immunocytochemical staining and immunoblot analysis. This study has shown that VPA pretreatment of hBM-MSCs, following their incubation with neuronal induction media, effectively stimulates neuronal cell differentiation to BM-MSCs.
Collapse
|
32
|
Milagro F, Mansego M, De Miguel C, Martínez J. Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol Aspects Med 2013; 34:782-812. [DOI: 10.1016/j.mam.2012.06.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
|
33
|
Katz LS, Geras-Raaka E, Gershengorn MC. Reprogramming adult human dermal fibroblasts to islet-like cells by epigenetic modification coupled to transcription factor modulation. Stem Cells Dev 2013; 22:2551-60. [PMID: 23627894 DOI: 10.1089/scd.2013.0134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this article, we describe novel conditions for culture, expansion, and transdifferentiation of primary human dermal fibroblasts (hDFs) to induce expression of transcription factors (TFs) and hormones characteristic of the islets of Langerhans. We show that histones associated with the insulin gene are hyperacetylated and that insulin gene DNA is less methylated in islet cells compared to cells that do not express insulin. Using two compounds that alter the epigenetic signature of cells, romidepsin (Romi), a histone deacetylase inhibitor, and 5-Azacytidine (5-AzC), a chemical analogue of cytidine that cannot be methylated, we show that hDFs exhibit a distinctive regulation of expression of TFs involved in islet development as well as of induction of glucagon and insulin. Overexpression of Pdx1, a TF important for islet differentiation, and silencing of musculoaponeurotic fibrosarcoma oncogene homolog B, a TF that is expressed in mature glucagon-producing cells, result in induction of insulin to a higher level compared to Romi and 5-AzC alone. The cells obtained from this protocol exhibit glucose-stimulated insulin secretion and lower blood glucose levels of diabetic mice. These data show that fully differentiated nonislet-derived cells could be made to transdifferentiate to islet-like cells and that combining epigenetic modulation with TF modulation leads to enhanced insulin expression.
Collapse
Affiliation(s)
- Liora S Katz
- Laboratory of Endocrinology and Receptor Biology, NIDDK, NIH, Bethesda, Maryland 20892-8029, USA
| | | | | |
Collapse
|
34
|
Tariq M, Masoud MS, Mehmood A, Khan SN, Riazuddin S. Stromal cell derived factor-1alpha protects stem cell derived insulin-producing cells from glucotoxicity under high glucose conditions in-vitro and ameliorates drug induced diabetes in rats. J Transl Med 2013; 11:115. [PMID: 23648189 PMCID: PMC3660237 DOI: 10.1186/1479-5876-11-115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/02/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diabetes mellitus is affecting more than 300 million people worldwide. Current treatment strategies cannot prevent secondary complications. Stem cells due to their regenerative power have long been the attractive target for the cell-based therapies. Mesenchymal stem cells (MSCs) possess the ability to differentiate into several cell types and to escape immune recognition in vitro. MSCs can be differentiated into insulin-producing cells (IPCs) and could be an exciting therapy for diabetes but problems like poor engraftment and survivability need to be confronted. It was hypothesized that stromal cell derived factor- 1alpha (SDF-1alpha) will enhance therapeutic potential of stem cell derived IPCs by increasing their survival and proliferation rate. METHODS Novel culture conditions were developed to differentiate bone marrow derived mesenchymal stem cells (BMSCs) into IPCs by using endocrine differentiation inducers and growth factors via a three stage protocol. In order to enhance their therapeutic potential, we preconditioned IPCs with SDF-1alpha. RESULTS Our results showed that SDF-1alpha increases survival and proliferation of IPCs and protects them from glucotoxicity under high glucose conditions in vitro. SDF-1alpha also enhances the glucose responsive insulin secretion in IPCs in vitro. SDF-1alpha preconditioning reverses hyperglycemia and increase serum insulin in drug induced diabetic rats. CONCLUSIONS The differentiation of BMSCs into IPCs and enhancement of their therapeutic potential by SDF-1alpha preconditioning may contribute to cell based therapies for diabetes.
Collapse
Affiliation(s)
- Muhammad Tariq
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Current Affiliation: Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, AK, Pakistan
| | - Muhammad Sharif Masoud
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Current Affiliation: Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
35
|
Sandovici I, Hammerle CM, Ozanne SE, Constância M. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell Mol Life Sci 2013; 70:1575-95. [PMID: 23463236 PMCID: PMC11113912 DOI: 10.1007/s00018-013-1297-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/26/2022]
Abstract
The development of the endocrine pancreas is controlled by a hierarchical network of transcriptional regulators. It is increasingly evident that this requires a tightly interconnected epigenetic "programme" to drive endocrine cell differentiation and maintain islet function. Epigenetic regulators such as DNA and histone-modifying enzymes are now known to contribute to determination of pancreatic cell lineage, maintenance of cellular differentiation states, and normal functioning of adult pancreatic endocrine cells. Persistent effects of an early suboptimal environment, known to increase risk of type 2 diabetes in later life, can alter the epigenetic control of transcriptional master regulators, such as Hnf4a and Pdx1. Recent genome-wide analyses also suggest that an altered epigenetic landscape is associated with the β cell failure observed in type 2 diabetes and aging. At the cellular level, epigenetic mechanisms may provide a mechanistic link between energy metabolism and stable patterns of gene expression. Key energy metabolites influence the activity of epigenetic regulators, which in turn alter transcription to maintain cellular homeostasis. The challenge is now to understand the detailed molecular mechanisms that underlie these diverse roles of epigenetics, and the extent to which they contribute to the pathogenesis of type 2 diabetes. In-depth understanding of the developmental and environmental epigenetic programming of the endocrine pancreas has the potential to lead to novel therapeutic approaches in diabetes.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
| | - Constanze M. Hammerle
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
| | - Susan E. Ozanne
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
| |
Collapse
|
36
|
Adenoviral vectors stimulate glucagon transcription in human mesenchymal stem cells expressing pancreatic transcription factors. PLoS One 2012; 7:e48093. [PMID: 23110179 PMCID: PMC3482184 DOI: 10.1371/journal.pone.0048093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/20/2012] [Indexed: 01/09/2023] Open
Abstract
Viral gene carriers are being widely used as gene transfer systems in (trans)differentiation and reprogramming strategies. Forced expression of key regulators of pancreatic differentiation in stem cells, liver cells, pancreatic duct cells, or cells from the exocrine pancreas, can lead to the initiation of endocrine pancreatic differentiation. While several viral vector systems have been employed in such studies, the results reported with adenovirus vectors have been the most promising in vitro and in vivo. In this study, we examined whether the viral vector system itself could impact the differentiation capacity of human bone-marrow derived mesenchymal stem cells (hMSCs) toward the endocrine lineage. Lentivirus-mediated expression of Pdx-1, Ngn-3, and Maf-A alone or in combination does not lead to robust expression of any of the endocrine hormones (i.e. insulin, glucagon and somatostatin) in hMSCs. Remarkably, subsequent transduction of these genetically modified cells with an irrelevant early region 1 (E1)-deleted adenoviral vector potentiates the differentiation stimulus and promotes glucagon gene expression in hMSCs by affecting the chromatin structure. This adenovirus stimulation was observed upon infection with an E1-deleted adenovirus vector, but not after exposure to helper-dependent adenovirus vectors, pointing at the involvement of genes retained in the E1-deleted adenovirus vector in this phenomenon. Lentivirus mediated expression of the adenovirus E4-ORF3 mimics the adenovirus effect. From these data we conclude that E1-deleted adenoviral vectors are not inert gene-transfer vectors and contribute to the modulation of the cellular differentiation pathways.
Collapse
|
37
|
Gray SG. The Potential of Epigenetic Compounds in Treating Diabetes. EPIGENETICS IN HUMAN DISEASE 2012:331-367. [DOI: 10.1016/b978-0-12-388415-2.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Li L, Black R, Ma Z, Yang Q, Wang A, Lin F. Use of mouse hematopoietic stem and progenitor cells to treat acute kidney injury. Am J Physiol Renal Physiol 2011; 302:F9-F19. [PMID: 21937606 DOI: 10.1152/ajprenal.00377.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
New and effective treatment for acute kidney injury remains a challenge. Here, we induced mouse hematopoietic stem and progenitor cells (HSPC) to differentiate into cells that partially resemble a renal cell phenotype and tested their therapeutic potential. We sequentially treated HSPC with a combination of protein factors for 1 wk to generate a large number of cells that expressed renal developmentally regulated genes and protein. Cell fate conversion was associated with increased histone acetylation on promoters of renal-related genes. Further treatment of the cells with a histone deacetylase inhibitor improved the efficiency of cell conversion by sixfold. Treated cells formed tubular structures in three-dimensional cultures and were integrated into tubules of embryonic kidney organ cultures. When injected under the renal capsule, they integrated into renal tubules of postischemic kidneys and expressed the epithelial marker E-cadherin. No teratoma formation was detected 2 and 6 mo after cell injection, supporting the safety of using these cells. Furthermore, intravenous injection of the cells into mice with renal ischemic injury improved kidney function and morphology by increasing endogenous renal repair and decreasing tubular cell death. The cells produced biologically effective concentrations of renotrophic factors including VEGF, IGF-1, and HGF to stimulate epithelial proliferation and tubular repair. Our study indicates that hematopoietic stem and progenitor cells can be converted to a large number of renal-like cells within a short period for potential treatment of acute kidney injury.
Collapse
Affiliation(s)
- Ling Li
- Dept. of Pediatrics, Columbia Univ. College of Physicians and Surgeons, 630 West 168th St., New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
39
|
Iskovich S, Goldenberg-Cohen N, Stein J, Yaniv I, Farkas DL, Askenasy N. β-Cell Neogenesis: Experimental Considerations in Adult Stem Cell Differentiation. Stem Cells Dev 2011; 20:569-82. [DOI: 10.1089/scd.2010.0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Nitza Goldenberg-Cohen
- Krieger Laboratory of Ophthalmology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Jerry Stein
- Bone Marrow Transplantation Unit, Department of Pediatric Hematology-Oncology, Petach Tikva, Israel
| | - Isaac Yaniv
- Bone Marrow Transplantation Unit, Department of Pediatric Hematology-Oncology, Petach Tikva, Israel
| | | | - Nadir Askenasy
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
40
|
Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, Grunnet LG, Mandrup-Poulsen T. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 2011; 17:378-90. [PMID: 21274504 DOI: 10.2119/molmed.2011.00021] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 12/13/2022] Open
Abstract
Both common forms of diabetes have an inflammatory pathogenesis in which immune and metabolic factors converge on interleukin-1β as a key mediator of insulin resistance and β-cell failure. In addition to improving insulin resistance and preventing β-cell inflammatory damage, there is evidence of genetic association between diabetes and histone deacetylases (HDACs); and HDAC inhibitors (HDACi) promote β-cell development, proliferation, differentiation and function and positively affect late diabetic microvascular complications. Here we review this evidence and propose that there is a strong rationale for preclinical studies and clinical trials with the aim of testing the utility of HDACi as a novel therapy for diabetes.
Collapse
Affiliation(s)
- Dan P Christensen
- Center for Medical Research Methodology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
41
|
El-Serafi AT, Oreffo ROC, Roach HI. Epigenetic modifiers influence lineage commitment of human bone marrow stromal cells: Differential effects of 5-aza-deoxycytidine and trichostatin A. Differentiation 2011; 81:35-41. [PMID: 20970916 DOI: 10.1016/j.diff.2010.09.183] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/10/2010] [Accepted: 09/10/2010] [Indexed: 10/18/2022]
Abstract
Clinical imperatives for new bone to replace or restore the function of traumatized or bone lost as a consequence of age or disease has led to the need for therapies or procedures to generate bone for skeletal applications. However, current in vitro methods for the differentiation of human bone marrow stromal cells (HBMSCs) do not, to date, produce homogeneous cell populations of the osteogenic or chondrogenic lineages. As epigenetic modifiers are known to influence differentiation, we investigated the effects of the DNA demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) or the histone deacetylase inhibitor trichostatin A (TSA) on osteogenic and chondrogenic differentiation. Monolayer cultures of HBMSCs were treated for 3 days with the 5-aza-dC or TSA, followed by culture in the absence of modifiers. Cells were subsequently grown in pellet culture to determine matrix production. 5-aza-dC stimulated osteogenic differentiation as evidenced by enhanced alkaline phosphatase activity, increased Runx-2 expression in monolayer, and increased osteoid formation in 3D cell pellets. In pellets cultured in chondrogenic media, TSA enhanced cartilage matrix formation and chondrogenic structure. These findings indicate the potential of epigenetic modifiers, as agents, possibly in combination with other factors, to enhance the ability of HBMSCs to form functional bone or cartilage with significant therapeutic implications therein.
Collapse
Affiliation(s)
- Ahmed T El-Serafi
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, School of Medicine, UK.
| | | | | |
Collapse
|
42
|
Thatava T, Nelson TJ, Edukulla R, Sakuma T, Ohmine S, Tonne JM, Yamada S, Kudva Y, Terzic A, Ikeda Y. Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther 2010; 18:283-93. [PMID: 21048796 PMCID: PMC3060028 DOI: 10.1038/gt.2010.145] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear reprogramming of somatic tissue enables derivation of induced pluripotent stem (iPS) cells from an autologous, non-embryonic origin. The purpose of the current study was to establish efficient protocols for lineage-specification of human iPS cells into functional glucose-responsive, insulin-producing progeny. We generated human iPS cells, which were then guided with recombinant growth factors that mimic the essential signaling for pancreatic development. Reprogrammed with four stemness factors, human fibroblasts were here converted into authentic iPS cells. Under feeder-free conditions, fate-specification was initiated with activin A and Wnt3a that triggered engagement into definitive endoderm, followed by priming with FGF10 and KAAD-cyclopamine. Addition of retinoic acid, boosted by the pancreatic endoderm inducer indolactam V (ILV), yielded pancreatic progenitors expressing PDX1, NGN3 and NEUROD1 markers. Further guidance, under IGF-1, HGF and DAPT, was enhanced by glucagon like peptide-1 (GLP-1) to generate islet-like cells that expressed pancreas-specific markers including insulin and glucagon. Derived progeny demonstrated sustained expression of PDX1, and functional responsiveness to glucose challenge secreting up to 230 pM of C-peptide. A pancreatogenic cocktail enriched with ILV/GLP-1 offers a proficient means to specify human iPS cells into glucose-responsive hormone-producing progeny, refining the development of a personalized platform for islet-like cell generation.
Collapse
Affiliation(s)
- T Thatava
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ciceri F, Piemonti L. Bone marrow and pancreatic islets: an old story with new perspectives. Cell Transplant 2010; 19:1511-22. [PMID: 20719074 DOI: 10.3727/096368910x514279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the past years, in the field of β-cell replacement for diabetes therapy, the easy availability of bone marrow (BM) and the widely consolidated clinical experience in the field of hematology have contributed to the development of strategy to achieve donor-specific transplantation tolerance. Recently, the potential role of BM in diabetes therapy has been reassessed from a different point of view. Diverse groups investigated the contribution of BM cells to β-cell replacement as direct differentiation into insulin-producing cells. More importantly, while direct differentiation is highly unlikely, a wide array of experimental evidences indicates that cells of BM origin are capable of facilitating the survival or the endogenous regeneration of β-cells through an as yet well-defined regeneration process. These new experimental in vitro and in vivo data will expand in the near future the clinical trials involving BM or BM-derived cells to cure both type 1 and type 2 diabetes in humans. In this review we recapitulate the history of use of BM in diabetes therapy and we provide clinically relevant actual information about the participation of BM and BM-derived stem cells in islet cell regeneration processes. Furthermore, new aspects such as employing BM as "feeder tissue" for pancreatic islets and new clinical use of BM in diabetes therapy are discussed.
Collapse
Affiliation(s)
- Fabio Ciceri
- Haematology and BMT Unit, San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy
| | | |
Collapse
|
44
|
Wilson LM, Wong SHK, Yu N, Geras-Raaka E, Raaka BM, Gershengorn MC. Insulin but not glucagon gene is silenced in human pancreas-derived mesenchymal stem cells. Stem Cells 2010; 27:2703-11. [PMID: 19785038 DOI: 10.1002/stem.229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously characterized human islet-derived precursor cells (hIPCs) as a specific type of mesenchymal stem cell capable of differentiating to insulin (INS)- and glucagon (GCG)-expressing cells. However, during proliferative expansion, INS transcript becomes undetectable and then cannot be induced, a phenomenon consistent with silencing of the INS gene. We explored this possibility by determining whether ectopic expression of transcription factors known to induce transcription of this gene in beta cells, pancreatic and duodenal homeobox factor 1 (Pdx1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa), and neurogenic differentiation 1 (Neurod1), would activate INS gene expression in long-term hIPC cultures. Coexpression of all three transcription factors had little effect on INS mRNA levels but unexpectedly increased GCG mRNA at least 100,000-fold. In contrast to the endogenous promoter, an exogenous rat INS promoter was activated by expression of Pdx1 and Mafa in hIPCs. Chromatin immunoprecipitation (ChIP) assays using antibodies directed at posttranslationally modified histones show that regions of the INS and GCG genes have similar levels of activation-associated modifications but the INS gene has higher levels of repression-associated modifications. Furthermore, the INS gene was found to be less accessible to micrococcal nuclease digestion than the GCG gene. Lastly, ChIP assays show that exogenously expressed Pdx1 and Mafa bind at very low levels to the INS promoter and at 20- to 25-fold higher levels to the GCG promoter in hIPCs. We conclude that the INS gene in hIPCs is modified epigenetically ("silenced") so that it is resistant to activation by transcription factors.
Collapse
Affiliation(s)
- Leah M Wilson
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-8029, USA
| | | | | | | | | | | |
Collapse
|
45
|
Limbert C, Seufert J. In vitro (re)programming of human bone marrow stromal cells toward insulin-producing phenotypes. Pediatr Diabetes 2009; 10:413-9. [PMID: 19627549 DOI: 10.1111/j.1399-5448.2009.00502.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Catarina Limbert
- Division of Pediatric Endocrinology and Diabetology, Children's University Hospital Dona Estefânia, Lisbon, Portugal
| | | |
Collapse
|
46
|
Li W, Ma L, Zhao J, Liu X, Li Z, Zhang Y. Expression profile of MTA1 in adult mouse tissues. Tissue Cell 2009; 41:390-9. [PMID: 19524276 DOI: 10.1016/j.tice.2009.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 04/03/2009] [Accepted: 04/10/2009] [Indexed: 01/08/2023]
Abstract
MTA1, as a constituent of the nucleosome-remodeling and -deacetylation complex (NuRD), is thought to modulate transcription by influencing the status of chromatin remodeling. Despite its strong correlation with the metastatic potential of several cancer cell lines and tissues, MTA1 can also regulate divergent cellular pathways by modifying the acetylation status of crucial target genes. However, its fundamental physiological functions have not been characterized. To further address the possible physiological role of this protein in mammals, the authors examined the expression pattern of mouse MTA1 in a variety of adult mouse tissues by a combination of techniques, including semi-quantitative RT-PCR, Western blotting and immunohistochemistry. Positive signals were observed on variety of tissues/cells in multiple systems including nervous, cardiovascular, respiratory, digestive, immune, endocrine, urinary, reproductive and sensory organ systems. MTA1 was localized in both the cytoplasm and the nuclei, and was accumulated in the nuclei. In mature mice, MTA1 expression was seen in cell types that constantly undergo proliferation or self-renewal, such as testis and cell types not constantly engaged in proliferation or self-renewal, such as brain, liver and kidney. This differential expression suggests that this protein serves distinct functions in murine organs.
Collapse
Affiliation(s)
- Wei Li
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Shaanxi Province, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B, Wu YL. Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation 2009; 77:483-91. [PMID: 19505629 DOI: 10.1016/j.diff.2009.01.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 12/12/2008] [Accepted: 01/12/2009] [Indexed: 01/09/2023]
Abstract
It was recently reported that pluripotent mesenchymal stem cells (MSCs) in rodent bone marrow (BM) have the capacity to generate insulin-producing cells (IPCs) in vitro. However, little is known about this capacity in human BM-MSCs. We developed a nongenetic method to induce human BM-MSCs to transdifferentiate into IPCs both phenotypically and functionally. BM-MSCs from 12 human donors were sequentially cultured in specially defined conditions. Their differentiation extent toward beta-cell phenotype was evaluated systemically. Specifically, after induction human BM-MSCs formed spheroid islet-like clusters containing IPCs, which was further confirmed by dithizone (DTZ) staining and electron microscopy. These IPCs expressed multiple genes related to the development or function of pancreatic beta cells (including NKX6.1, ISL-1, Beta2/Neurod, Glut2, Pax6, nestin, PDX-1, ngn3, insulin and glucagon). The coexpression of insulin and c-peptide was observed in IPCs by immunofluorescence. Moreover, they were able to release insulin in a glucose-dependent manner and ameliorate the diabetic conditions of streptozotocin (STZ)-treated nude mice. These results indicate that human BM-MSCs might be an available candidate to overcome limitations of islet transplantation.
Collapse
Affiliation(s)
- Qiu-Ping Xie
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang province 310009, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Combination of GLP-1 and sodium butyrate promote differentiation of pancreatic progenitor cells into insulin-producing cells. Tissue Cell 2008; 40:437-45. [DOI: 10.1016/j.tice.2008.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 12/27/2022]
|
49
|
Lawless MW, Norris S, O'Byrne KJ, Gray SG. Targeting histone deacetylases for the treatment of disease. J Cell Mol Med 2008; 13:826-52. [PMID: 19175682 PMCID: PMC3823402 DOI: 10.1111/j.1582-4934.2008.00571.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ‘histone code’ is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular ‘code’ recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment.
Collapse
Affiliation(s)
- M W Lawless
- Centre for Liver Disease, School of Medicine and Medical Science, Mater Misericordiae University Hospital - University College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
50
|
Zhao M, Amiel SA, Ajami S, Jiang J, Rela M, Heaton N, Huang GC. Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells. PLoS One 2008; 3:e2666. [PMID: 18628974 PMCID: PMC2441861 DOI: 10.1371/journal.pone.0002666] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 05/13/2008] [Indexed: 01/09/2023] Open
Abstract
Background Pluri-potent bone marrow stromal cells (MSCs) provide an attractive opportunity to generate unlimited glucose-responsive insulin-producing cells for the treatment of diabetes. We explored the potential for human MSCs (hMSCs) to be differentiated into glucose-responsive cells through a non-viral genetic reprogramming approach. Methods and Findings Two hMSC lines were transfected with three genes: PDX-1, NeuroD1 and Ngn3 without subsequent selection, followed by differentiation induction in vitro and transplantation into diabetic mice. Human MSCs expressed mRNAs of the archetypal stem cell markers: Sox2, Oct4, Nanog and CD34, and the endocrine cell markers: PDX-1, NeuroD1, Ngn3, and Nkx6.1. Following gene transfection and differentiation induction, hMSCs expressed insulin in vitro, but were not glucose regulated. After transplantation, hMSCs differentiated further and ∼12.5% of the grafted cells expressed insulin. The graft bearing kidneys contained mRNA of insulin and other key genes required for the functions of beta cells. Mice transplanted with manipulated hMSCs showed reduced blood glucose levels (from 18.9+/−0.75 to 7.63+/−1.63 mM). 13 of the 16 mice became normoglycaemic (6.9+/−0.64 mM), despite the failure to detect the expression of SUR1, a K+-ATP channel component required for regulation of insulin secretion. Conclusions Our data confirm that hMSCs can be induced to express insulin sufficient to reduce blood glucose in a diabetic mouse model. Our triple gene approach has created cells that seem less glucose responsive in vitro but which become more efficient after transplantation. The maturation process requires further study, particularly the in vivo factors influencing the differentiation, in order to scale up for clinical purposes.
Collapse
Affiliation(s)
- Min Zhao
- Diabetes Research Group, King's College London School of Medicine, London, United Kingdom
| | - Stephanie A. Amiel
- Diabetes Research Group, King's College London School of Medicine, London, United Kingdom
| | - Sanaz Ajami
- Diabetes Research Group, King's College London School of Medicine, London, United Kingdom
| | - Jie Jiang
- Department of Haematological Medicine, King's College London School of Medicine, London, United Kingdom
| | - Mohamed Rela
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Nigel Heaton
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Guo Cai Huang
- Diabetes Research Group, King's College London School of Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|