1
|
Deng J, Tan Y, Xu Z, Wang H. Advances in hematopoietic stem cells ex vivo expansion associated with bone marrow niche. Ann Hematol 2024; 103:5035-5057. [PMID: 38684510 DOI: 10.1007/s00277-024-05773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.
Collapse
Affiliation(s)
- Ju Deng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Langridge PD, Garcia Diaz A, Chan JY, Greenwald I, Struhl G. Evolutionary plasticity in the requirement for force exerted by ligand endocytosis to activate C. elegans Notch proteins. Curr Biol 2022; 32:2263-2271.e6. [PMID: 35349791 PMCID: PMC9133158 DOI: 10.1016/j.cub.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
The conserved transmembrane receptor Notch has diverse and profound roles in controlling cell fate during animal development. In the absence of ligand, a negative regulatory region (NRR) in the Notch ectodomain adopts an autoinhibited confirmation, masking an ADAM protease cleavage site;1,2 ligand binding induces cleavage of the NRR, leading to Notch ectodomain shedding as the first step of signal transduction.3,4 In Drosophila and vertebrates, recruitment of transmembrane Delta/Serrate/LAG-2 (DSL) ligands by the endocytic adaptor Epsin, and their subsequent internalization by Clathrin-mediated endocytosis, exerts a "pulling force" on Notch that is essential to expose the cleavage site in the NRR.4-6 Here, we show that Epsin-mediated endocytosis of transmembrane ligands is not essential to activate the two C. elegans Notch proteins, LIN-12 and GLP-1. Using an in vivo force sensing assay in Drosophila,6 we present evidence (1) that the LIN-12 and GLP-1 NRRs are tuned to lower force thresholds than the NRR of Drosophila Notch, and (2) that this difference depends on the absence of a "leucine plug" that occludes the cleavage site in the Drosophila and vertebrate Notch NRRs.1,2 Our results thus establish an unexpected evolutionary plasticity in the force-dependent mechanism of Notch activation and implicate a specific structural element, the leucine plug, as a determinant.
Collapse
Affiliation(s)
- Paul D Langridge
- Department of Genetics and Development, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA.
| | | | - Jessica Yu Chan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Gary Struhl
- Department of Genetics and Development, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA.
| |
Collapse
|
3
|
Zarrabi M, Afzal E, Asghari MH, Ebrahimi M. Combination of SB431542, Chir9901, and Bpv as a novel supplement in the culture of umbilical cord blood hematopoietic stem cells. Stem Cell Res Ther 2020; 11:474. [PMID: 33168035 PMCID: PMC7650159 DOI: 10.1186/s13287-020-01945-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/20/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Small molecule compounds have been well recognized for their promising power in the generation, expansion, and maintenance of embryonic or adult stem cells. The aim of this study was to identify a novel combination of small molecules in order to optimize the ex vivo expansion of umbilical cord blood-derived CD34+ cells. METHODS Considering the most important signaling pathways involved in the self-renewal of hematopoietic stem cells, CB-CD34+ cells were expanded with cytokines in the presence of seven small molecules including SB, PD, Chir, Bpv, Pur, Pμ, and NAM. The eliminativism approach was used to find the best combination of selected small molecules for effective ex vivo expansion of CD34+ cell. In each step, proliferation, self-renewal, and clonogenic potential of the expanded cells as well as expression of some hematopoietic stem cell-related genes were studied. Finally, the engraftment potential of expanded cells was also examined by the mouse intra-uterine transplantation model. RESULTS Our data shows that the simultaneous use of SB431542 (TGF-β inhibitor), Chir9901 (GSK3 inhibitor), and Bpv (PTEN inhibitor) resulted in a 50-fold increase in the number of CD34+CD38- cells. This was further reflected in approximately 3 times the increase in the clonogenic potential of the small molecule cocktail-expanded cells. These cells, also, showed a 1.5-fold higher engraftment potential in the peripheral blood of the NMRI model of in utero transplantation. These results are in total conformity with the upregulation of HOXB4, GATA2, and CD34 marker gene as well as the CXCR4 homing gene. CONCLUSION Taken together, our findings introduce a novel combination of small molecules to improve the yield of existing protocols used in the expansion of hematopoietic stem cells.
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box, Tehran, 19395-4644, Iran
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Elaheh Afzal
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Mohammad Hassan Asghari
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box, Tehran, 19395-4644, Iran.
| |
Collapse
|
4
|
Charnley M, Ludford-Menting M, Pham K, Russell SM. A new role for Notch in the control of polarity and asymmetric cell division of developing T cells. J Cell Sci 2019; 133:jcs.235358. [DOI: 10.1242/jcs.235358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
A fundamental question in biology is how single cells can reliably produce progeny of different cell types. Notch signalling frequently facilitates fate determination. Asymmetric cell division (ACD) often controls segregation of Notch signalling by imposing unequal inheritance of regulators of Notch. Here, we assessed the functional relationship between Notch and ACD in mouse T cell development. To attain immunological specificity, developing T cells must pass through a pivotal stage termed β-selection, which involves Notch signalling and ACD. We assessed functional interactions between Notch1 and ACD during β-selection using direct presentation of Notch ligands, DL1 and DL4, and pharmacological inhibition of Notch signalling. Contrary to prevailing models, we demonstrate that Notch controls the distribution of Notch1 itself and cell fate determinants, α-Adaptin and Numb. Further, Notch and CXCR4 signalling cooperated to drive polarity during division. Thus, Notch signalling directly orchestrates ACD, and Notch1 is differentially inherited by sibling cells.
Collapse
Affiliation(s)
- Mirren Charnley
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Biointerface Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
| | - Mandy Ludford-Menting
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
| | - Kim Pham
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah M. Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Abstract
Purpose of Review Considerable progress has been made in the field of stem cell research; nonetheless, the use of stem cells for regenerative medicine therapies, for either endogenous tissue repair or cellular grafts post injury, remains a challenge. To better understand how to maintain stem cell potential in vivo and promote differentiation ex vivo, it is fundamentally important to elucidate the interactions between stem cells and their surrounding partners within their distinct niches. Recent Findings Among the vast array of proteins depicted as mediators for cell-to-cell interactions, connexin-comprised gap junctions play pivotal roles in the regulation of stem cell fate both in vivo and in vitro. Summary This review summarizes and illustrates the current knowledge regarding the multifaceted roles of Cx43, specifically, in various stem cell niches.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Neha Bhatt
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Antonin Bourdieu
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Karen K Hirschi
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| |
Collapse
|
6
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
7
|
Zhang H, Sun W, Li X, Wang M, Boyce BF, Hilton MJ, Xing L. Use of Hes1-GFP reporter mice to assess activity of the Hes1 promoter in bone cells under chronic inflammation. Bone 2016; 90:80-9. [PMID: 27269414 PMCID: PMC4970899 DOI: 10.1016/j.bone.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Notch signaling plays a critical role in maintaining bone homeostasis partially by controlling the formation of osteoblasts from mesenchymal stem cells (MSCs). We reported that TNF activates Notch signaling in MSCs which inhibits osteoblast differentiation in TNF transgenic (TNF-Tg) mice, a mouse model of chronic inflammatory arthritis. In the current study, we used Hes1-GFP and Hes1-GFP/TNF-Tg mice to study the distribution and dynamic change of Notch active cells in normal and inflammatory bone loss and mechanisms mediating their enhanced proliferation. We found that Hes1-GFP+ cells are composed of cells expressing mesenchymal, hematopoietic and endothelial surface markers. CD45-/Hes1-GFP+ cells express high levels of mesenchymal markers and form CFU-F and CFU-ALP colonies. Expansion of CFU-F colonies is associated with a rapid increase in Hes1-GFP+ cell numbers and their GFP intensity. The GFP signal is lost when a CFU-F colony differentiates into an ALP+ osteoblast colony. TNF increases the numbers of CD45-/Hes1-GFP+ cells, which are stained negatively for osteoblast marker osteocalcin and localized adjacent to endosteal and trabecular bone surfaces. CD45-/Hes1-GFP+ cells in Hes1-GFP/TNF-Tg mice have increased BrdU incorporation and PDGFRβ levels. TNF increases the number of proliferating Hes1-GFP+ cells, which is prevented by a specific PDGFRβ inhibitor. Notch inhibition blocks TNF-mediated PDGFRβ expression and cell proliferation. Thus, TNF-induced MSC proliferation is mediated by PDGFRβ signal, which works at downstream of Notch. Hes1-GFP mice can be used to assess the activation status of Notch in bone cells.
Collapse
Affiliation(s)
- Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wen Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xing Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mengmeng Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Medicine, Minzu University of China, Beijing 100081, People's Republic of China
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew J Hilton
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
8
|
Chen JJ, Gao XT, Yang L, Fu W, Liang L, Li JC, Hu B, Sun ZJ, Huang SY, Zhang YZ, Liang YM, Qin HY, Han H. Disruption of Notch signaling aggravates irradiation-induced bone marrow injury, which is ameliorated by a soluble Dll1 ligand through Csf2rb2 upregulation. Sci Rep 2016; 6:26003. [PMID: 27188577 PMCID: PMC4870557 DOI: 10.1038/srep26003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
Physical and chemical insult-induced bone marrow (BM) damage often leads to lethality resulting from the depletion of hematopoietic stem and progenitor cells (HSPCs) and/or a deteriorated BM stroma. Notch signaling plays an important role in hematopoiesis, but whether it is involved in BM damage remains unclear. In this study, we found that conditional disruption of RBP-J, the transcription factor of canonical Notch signaling, increased irradiation sensitivity in mice. Activation of Notch signaling with the endothelial cell (EC)-targeted soluble Dll1 Notch ligand mD1R promoted BM recovery after irradiation. mD1R treatment resulted in a significant increase in myeloid progenitors and monocytes in the BM, spleen and peripheral blood after irradiation. mD1R also enhanced hematopoiesis in mice treated with cyclophosphamide, a chemotherapeutic drug that induces BM suppression. Mechanistically, mD1R increased the proliferation and reduced the apoptosis of myeloid cells in the BM after irradiation. The β chain cytokine receptor Csf2rb2 was identified as a downstream molecule of Notch signaling in hematopoietic cells. mD1R improved hematopoietic recovery through up-regulation of the hematopoietic expression of Csf2rb2. Our findings reveal the role of Notch signaling in irradiation- and drug-induced BM suppression and establish a new potential therapy of BM- and myelo-suppression induced by radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Juan-Juan Chen
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Tong Gao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lan Yang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Fu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun-Chang Li
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Hu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zhi-Jian Sun
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Si-Yong Huang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yi-Zhe Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Min Liang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hong-Yan Qin
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hua Han
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
9
|
Kim HD, Lee EA, Choi YH, An YH, Koh RH, Kim SL, Hwang NS. High throughput approaches for controlled stem cell differentiation. Acta Biomater 2016; 34:21-29. [PMID: 26884279 DOI: 10.1016/j.actbio.2016.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 02/13/2016] [Accepted: 02/13/2016] [Indexed: 12/19/2022]
Abstract
Stem cells have unique ability to undergo self-renewal indefinitely in culture and potential to differentiate into almost all cell types in the human body. However, the developing a method for efficiently differentiating or manipulating these stem cells for therapeutic purposes remains a challenging problem. Pluripotent stem cells, as well as adult stem cells, require biological cues for their proliferation and differentiation. These cues are largely controlled by cell-cell, cell-insoluble factors (such as extracellular matrix), and cell-soluble factors (such as cytokine or growth factors) interactions. In this review, we describe a state of research on various stem cell-based tissue engineering applications and high throughput strategies for developing synthetic or biosynthetic microenvironments to allow efficient commitments in stem cells. STATEMENT OF SIGNIFICANCE Nowadays, pluripotency of stem cells have received much attention to use therapeutic purpose. However, a major difficulty with stem cell therapy is to control its differentiation through desired cells or tissues. In other words, various microenvironment factors are involved during stem cell differentiation, including dimensionality, growth factors, cell junctions, nutritional status, matrix stiffness, matrix composition, mechanical stress, and cell-matrix adhesion. Therefore, researchers have engineered a variety of platforms to enable controlling and monitoring bioactive factors to induce stem cell commitment. In this review, we report on recent advancements in a novel technology based on high-throughput strategies for stem cell-based tissue engineering applications.
Collapse
|
10
|
Xie J, Zhang C. Ex vivo expansion of hematopoietic stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:839-53. [PMID: 26246379 DOI: 10.1007/s11427-015-4895-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023]
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.
Collapse
Affiliation(s)
- JingJing Xie
- Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, 264003, China
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ChengCheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|
11
|
Xenograft models for normal and malignant stem cells. Blood 2015; 125:2630-40. [DOI: 10.1182/blood-2014-11-570218] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/04/2015] [Indexed: 12/18/2022] Open
Abstract
Abstract
The model systems available for studying human hematopoiesis, malignant hematopoiesis, and hematopoietic stem cell (HSC) function in vivo have improved dramatically over the last decade, primarily due to improvements in xenograft mouse strains. Several recent reviews have focused on the historic development of immunodeficient mice over the last 2 decades, as well as their use in understanding human HSC and leukemia stem cell (LSC) biology and function in the context of a humanized mouse. However, in the intervening time since these reviews, a number of new mouse models, technical approaches, and scientific advances have been made. In this review, we update the reader on the newest and best models and approaches available for studying human malignant and normal HSCs in immunodeficient mice, including newly developed mice for use in chemotherapy testing and improved techniques for humanizing mice without laborious purification of HSC. We also review some relevant scientific findings from xenograft studies and highlight the continued limitations that confront researchers working with human HSC and LSC in vivo.
Collapse
|
12
|
Sakata-Yanagimoto M, Chiba S. Notch2 signaling in mast cell development and distribution in the intestine. Methods Mol Biol 2015; 1220:79-89. [PMID: 25388246 DOI: 10.1007/978-1-4939-1568-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Notch signaling controls cell-fate specification events in various types of blood cells, and it further regulates the function of particular blood cells. Recent studies have identified the role of Notch signaling as a determinant of mast cell fate from bone marrow progenitors and mast cell maturation towards mucosal type rather than connective tissue type. Furthermore, Notch2 has functional properties for immune defense against Strongyloides venezuelensis through properly distributing intestinal mast cells. The goal of this chapter is to provide the researchers with the comprehensive protocols to examine the functions of Notch signaling in mast cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Mamiko Sakata-Yanagimoto
- Department ofHematology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | | |
Collapse
|
13
|
Kushwah R, Guezguez B, Lee JB, Hopkins CI, Bhatia M. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human. EMBO Rep 2014; 15:1128-38. [PMID: 25252682 DOI: 10.15252/embr.201438842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Notch signaling pathway is evolutionarily conserved across species and plays an important role in regulating cell differentiation, proliferation, and survival. It has been implicated in several different hematopoietic processes including early hematopoietic development as well as adult hematological malignancies in humans. This review focuses on recent developments in understanding the role of Notch signaling in the human hematopoietic system with an emphasis on hematopoietic initiation from human pluripotent stem cells and regulation within the bone marrow. Based on recent insights, we summarize potential strategies for treatment of human hematological malignancies toward the concept of targeting Notch signaling for fate regulation.
Collapse
Affiliation(s)
- Rahul Kushwah
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Borhane Guezguez
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jung Bok Lee
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Claudia I Hopkins
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Mickie Bhatia
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Bird GA, Polsky A, Estes P, Hanlon T, Hamilton H, Morton JJ, Gutman J, Jimeno A, Turner BC, Refaeli Y. Expansion of human and murine hematopoietic stem and progenitor cells ex vivo without genetic modification using MYC and Bcl-2 fusion proteins. PLoS One 2014; 9:e105525. [PMID: 25170611 PMCID: PMC4149411 DOI: 10.1371/journal.pone.0105525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022] Open
Abstract
The long-term repopulating hematopoietic stem cell (HSC) population can self-renew in vivo, support hematopoiesis for the lifetime of the individual, and is of critical importance in the context of bone marrow stem cell transplantation. The mechanisms that regulate the expansion of HSCs in vivo and in vitro remain unclear to date. Since the current set of surface markers only allow for the identification of a population of cells that is highly enriched for HSC activity, we will refer to the population of cells we expand as Hematopoietic Stem and Progenitor cells (HSPCs). We describe here a novel approach to expand a cytokine-dependent Hematopoietic Stem and Progenitor Cell (HSPC) population ex vivo by culturing primary adult human or murine HSPCs with fusion proteins including the protein transduction domain of the HIV-1 transactivation protein (Tat) and either MYC or Bcl-2. HSPCs obtained from either mouse bone marrow, human cord blood, human G-CSF mobilized peripheral blood, or human bone marrow were expanded an average of 87 fold, 16.6 fold, 13.6 fold, or 10 fold, respectively. The expanded cell populations were able to give rise to different types of colonies in methylcellulose assays in vitro, as well as mature hematopoietic populations in vivo upon transplantation into irradiated mice. Importantly, for both the human and murine case, the ex vivo expanded cells also gave rise to a self-renewing cell population in vivo, following initial transplantation, that was able to support hematopoiesis upon serial transplantation. Our results show that a self-renewing cell population, capable of reconstituting the hematopoietic compartment, expanded ex vivo in the presence of Tat-MYC and Tat-Bcl-2 suggesting that this may be an attractive approach to expand human HSPCs ex vivo for clinical use.
Collapse
Affiliation(s)
- Gregory A. Bird
- Taiga Biotechnologies, Inc., Aurora, Colorado, United States of America
| | - Avital Polsky
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology and Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Patricia Estes
- Taiga Biotechnologies, Inc., Aurora, Colorado, United States of America
| | - Teri Hanlon
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology and Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haley Hamilton
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology and Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - John J. Morton
- University of Colorado School of Medicine, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, United States of America
| | - Jonathan Gutman
- University of Colorado School of Medicine, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, United States of America
| | - Antonio Jimeno
- University of Colorado School of Medicine, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, United States of America
| | - Brian C. Turner
- Taiga Biotechnologies, Inc., Aurora, Colorado, United States of America
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology and Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Yosef Refaeli
- Taiga Biotechnologies, Inc., Aurora, Colorado, United States of America
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology and Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
15
|
Nakajima-Takagi Y, Osawa M, Iwama A. Manipulation of Hematopoietic Stem Cells for Regenerative Medicine. Anat Rec (Hoboken) 2013; 297:111-20. [DOI: 10.1002/ar.22804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine; Graduate School of Medicine; Chiba University; 1-8-1 Inohana Chuo-ku Chiba 260-8670 Japan
- Japan Science and Technology Corporation, Core Research for Evolutional Science and Technology; Gobancho Chiyoda-ku, Tokyo Japan
| | - Mitsujiro Osawa
- Department of Cellular and Molecular Medicine; Graduate School of Medicine; Chiba University; 1-8-1 Inohana Chuo-ku Chiba 260-8670 Japan
- Japan Science and Technology Corporation, Core Research for Evolutional Science and Technology; Gobancho Chiyoda-ku, Tokyo Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine; Graduate School of Medicine; Chiba University; 1-8-1 Inohana Chuo-ku Chiba 260-8670 Japan
- Japan Science and Technology Corporation, Core Research for Evolutional Science and Technology; Gobancho Chiyoda-ku, Tokyo Japan
| |
Collapse
|
16
|
Abstract
Much has been made about the potential for stem cells in regenerative medicine but the reality is that the development of actual therapies has been slow. Adult stem cells rely heavily on the assortment of biochemical and biophysical elements that constitute the local microenvironment in which they exist. One goal of biomedicine is to create an artificial yet biofunctional niche to support multipotency, differentiation and proliferation. Such tools would facilitate more conclusive experimentation by biologists, pharmaceutical scientists and tissue engineers. While many bioengineering techniques and platforms are already in use, technological innovations now allow this to be done at a higher resolution and specificity. Ultimately, the multidisciplinary integration of engineering and biology will allow the niche to be generated at a scale that can be clinically exploited. Using the systems that constitute the intestinal, hematopoietic and epidermal tissues, this article summarizes the various approaches and tools currently employed to recreate stem cell niches and also explores recent advances in the field.
Collapse
Affiliation(s)
- Shawna Tan
- A*STAR Institute of Medical Biology , 8A Biomedical Grove, 06-06 Immunos , Singapore
| | | |
Collapse
|
17
|
Ebens CL, Maillard I. Notch signaling in hematopoietic cell transplantation and T cell alloimmunity. Blood Rev 2013; 27:269-77. [PMID: 24050990 DOI: 10.1016/j.blre.2013.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Notch signaling can regulate both hematopoietic progenitors and alloimmune T cells in the setting of allogeneic bone marrow or hematopoietic cell transplantation (allo-HCT). Ex vivo culture of multipotent blood progenitors with immobilized Delta-like ligands induces supraphysiological Notch signals and can markedly enhance progenitor expansion. Infusion of Notch-expanded progenitors shortened myelosuppression in preclinical and early clinical studies, while accelerating T cell reconstitution in preclinical models. Notch also plays an essential role in vivo to regulate pathogenic alloimmune T cells that mediate graft-versus-host disease (GVHD), the most severe complication of allo-HCT. In mouse allo-HCT models, Notch inhibition in donor-derived T cells or transient blockade of Delta-like ligands after transplantation profoundly decreased GVHD incidence and severity, without causing global immunosuppression. These findings identify Notch in T cells as an attractive therapeutic target to control GVHD. In this review, we discuss these contrasting functions of Notch signaling with high translational significance in allo-HCT patients.
Collapse
Affiliation(s)
- Christen L Ebens
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
18
|
Tian DM, Liang L, Zhao XC, Zheng MH, Cao XL, Qin HY, Wang CM, Liang YM, Han H. Endothelium-targeted Delta-like 1 promotes hematopoietic stem cell expansion ex vivo and engraftment in hematopoietic tissues in vivo. Stem Cell Res 2013; 11:693-706. [PMID: 23727445 DOI: 10.1016/j.scr.2013.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Notch ligands enhance ex vivo expansion of hematopoietic stem cells (HSCs). But to use Notch ligands in HSC therapies of human diseases, efforts are required to improve ex vivo expansion efficiency and in vivo transplant engraftment. DESIGN AND METHODS We designed and produced an endothelium-targeted soluble Notch ligand, the DSL domain of Delta-like 1 fused with a RGD motif (D1R), and examined the effects of this protein on HSCs ex vivo and in vivo. RESULTS D1R efficiently promoted ex vivo expansion of both mouse bone marrow (BM) and human umbilical cord blood HSCs. HSCs expanded with D1R up-regulated many of the stemness-related genes, and showed high BM engraftment efficacy with long-term repopulation capacity after transplantation. Moreover, in vivo administration of D1R increased the number of BM HSCs in mice, and facilitated BM recovery of mice after irradiation. Injection of D1R significantly improved HSC engraftment and myeloid recovery after BM transplantation in irradiated mice. D1R enhanced HSC engraftment not only in BM, but also in the liver and spleen after BM transplantation in mice. D1R induced the formation of compact cell clusters containing the transplanted HSCs in close contact with endothelial cells, reminiscent of HSC niches, in the liver and spleen. CONCLUSIONS D1R might be applied in improving both HSC expansion ex vivo and HSC engraftment in vivo in transplantation.
Collapse
Affiliation(s)
- Deng-Mei Tian
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Osteosclerosis and inhibition of human hematopoiesis in NOG mice expressing human Delta-like 1 in osteoblasts. Exp Hematol 2012; 40:953-963.e3. [DOI: 10.1016/j.exphem.2012.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/31/2012] [Accepted: 06/19/2012] [Indexed: 02/06/2023]
|
20
|
Chen H, Zeng Y, Liu W, Zhao S, Wu J, Du Y. Multifaceted applications of nanomaterials in cell engineering and therapy. Biotechnol Adv 2012; 31:638-53. [PMID: 22922117 DOI: 10.1016/j.biotechadv.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/13/2022]
Abstract
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.
Collapse
Affiliation(s)
- Hui Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
21
|
Ventura Ferreira MS, Labude N, Walenda G, Adamzyk C, Wagner W, Piroth D, Müller AM, Knüchel R, Hieronymus T, Zenke M, Jahnen-Dechent W, Neuss S. Ex vivoexpansion of cord blood-CD34+cells using IGFBP2and Angptl-5 impairs short-term lymphoid repopulationin vivo. J Tissue Eng Regen Med 2012; 7:944-54. [DOI: 10.1002/term.1486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | - Norina Labude
- Institute of Pathology; RWTH Aachen University; Germany
| | - Gudrun Walenda
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
| | | | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
| | - Daniela Piroth
- Department for Gynecology; RWTH Aachen University; Germany
| | - Albrecht M. Müller
- Institute for Medical Radiation and Cell Research; University of Würzburg; Germany
| | - Ruth Knüchel
- Institute of Pathology; RWTH Aachen University; Germany
| | - Thomas Hieronymus
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
- Institute for Biomedical Engineering, Department of Cell Biology; RWTH Aachen University; Germany
| | - Martin Zenke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
- Institute for Biomedical Engineering, Department of Cell Biology; RWTH Aachen University; Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Group; RWTH Aachen University; Germany
| | - Sabine Neuss
- Institute of Pathology; RWTH Aachen University; Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Group; RWTH Aachen University; Germany
| |
Collapse
|
22
|
Nishino T, Osawa M, Iwama A. New approaches to expand hematopoietic stem and progenitor cells. Expert Opin Biol Ther 2012; 12:743-56. [DOI: 10.1517/14712598.2012.681372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Beck RC. Production of cytotoxic, KIR-negative NK cells from CD34+ cord blood cells with the use of Notch signaling. Transfusion 2012; 51 Suppl 4:145S-152S. [PMID: 22074625 DOI: 10.1111/j.1537-2995.2011.03377.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The use of natural killer (NK) cells as cell therapy against acute leukemia is an active area of investigation. The optimal source of cytotoxic NK cells for therapeutic use is presently unknown. With funds from the National Blood Foundation, the author's lab has developed in vitro culture systems that use the Notch receptor ligand Delta4 for the differentiation and expansion of functional NK cells from CD34+ cord blood hematopoietic progenitor cells. These Notch-induced NK (N-NK) cells display a predominantly immature, CD56(bright) surface phenotype, with expression of activating receptors important for leukemia cell recognition and killing, but with an absence of inhibitory receptors that bind major histocompatibility complex (MHC) class I, making them free of restriction by self-MHC. They are capable of directly killing hematopoietic tumor cell lines and primary leukemia cells in vitro. Thus, cytotoxic, HLA-independent N-NK cells may represent a novel cell therapy for hematopoietic malignancy.
Collapse
Affiliation(s)
- Rose C Beck
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
24
|
Abstract
Notch2 is expressed in many cell types of most lineages in the hematolymphoid compartment and has specific roles in differentiation and function of various immune cells. Notch2 is required for development of splenic marginal zone B cells and regulates differentiation of dendritic cells (DCs) in the spleen. Notch2 appears to play some specific roles in the intestinal immunity, given that the fate of mast cells and a subset of DCs is regulated by Notch2 in the intestine. Notch2 also has important roles in helper T cell divergence from naïve CD4 T cells and activation of cytotoxic T cells. Moreover, recent genetic evidence suggests that both gain-and loss-of-function abnormalities of Notch2 cause transformation of immune cells. Inactivating mutations are found in Notch2 signaling pathways in chronic myelomonocytic leukemia, while activating mutations are found in mature B cell lymphomas, which reflects the role of Notch2 in the developmental process of these cells.
Collapse
Affiliation(s)
- Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | |
Collapse
|
25
|
Ellis SL, Nilsson SK. The location and cellular composition of the hemopoietic stem cell niche. Cytotherapy 2011; 14:135-43. [PMID: 22107161 DOI: 10.3109/14653249.2011.630729] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While it is accepted that hemopoietic stem cells (HSC) are located in a three-dimensional microenvironment, termed a niche, the cellular and extracellular composition, as well as the multifaceted effects the components of the niche have on HSC regulation, remains undefined. Over the past four decades numerous advances in the field have led to the identification of roles for some cell types and propositions of potentially a number of HSC niches. We present evidence supporting the roles of multiple cell types and extracellular matrix molecules in the HSC niche, as well as discuss the potential significant overlap and intertwining of previously proposed distinct HSC niches.
Collapse
|
26
|
Toda H, Yamamoto M, Kohara H, Tabata Y. Orientation-regulated immobilization of Jagged1 on glass substrates for ex vivo proliferation of a bone marrow cell population containing hematopoietic stem cells. Biomaterials 2011; 32:6920-8. [PMID: 21723602 DOI: 10.1016/j.biomaterials.2011.05.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
Notch signaling has been recognized as a key pathway to regulate the proliferation and differentiation of hematopoietic stem cells (HSC). In this study, the orientation-regulated immobilization of a Notch ligand was designed to achieve the efficient Notch ligand-receptor recognition for the ex vivo proliferation of a bone marrow cell population containing HSC. Protein A was chemically conjugated onto aminated glass substrates, followed by immobilizing a recombinant chimeric protein of Jagged1 and Fc domain (Jagged1-Fc) through the biospecific binding between protein A and Fc domain. Protein A adsorption was suppressed for the Jagged1-Fc-immobilized substrates, in contrast to the Jagged1-Fc-coated ones, indicating the orientation-regulated immobilization of Jagged1-Fc for the substrates. Mouse lineage negative cells (Lin(-)) were cultured on the Jagged1-Fc-immobilized substrates. Flow cytometric analyses demonstrated that c-Kit(+), Sca-1(+), Lin(-), and CD34(-) cells of an HSC population was significantly proliferated on the Jagged1-Fc-immobilized substrates 6 days after culture, whereas no proliferation was observed for the Jagged1-Fc-coated substrates in a random manner or Jagged1-Fc-immobilized ones with a Notch signaling inhibitor. It is concluded that the orientation-regulated immobilization of Jagged1-Fc increased the efficiency of Jagged1 to recognize the Notch receptors, resulting in the promoted ex vivo proliferation of the HSC population.
Collapse
Affiliation(s)
- Hiroyuki Toda
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
27
|
Timmins NE, Nielsen LK. Manufactured RBC--rivers of blood, or an oasis in the desert? Biotechnol Adv 2011; 29:661-6. [PMID: 21609758 DOI: 10.1016/j.biotechadv.2011.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 04/26/2011] [Accepted: 05/08/2011] [Indexed: 12/29/2022]
Abstract
Red blood cell (RBC) transfusion is an essential practice in modern medicine, one that is entirely dependent on the availability of donor blood. Constraints in donor supply have led to proposals that transfusible RBC could be manufactured from stem cells. While it is possible to generate small amounts of RBC in vitro, very large numbers of cells are required to be of clinical significance. We explore the challenges facing large scale manufacture of RBC and technological developments required for such a scenario to be realised.
Collapse
Affiliation(s)
- N E Timmins
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | | |
Collapse
|
28
|
Jin G, Zhang F, Chan KM, Xavier Wong HL, Liu B, Cheah KSE, Liu X, Mauch C, Liu D, Zhou Z. MT1-MMP cleaves Dll1 to negatively regulate Notch signalling to maintain normal B-cell development. EMBO J 2011; 30:2281-93. [PMID: 21572390 DOI: 10.1038/emboj.2011.136] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 04/04/2011] [Indexed: 11/09/2022] Open
Abstract
Notch signalling controls the differentiation of haematopoietic progenitor cells (HPCs). Here, we show that loss of membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP14), a cell surface protease expressed in bone marrow stromal cells (BMSCs), increases Notch signalling in HPCs and specifically impairs B-lymphocyte development. When co-cultured with BMSCs in vitro, HPCs differentiation towards B lymphocytes is significantly compromised on MT1-MMP-deficient BMSCs and this defect could be completely rescued by DAPT, a specific Notch signalling inhibitor. The defective B-lymphocyte development could also be largely rescued by DAPT in vivo. MT1-MMP interacts with Notch ligand Delta-like 1 (Dll1) and promotes its cleavage on cell surface in BMSCs. Ectopic MT1-MMP cleaves Dll1 and results in diminished Notch signalling in co-cultured cells. In addition, recombinant MT1-MMP cleaves a synthetic Dll1 peptide at the same site where MT1-MMP cleaves Dll1 on the cell surface. Our data suggest that MT1-MMP directly cleaves Dll1 on BMSCs to negatively regulate Notch signalling to specifically maintain normal B-cell development in bone marrow.
Collapse
Affiliation(s)
- Guoxiang Jin
- Department of Biochemistry, Center for Reproduction, Development and Growth, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
AFT024 cell line in co-culture system using high pore density insert (HPDI) maintains hematopoietic stem/progenitor cells (HSCs/HPCs) as more primitive state through histone modification. Transplant Proc 2011; 42:4611-8. [PMID: 21168747 DOI: 10.1016/j.transproceed.2010.09.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 08/20/2010] [Accepted: 09/28/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND It has been shown that the AFT024 stromal cell line sustains the engraftment capacity of human hematopoietic progenitor cells (HPCs) in vitro. However, the process by which AFT024 cell line maintains human HPCs is a more primitive state ex vivo remains unclear. METHODS Human umbilical cord blood (UCB)-derived fluorescent activated cell sorter (FACS)-purified CD34(+) CD38(-)hsc/HPCs were cultured with cytokines on hpdi (0.4 micron pore size) coated with irradiated AFT024 cells. The HSC/HPC and AFT024 cells contacted each other through 0.4 micron pores on HPDI membranes; the irradiated AFT024 cells could not migrate through the HPDI to contaminate the HSC/HPC. The frequency of CD34(+)Lin(-) cells was determined as HSCs/HPCs using flow cytometry. To evaluate their engraftment potential in vivo, the co-cultured cells were assayed as Long Term Culture-Initiating Cells (LTC-IC). To understand the process whereby AFT024 cells govern enhanced engraftment, we employed Western blot analysis for histone modifications. RESULTS There was a 30-fold increase in frequency of CD34(+)Lin(-) cells in co-cultures on HPDI coated on the outer bottom surface with irradiated AFT024 cells and cytokines in contrast to 6-fold among controls. Total colonies from LTC-IC increased approximately 1.5-fold among cells cultured with AFT024, compared with controls. More importantly, cells co-cultured with AFT024 showed a more primitive state with over-methylated h3k4 (Me-H3K4), under-methylated h3k9 (Di-Me-H3K4), and over-acetylated h4 (Ac-H4) compared with controls. CONCLUSION Our results suggested that co-culture of the AFT024 cell line with HPDI maintained hematopoietic progenitors as a more primitive state through histone modification.
Collapse
|
30
|
Abstract
In the body, tissue homeostasis is established and maintained by resident tissue-specific adult stem cells (aSCs). Through preservation of bidirectional communications with the surrounding niche and integration of biophysical and biochemical cues, aSCs actively direct the regeneration of aged, injured and diseased tissues. Currently, the ability to guide the behavior and fate of aSCs in the body or in culture after prospective isolation is hindered by our poor comprehension of niche composition and the regulation it imposes. Two-and three-dimensional biomaterials approaches permit systematic analysis of putative niche elements as well as screening approaches to identify novel regulatory mechanisms governing stem cell fate. The marriage of stem cell biology with creative bioengineering technology has the potential to expand our basic understanding of stem cell regulation imposed by the niche and to develop novel regenerative medicine applications.
Collapse
|
31
|
Frampton J. Hematopoietic Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Abe T, Masuda S, Ban H, Hayashi S, Ueda Y, Inoue M, Hasegawa M, Nagao Y, Hanazono Y. Ex vivo expansion of human HSCs with Sendai virus vector expressing HoxB4 assessed by sheep in utero transplantation. Exp Hematol 2010; 39:47-54. [PMID: 20875838 DOI: 10.1016/j.exphem.2010.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The homeobox B4 (HoxB4) gene promotes expansion of hematopoietic stem cells (HSCs). However, frequent development of leukemia in large animals due to retrovirally transduced HoxB4 gene has been reported. To prevent tumorigenesis, we developed a nonintegrating and nonreplicating Sendai virus vector that did not contain the phosphoprotein gene (SeV/ΔP), which enabled clearance of the vector and transgene shortly after transduction. We tested the SeV/ΔP vector expressing the HoxB4 gene (SeV/ΔP/HoxB4) for the ex vivo expansion of human cord blood CD34(+) cells (HSCs) using a sheep in utero transplantation assay. MATERIALS AND METHODS Human HSCs were ex vivo-expanded by transduction with SeV/ΔP/HoxB4 vector and transplanted into the abdominal cavity of fetal sheep. The engraftment of human HSCs in the lambs was quantitatively evaluated by hematopoietic colony-forming unit assays. RESULTS After transplantation, the HoxB4-transduced HSCs contributed to longer-period (up to 20 months) repopulation in sheep, and human hematopoietic progenitors were detected more frequently in the bone marrow of the HoxB4 group as compared with the control untreated group (p < 0.05). The expansion of human HSCs with the SeV/ΔP/HoxB4 vector was comparable with previously reported retroviral vectors expressing HoxB4. The SeV/ΔP/HoxB4 vector and the transgene were cleared from the recipient sheep and leukemia was not detected at 20 months post-transplantation. CONCLUSIONS The SeV/ΔP vector would be suitable for transient expression of HoxB4 in human CD34(+) cells. In addition, the SeV/ΔP vector is free of concern about transgene-related and insertional leukemogenesis and should be safer than retroviral vectors.
Collapse
Affiliation(s)
- Tomoyuki Abe
- Division of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bordeaux-Rego P, Luzo A, Costa FF, Olalla Saad ST, Crosara-Alberto DP. Both interleukin-3 and interleukin-6 are necessary for better ex vivo expansion of CD133+ cells from umbilical cord blood. Stem Cells Dev 2010; 19:413-22. [PMID: 19656071 DOI: 10.1089/scd.2009.0098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Umbilical cord blood (UCB), an ideal source for transplantable hematopoietic stem cells (HSC), is readily available and is rich in progenitor cells. Identification of conditions favoring UCB-HSC ex vivo expansion and of repopulating potential remains a major challenge in hematology. CD133+ cells constitute an earlier, less-differentiated HSC group with a potentially higher engraftment capacity. The presence of SCF, Flt3-L, and TPO are essential for CD133+ and/or CD34+ cells ex vivo expansion; however, IL-3 and IL-6 influence has not yet been clearly established. We investigated this influence on CD133+ cells from UCB ex vivo expansion and the effect of these cytokines upon cell phenotype. Immediately after isolation an 85% of CD133+ cell purity was obtained, diminishing after 4 and 8 days of ex vivo expansion. CD133+ fold-increase was higher using IMDM with SCF, Flt3-L, and TPO (BM)+IL-3 or BM+IL-3+IL-6 on day 8 (13.83- and 17.47-fold increase, respectively). BM+IL-6 presented no significant difference from BM alone. We demonstrated that 5.1% of the CD133+ cells expressed IL-6 receptor (IL-6R) after isolation. After 4 and 8 days in culture, the percentage of CD133+ cells that expressed IL-6R was as follows: BM alone (9.8% and 22.02%, respectively); BM+IL-3 (8.33% and 16.74%); BM+IL-6 (9.2% and 17.67%); and BM+IL-3+IL-6 (12.5% and 61.20%). Cell cycle analysis revealed quiescent cells after isolation, 95.5% CD133+ cells in the G0/G1 phase. Regardless of culture period or cytokine incubation, CD133+ cell cycle altered to 70% of CD133+ in the G0/G1 phase. Colony-forming unit (CFU) doubled in BM+IL-3+IL-6 after 8 days of incubation compared with BM group. SOX-2 and NANOG-relative gene expression was detected on day 0 after isolation. BM+IL-6 prevented the decrease in NANOG and SOX-2 gene expression level compared to BM+IL-3 or BM+IL-3+IL-6 incubated cells. Our results indicated that UCB-isolated CD133+ cells were better ex vivo expanded in the presence of SCF, Flt3-L, TPO, IL-3+IL-6. IL-3 probably promotes higher CD133+ cell expansion and IL-6 maintains immature phenotype.
Collapse
Affiliation(s)
- Pedro Bordeaux-Rego
- Center of Haematology and Hemotherapy, University of Campinas, Campinas, São Paulo Brazil
| | | | | | | | | |
Collapse
|
34
|
The use of vascular endothelial growth factor functionalized agarose to guide pluripotent stem cell aggregates toward blood progenitor cells. Biomaterials 2010; 31:8262-70. [PMID: 20684984 DOI: 10.1016/j.biomaterials.2010.07.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/07/2010] [Indexed: 12/23/2022]
Abstract
The developmental potential of pluripotent stem cells is influenced by their local cellular microenvironment. To better understand the role of vascular endothelial growth factor (VEGFA) in the embryonic cellular microenvironment, we synthesized an artificial stem cell niche wherein VEGFA was immobilized in an agarose hydrogel. Agarose was first modified with coumarin-protected thiols. Upon exposure to ultra-violet excitation, the coumarin groups were cleaved leaving reactive thiols to couple with maleimide-activated VEGFA. Mouse embryonic stem cells (ESC) aggregates were encapsulated in VEGFA immobilized agarose and cultured for 7 days as free-floating aggregates under serum-free conditions. Encapsulated aggregates were assessed for their capacity to give rise to blood progenitor cells. In the presence of bone morphogenetic protein-4 (BMP-4), cells exposed to immobilized VEGFA upregulated mesodermal markers, brachyury and VEGF receptor 2 (T+VEGFR2+) by day 4, and expressed CD34 and CD41 (CD34+CD41+) on day 7. It was found that immobilized VEGFA treatment was more efficient at inducing blood progenitors (including colony forming cells) on a per molecule basis than soluble VEGFA. This work demonstrates the use of functionalized hydrogels to guide encapsulated ESCs toward blood progenitor cells and introduces a tool capable of recapitulating aspects of the embryonic microenvironment.
Collapse
|
35
|
Ma D, Zhu Y, Ji C, Hou M. Targeting the Notch signaling pathway in autoimmune diseases. Expert Opin Ther Targets 2010; 14:553-65. [DOI: 10.1517/14728221003752750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Yuan JS, Kousis PC, Suliman S, Visan I, Guidos CJ. Functions of Notch Signaling in the Immune System: Consensus and Controversies. Annu Rev Immunol 2010; 28:343-65. [DOI: 10.1146/annurev.immunol.021908.132719] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julie S. Yuan
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Philaretos C. Kousis
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Sara Suliman
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Ioana Visan
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Cynthia J. Guidos
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| |
Collapse
|
37
|
da Silva CL, Gonçalves R, dos Santos F, Andrade PZ, Almeida-Porada G, Cabral JMS. Dynamic cell-cell interactions between cord blood haematopoietic progenitors and the cellular niche are essential for the expansion of CD34+, CD34+CD38−and early lymphoid CD7+cells. J Tissue Eng Regen Med 2010; 4:149-58. [DOI: 10.1002/term.226] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Peerani R, Zandstra PW. Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest 2010; 120:60-70. [PMID: 20051637 DOI: 10.1172/jci41158] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Enabling stem cell-targeted therapies requires an understanding of how to create local microenvironments (niches) that stimulate endogenous stem cells or serve as a platform to receive and guide the integration of transplanted stem cells and their derivatives. In vivo, the stem cell niche is a complex and dynamic unit. Although components of the in vivo niche continue to be described for many stem cell systems, how these components interact to modulate stem cell fate is only beginning to be understood. Using the HSC niche as a model, we discuss here microscale engineering strategies capable of systematically examining and reconstructing individual niche components. Synthetic stem cell-niche engineering may form a new foundation for regenerative therapies.
Collapse
Affiliation(s)
- Raheem Peerani
- Institute of Biomaterials and Biomedical Engineering, and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 2010; 16:232-6. [PMID: 20081862 DOI: 10.1038/nm.2080] [Citation(s) in RCA: 577] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 10/10/2009] [Indexed: 12/21/2022]
Abstract
Delayed myeloid engraftment after cord blood transplantation (CBT) is thought to result from inadequate numbers of progenitor cells in the graft and is associated with increased early transplant-related morbidity and mortality. New culture strategies that increase the number of cord blood progenitors capable of rapid myeloid engraftment after CBT would allow more widespread use of this stem cell source for transplantation. Here we report the development of a clinically relevant Notch-mediated ex vivo expansion system for human CD34(+) cord blood progenitors that results in a marked increase in the absolute number of stem/progenitor cells, including those capable of enhanced repopulation in the marrow of immunodeficient nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. Furthermore, when cord blood progenitors expanded ex vivo in the presence of Notch ligand were infused in a clinical setting after a myeloablative preparative regimen for stem cell transplantation, the time to neutrophil recovery was substantially shortened. To our knowledge, this is the first instance of rapid engraftment derived from ex vivo expanded stem/progenitor cells in humans.
Collapse
Affiliation(s)
- Colleen Delaney
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Proper tissue function and regeneration rely on robust spatial and temporal control of biophysical and biochemical microenvironmental cues through mechanisms that remain poorly understood. Biomaterials are rapidly being developed to display and deliver stem-cell-regulatory signals in a precise and near-physiological fashion, and serve as powerful artificial microenvironments in which to study and instruct stem-cell fate both in culture and in vivo. Further synergism of cell biological and biomaterials technologies promises to have a profound impact on stem-cell biology and provide insights that will advance stem-cell-based clinical approaches to tissue regeneration.
Collapse
|
41
|
Gering M, Patient R. Notch signalling and haematopoietic stem cell formation during embryogenesis. J Cell Physiol 2009; 222:11-6. [PMID: 19725072 DOI: 10.1002/jcp.21905] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Notch signalling pathway is repeatedly employed during embryonic development and adult homeostasis of a variety of tissues. In particular, its frequent involvement in the regulation of stem and progenitor cell maintenance and proliferation, as well as its role in binary fate decisions in cells that are destined to differentiate, is remarkable. Here, we review its role in the development of haematopoietic stem cells during vertebrate embryogenesis and put it into the context of Notch's functions in arterial specification, angiogenic vessel sprouting and vessel maintenance. We further discuss interactions with other signalling cascades, and pinpoint open questions and some of the challenges that lie ahead.
Collapse
Affiliation(s)
- Martin Gering
- Institute of Genetics, School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
42
|
The Notch ligands Jagged2, Delta1, and Delta4 induce differentiation and expansion of functional human NK cells from CD34+ cord blood hematopoietic progenitor cells. Biol Blood Marrow Transplant 2009; 15:1026-37. [PMID: 19660715 DOI: 10.1016/j.bbmt.2009.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 06/03/2009] [Indexed: 11/23/2022]
Abstract
Notch receptor signaling is required for T cell development, but its role in natural killer (NK) cell development is poorly understood. We compared the ability of the 5 mammalian Notch ligands (Jagged1, Jagged2, Delta1, Delta3, or Delta4) to induce NK cell development from human hematopoietic progenitor cells (HPCs). CD34(+) HPCs were cultured with OP9 stromal cell lines transduced with 1 of the Notch ligands or with OP9 stromal cells alone, in the presence of IL-7, Flt3L, and IL-15. Differentiation and expansion of CD56(+)CD3(-) cells were greatly accelerated in the presence of Jagged2, Delta-1, or Delta-4, versus culture in the absence of ligand or in the presence of Jagged1 or Delta3. At 4 weeks, cultures containing Jagged2, Delta1, or Delta4 contained 80% to 90% NK cells, with the remaining cells being CD33(+) myelogenous cells. Notch-induced NK (N-NK) cells resembled CD56(bright) NK cells in that they were CD16(-), CD94(-), CD117(+), and killer immunoglobulin-like receptors (KIR(-)). They also expressed NKp30, NKp44, NKp46, 2B4, and DNAM-1, with partial expression of NKG2D. The N-NK cells displayed cytotoxic activity against the K562 and RPMI-8226 cell lines, at levels similar to activated peripheral blood (PB) NK cells, although killing of Daudi cells was not present. N-NK cells were also capable of interferon (IFN)-gamma secretion. Thus, Notch ligands have differential ability to induce and expand immature, but functional, NK cells from CD34(+) HPCs. The use of Notch ligands to generate functional NK cells in vitro may be significant for cellular therapy purposes.
Collapse
|
43
|
Nishino T, Miyaji K, Ishiwata N, Arai K, Yui M, Asai Y, Nakauchi H, Iwama A. Ex vivo expansion of human hematopoietic stem cells by a small-molecule agonist of c-MPL. Exp Hematol 2009; 37:1364-1377.e4. [DOI: 10.1016/j.exphem.2009.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
44
|
Lutolf MP, Blau HM. Artificial stem cell niches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3255-68. [PMID: 20882496 PMCID: PMC3099745 DOI: 10.1002/adma.200802582] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Stem cells are characterized by their dual ability to reproduce themselves (self-renew) and specialize (differentiate), yielding a plethora of daughter cells that maintain and regenerate tissues. In contrast to their embryonic counterparts, adult stem cells retain their unique functions only if they are in intimate contact with an instructive microenvironment, termed stem cell niche. In these niches, stem cells integrate a complex array of molecular signals that, in concert with induced cell-intrinsic regulatory networks, control their function and balance their numbers in response to physiologic demands. This progress report provides a perspective on how advanced materials technologies could be used (i) to engineer and systematically analyze specific aspects of functional stem cells niches in a controlled fashion in vitro and (ii) to target stem cell niches in vivo. Such "artificial niches" constitute potent tools for elucidating stem cell regulatory mechanisms with the capacity to directly impact the development of novel therapeutic strategies for tissue regeneration.
Collapse
Affiliation(s)
- Matthias P. Lutolf
- Prof. M. P. Lutolf, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland), , Prof. H. M. Blau, Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA (USA),
| | - Helen M. Blau
- Prof. M. P. Lutolf, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland), , Prof. H. M. Blau, Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA (USA),
| |
Collapse
|
45
|
Lee SY, Kumano K, Nakazaki K, Sanada M, Matsumoto A, Yamamoto G, Nannya Y, Suzuki R, Ota S, Ota Y, Izutsu K, Sakata-Yanagimoto M, Hangaishi A, Yagita H, Fukayama M, Seto M, Kurokawa M, Ogawa S, Chiba S. Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci 2009; 100:920-6. [PMID: 19445024 PMCID: PMC11158873 DOI: 10.1111/j.1349-7006.2009.01130.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Signaling through the Notch1 receptor has a pivotal role in early thymocyte development. Gain of Notch1 function results in the development of T-cell acute lymphoblastic leukemia in a number of mouse experimental models, and activating Notch1 mutations deregulate Notch1 signaling in the majority of human T-cell acute lymphoblastic leukemias. Notch2, another member of the Notch gene family, is preferentially expressed in mature B cells and is essential for marginal zone B-cell generation. Here, we report that 5 of 63 (approximately 8%) diffuse large B-cell lymphomas, a subtype of mature B-cell lymphomas, have Notch2 mutations. These mutations lead to partial or complete deletion of the proline-, glutamic acid-, serine- and threonine-rich (PEST) domain, or a single amino acid substitution at the C-terminus of Notch2 protein. Furthermore, high-density oligonucleotide microarray analysis revealed that some diffuse large B-cell lymphoma cases also have increased copies of the mutated Notch2 allele. In the Notch activation-sensitive luciferase reporter assay in vitro, mutant Notch2 receptors show increased activity compared with wild-type Notch2. These findings implicate Notch2 gain-of-function mutations in the pathogenesis of a subset of B-cell lymphomas, and suggest broader roles for Notch gene mutations in human cancers.
Collapse
Affiliation(s)
- Suk-young Lee
- Department of Cell Therapy and Transplantation Medicine, University of Tokyo Hospital, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Walker RA, Cunliffe VT, Whittle JD, Steele DA, Short RD. Submillimeter-scale surface gradients of immobilized protein ligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:4243-4246. [PMID: 19301839 DOI: 10.1021/la803775m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We describe a method to produce antibody-captured ligand gradients over biologically relevant distances (hundreds of micrometers) whereby the ligand density and gradient shape may be tailored. Separation of the ligand from the solid-phase surface ensures that the biological activity of the ligand remains unaffected by immobilization. Our method involves the use of a plasma-masking method to generate a surface chemical gradient on a glass substrate to which the 9E10 antibody is covalently coupled. This antibody captures myc-tagged biomolecules. In our example, the antibody is then used to immobilize a gradient of the intercellular signaling molecule delta-like-1 (Dll1). To visualize the gradient of Dll1, we have used the multistep approach of binding with rabbit anti-Dll1 primary antibody and then adding colloidal-gold-conjugated secondary antibody.
Collapse
Affiliation(s)
- Robert A Walker
- MRC Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
47
|
Expression, Purification, and Characterization of a Novel Soluble Form of Human Delta-like-1. Appl Biochem Biotechnol 2009; 160:1415-27. [DOI: 10.1007/s12010-009-8603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/03/2009] [Indexed: 01/23/2023]
|
48
|
Abstract
Human embryonic stem cells (hESCs) proliferate infinitely and are pluripotent. Only a few reports, however, describe specific and efficient methods to induce hESCs to differentiate into mature blood cells. It is important to determine whether and how these cells, once generated, behave similarly with their in vivo-produced counterparts. We developed a method to induce hESCs to differentiate into mature neutrophils. Embryoid bodies were formed with bone morphogenic protein-4, stem cell factor (SCF), Flt-3 ligand (FL), interleukin-6 (IL-6)/IL-6 receptor fusion protein (FP6), and thrombopoietin (TPO). Cells derived from the embryoid bodies were cultured on a layer of irradiated OP9 cells with a combination of SCF, FL, FP6, IL-3, and TPO, which was later changed to granulocyte-colony-stimulating factor. Morphologically mature neutrophils were obtained in approximately 2 weeks with a purity and efficiency sufficient for functional analyses. The population of predominantly mature neutrophils (hESC-Neu's) showed superoxide production, phagocytosis, bactericidal activity, and chemotaxis similar to peripheral blood neutrophils from healthy subjects, although there were differences in the surface antigen expression patterns, such as decreased CD16 expression and aberrant CD64 and CD14 expression in hESC-Neu's. Thus, this is the first description of a detailed functional analysis of mature hESC-derived neutrophils.
Collapse
|
49
|
Shima H, Takubo K, Iwasaki H, Yoshihara H, Gomei Y, Hosokawa K, Arai F, Takahashi T, Suda T. Reconstitution activity of hypoxic cultured human cord blood CD34-positive cells in NOG mice. Biochem Biophys Res Commun 2008; 378:467-72. [PMID: 19032938 DOI: 10.1016/j.bbrc.2008.11.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2Rgamma(null) (NOG) mice. Hypoxic culture (1% O(2)) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34(+)CD38(-) cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.
Collapse
Affiliation(s)
- Haruko Shima
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dellatore SM, Garcia AS, Miller WM. Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol 2008; 19:534-40. [PMID: 18725291 DOI: 10.1016/j.copbio.2008.07.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 01/09/2023]
Abstract
Niches regulate lineage-specific stem cell self-renewal versus differentiation in vivo and are composed of supportive cells and extracellular matrix components arranged in a three-dimensional topography of controlled stiffness in the presence of oxygen and growth factor gradients. Mimicking stem cell niches in a defined manner will facilitate production of the large numbers of stem cells needed to realize the promise of regenerative medicine and gene therapy. Progress has been made in mimicking components of the niche. Immobilizing cell-associated Notch ligands increased the self-renewal of hematopoietic (blood) stem cells. Culture on a fibrous scaffold that mimics basement membrane texture increased the expansion of hematopoietic and embryonic stem cells. Finally, researchers have created intricate patterns of cell-binding domains and complex oxygen gradients.
Collapse
Affiliation(s)
- Shara M Dellatore
- Northwestern University, Department of Chemical and Biological Engineering, 2145 Sheridan Road, Tech E136, Evanston, IL 60208, USA
| | | | | |
Collapse
|