1
|
Zhou L, Zhu J, Liu Y, Zhou P, Gu Y. Mechanisms of radiation-induced tissue damage and response. MedComm (Beijing) 2024; 5:e725. [PMID: 39309694 PMCID: PMC11413508 DOI: 10.1002/mco2.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Radiation-induced tissue injury (RITI) is the most common complication in clinical tumor radiotherapy. Due to the heterogeneity in the response of different tissues to radiation (IR), radiotherapy will cause different types and degrees of RITI, which greatly limits the clinical application of radiotherapy. Efforts are continuously ongoing to elucidate the molecular mechanism of RITI and develop corresponding prevention and treatment drugs for RITI. Single-cell sequencing (Sc-seq) has emerged as a powerful tool in uncovering the molecular mechanisms of RITI and for identifying potential prevention targets by enhancing our understanding of the complex intercellular relationships, facilitating the identification of novel cell phenotypes, and allowing for the assessment of cell heterogeneity and spatiotemporal developmental trajectories. Based on a comprehensive review of the molecular mechanisms of RITI, we analyzed the molecular mechanisms and regulatory networks of different types of RITI in combination with Sc-seq and summarized the targeted intervention pathways and therapeutic drugs for RITI. Deciphering the diverse mechanisms underlying RITI can shed light on its pathogenesis and unveil new therapeutic avenues to potentially facilitate the repair or regeneration of currently irreversible RITI. Furthermore, we discuss how personalized therapeutic strategies based on Sc-seq offer clinical promise in mitigating RITI.
Collapse
Affiliation(s)
- Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunanChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
2
|
Borda M, Sierra R, Cantero MJ, Gómez Bustillo S, Fiore EJ, Giardelli G, Martino Garcet M, Rebottaro ML, Bayo Fina JM, Schiavone M, Rubione J, García MG, Montaner A, Mazzolini GD, Aquino JB. The antifibrotic potential of IMT504: modulation of GLAST + Wnt1 + bone marrow stromal progenitors and hepatic microenvironment. Stem Cell Res Ther 2024; 15:278. [PMID: 39227908 PMCID: PMC11373403 DOI: 10.1186/s13287-024-03896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The immunomodulatory oligodeoxynucleotide (ODN) IMT504 might harbor antifibrotic properties within the liver. METHODS Fibrosis models were induced in mice through thioacetamide (TAA) administration and bile-duct ligation. Cre-loxP mice were utilized to identify GLAST + Wnt1 + bone marrow stromal progenitors (BMSPs) and to examine their contribution with cells in the liver. In vivo and in vitro assays; flow-cytometry, immunohistochemistry, and qPCR were conducted. RESULTS IMT504 demonstrated significant inhibition of liver fibrogenesis progression and reversal of established fibrosis. Early responses to IMT504 involved the suppression of profibrogenic and proinflammatory markers, coupled with an augmentation of hepatocyte proliferation. Additionally, this ODN stimulated the proliferation and mobilization of GLAST + Wnt1 + BMSPs, likely amplifying their contribution with endothelial- and hepatocytes-like cells. Moreover, IMT504 significantly modulated the expression levels of Wnt ligands and signaling pathway/target genes specifically within GLAST + Wnt1 + BMSPs, with minimal impact on other BMSPs. Intriguingly, both IMT504 and conditioned media from IMT504-pre-treated GLAST + Wnt1 + BMSPs shifted the phenotype of fibrotic macrophages, hepatic stellate cells, and hepatocytes, consistent with the potent antifibrotic effects observed. CONCLUSION In summary, our findings identify IMT504 as a promising candidate molecule with potent antifibrotic properties, operating through both direct and indirect mechanisms, including the activation of GLAST + Wnt1 + BMSPs.
Collapse
Affiliation(s)
- Maximiliano Borda
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Romina Sierra
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - María José Cantero
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Sofía Gómez Bustillo
- Instituto de Ciencia y Tecnología Dr. César Milstein. Fundación Pablo Cassará, Buenos Aires City, Argentina
| | - Esteban Juan Fiore
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Gianlucca Giardelli
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Matías Martino Garcet
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - María Luz Rebottaro
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
| | - Juan Miguel Bayo Fina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Máximo Schiavone
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Julia Rubione
- Mechanisms and Therapeutic Innovation in Pain Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Mariana Gabriela García
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Alejandro Montaner
- Instituto de Ciencia y Tecnología Dr. César Milstein. Fundación Pablo Cassará, Buenos Aires City, Argentina
| | - Guillermo Daniel Mazzolini
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Jorge Benjamín Aquino
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina.
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina.
| |
Collapse
|
3
|
Rizvi F, Lee YR, Diaz-Aragon R, So J, Florentino RM, Smith AR, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537186. [PMID: 37131823 PMCID: PMC10153196 DOI: 10.1101/2023.04.17.537186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via non-integrative and safe nucleoside-modified mRNA encapsulated into lipid-nanoparticles (mRNA-LNP) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and reversion of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals novel therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases. Highlights Complementary mouse and zebrafish models of liver injury demonstrate the therapeutic impact of VEGFA-KDR axis activation to harness BEC-driven liver regeneration.VEGFA mRNA LNPs restore two key features of the chronic liver disease in humans such as steatosis and fibrosis.Identification in human cirrhotic ESLD livers of KDR-expressing BECs adjacent to clusters of KDR+ hepatocytes suggesting their BEC origin.KDR-expressing BECs may represent facultative adult progenitor cells, a unique BEC population that has yet been uncovered.
Collapse
|
4
|
Kim M, Rizvi F, Shin D, Gouon-Evans V. Update on Hepatobiliary Plasticity. Semin Liver Dis 2023; 43:13-23. [PMID: 36764306 PMCID: PMC10005859 DOI: 10.1055/s-0042-1760306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The liver field has been debating for decades the contribution of the plasticity of the two epithelial compartments in the liver, hepatocytes and biliary epithelial cells (BECs), to derive each other as a repair mechanism. The hepatobiliary plasticity has been first observed in diseased human livers by the presence of biphenotypic cells expressing hepatocyte and BEC markers within bile ducts and regenerative nodules or budding from strings of proliferative BECs in septa. These observations are not surprising as hepatocytes and BECs derive from a common fetal progenitor, the hepatoblast, and, as such, they are expected to compensate for each other's loss in adults. To investigate the cell origin of regenerated cell compartments and associated molecular mechanisms, numerous murine and zebrafish models with ability to trace cell fates have been extensively developed. This short review summarizes the clinical and preclinical studies illustrating the hepatobiliary plasticity and its potential therapeutic application.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fatima Rizvi
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Valerie Gouon-Evans
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
5
|
Nambiar SM, Lee J, Yanum JA, Garcia V, Jiang H, Dai G. Maternal hepatocytes heterogeneously and dynamically exhibit developmental phenotypes partially via yes-associated protein 1 during pregnancy. Am J Physiol Gastrointest Liver Physiol 2023; 324:G38-G50. [PMID: 36283963 PMCID: PMC9799147 DOI: 10.1152/ajpgi.00197.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 02/08/2023]
Abstract
Pregnancy induces reprogramming of maternal physiology to support fetal development and growth. Maternal hepatocytes undergo hypertrophy and hyperplasia to drive maternal liver growth and alter their gene expression profiles simultaneously. This study aimed to further understand maternal hepatocyte adaptation to pregnancy. Timed pregnancies were generated in mice. In a nonpregnant state, most hepatocytes expressed Cd133, α-fetal protein (Afp) and epithelial cell adhesion molecule (Epcam) mRNAs, whereas overall, at the protein level, they exhibited a CD133-/AFP- phenotype; however, pericentral hepatocytes were EpCAM+. As pregnancy advanced, although most maternal hepatocytes retained Cd133, Afp, and Epcam mRNA expression, they generally displayed a phenotype of CD133+/AFP+, and EpCAM protein expression was switched from pericentral to periportal maternal hepatocytes. In addition, we found that the Hippo/yes-associated protein (YAP) pathway does not respond to pregnancy. Yap1 gene deletion specifically in maternal hepatocytes did not affect maternal liver growth or metabolic zonation. However, the absence of Yap1 gene eliminated CD133 protein expression without interfering with Cd133 transcript expression in maternal livers. We demonstrated that maternal hepatocytes acquire heterogeneous and dynamic developmental phenotypes, resembling fetal hepatocytes, partially via YAP1 through a posttranscriptional mechanism. Moreover, maternal liver is a new source of AFP. In addition, maternal liver grows and maintains its metabolic zonation independent of the Hippo/YAP1 pathway. Our findings revealed a novel and gestation-dependent phenotypic plasticity in adult hepatocytes.NEW & NOTEWORTHY We found that maternal hepatocytes exhibit developmental phenotypes in a temporal and spatial manner, similarly to fetal hepatocytes. They acquire this new property partially via yes-associated protein 1.
Collapse
Affiliation(s)
- Shashank Manohar Nambiar
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jennifer Abla Yanum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
6
|
Kim YS, Potashnikova DM, Gisina AM, Kholodenko IV, Kopylov AT, Tikhonova OV, Kurbatov LK, Saidova AA, Tvorogova AV, Kholodenko RV, Belousov PV, Vorobjev IA, Zgoda VG, Yarygin KN, Lupatov AY. TRIM28 Is a Novel Regulator of CD133 Expression Associated with Cancer Stem Cell Phenotype. Int J Mol Sci 2022; 23:9874. [PMID: 36077272 PMCID: PMC9456468 DOI: 10.3390/ijms23179874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
CD133 is an extensively studied marker of the most malignant tumor cell population, designated as cancer stem cells (CSCs). However, the function of this glycoprotein and its involvement in cell regulatory cascades are still poorly understood. Here we show a positive correlation between the level of CD133 plasma membrane expression and the proliferative activity of cells of the Caco-2, HT-29, and HUH7 cancer cell lines. Despite a substantial difference in the proliferative activities of cell populations with different levels of CD133 expression, transcriptomic and proteomic profiling revealed only minor distinctions between them. Nonetheless, a further in silico assessment of the differentially expressed transcripts and proteins revealed 16 proteins that could be involved in the regulation of CD133 expression; these were assigned ranks reflecting the apparent extent of their involvement. Among them, the TRIM28 transcription factor had the highest rank. The prominent role of TRIM28 in CD133 expression modulation was confirmed experimentally in the Caco2 cell line clones: the knockout, though not the knockdown, of the TRIM28 gene downregulated CD133. These results for the first time highlight an important role of the TRIM28 transcription factor in the regulation of CD133-associated cancer cell heterogeneity.
Collapse
Affiliation(s)
- Yan S. Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Daria M. Potashnikova
- Cell Biology and Histology Department, School of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alisa M. Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina V. Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Arthur T. Kopylov
- Laboratory of Systems Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Olga V. Tikhonova
- Laboratory of Systems Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Leonid K. Kurbatov
- Transcriptome Analysis Group, Analytical Branch Department, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Aleena A. Saidova
- Cell Biology and Histology Department, School of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Transcription Factors, V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Tvorogova
- Laboratory of Cell Motility, A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, M.M. Shemyakin–Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Pavel V. Belousov
- Endocrinology Research Centre, 117292 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivan A. Vorobjev
- Laboratory of Cell Motility, A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Laboratory of Biophotonics and Imaging, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Victor G. Zgoda
- Laboratory of Systems Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Alexey Yu. Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
7
|
Olivera-Salazar R, García-Arranz M, Sánchez A, Olmedillas-López S, Vega-Clemente L, Serrano LJ, Herrera B, García-Olmo D. Oncological transformation in vitro of hepatic progenitor cell lines isolated from adult mice. Sci Rep 2022; 12:3149. [PMID: 35210455 PMCID: PMC8873244 DOI: 10.1038/s41598-022-06427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer cells can transfer the oncogene KRAS to distant cells, predisposing them to malignant transformation (Genometastasis Theory). This process could contribute to liver metastasis; besides, hepatic progenitor cells (HPCs) have been found to be involved in liver malignant neoplasms. The objective of this study is to determine if mouse HPCs—Oval cells (OCs)—are susceptible to incorporate Kras GAT (G12D) mutation from mouse colorectal cancer cell line CT26.WT and if OCs with the incorporated mutation behave like malignant cells. To achieve this, three lines of OCs in different conditions were exposed to CT26.WT cells through transwell co-culture for a week. The presence of KrasG12D and capacity to form tumors were analyzed in treated samples by droplet digital PCR and colony-forming assays, respectively. The results showed that the KrasG12D mutation was detected in hepatic culture conditions of undifferentiated OCs and these cells were capable of forming tumors in vitro. Therefore, OCs are susceptible to malignant transformation by horizontal transfer of DNA with KrasG12D mutation in an undifferentiated condition associated with the liver microenvironment. This study contributes to a new step in the understanding of the colorectal metastatic process.
Collapse
Affiliation(s)
- Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Susana Olmedillas-López
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Luz Vega-Clemente
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Luis Javier Serrano
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| |
Collapse
|
8
|
Kozuki S, Sakurai S, Suzuki A, Yamamoto T, Toyoshima F. Delineation of biliary epithelial cell dynamics in maternal liver during pregnancy. Genes Cells 2021; 27:192-201. [PMID: 34967957 DOI: 10.1111/gtc.12918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
In pregnant mice, the maternal liver expands drastically during gestation, which is believed to be essential to accommodate various metabolic demands caused by physiological changes and fetal growth. Although hepatocyte proliferation and hypertrophy have been reported, little is known about the dynamics of biliary epithelial cells (BECs), which comprise the bile duct epithelium in the liver. Here, we show that BECs transiently proliferate during the early stage of gestation. Lineage tracing revealed that BEC progeny were retained in the bile duct epithelium and did not differentiate into hepatocytes, indicating BEC self-replication during pregnancy. RNA-sequencing analysis of BECs identified their early pregnancy-signature transcriptomes, which highlighted Yes-associated protein (YAP) signaling-related genes. Nuclear accumulation of YAP was enhanced in BECs during pregnancy but was barely detectable in hepatocytes. In addition, the pharmacological inhibition of YAP attenuated BEC proliferation and liver weight gain during pregnancy. Our results delineate the proliferation and transcriptomic dynamics of BECs during pregnancy and suggest the relevance of YAP-mediated signals.
Collapse
Affiliation(s)
- Satoshi Kozuki
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Satoko Sakurai
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Medical Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
9
|
PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation pattern for key developmental transcription factors. Cell Death Differ 2021; 28:1955-1970. [PMID: 33500560 PMCID: PMC8185079 DOI: 10.1038/s41418-020-00726-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
Poorly differentiated tumors usually exhibit phenotypes similar to that of their developmental precursor cells. Tumor cells that acquire the lineage progenitor cells feature usually exploit developmental signaling to potentiate cancer progression. However, the underlying molecular events remain elusive. In this study, based on analysis of an in vitro hepatocyte differentiation model, the maternal factor PGC7 (also known as DPPA3, STELLA) was found closely associated with liver development and tumor differentiation in hepatocellular carcinoma (HCC). Expression of PGC7 decreased during hepatocyte maturation and increased progressively from well-differentiated HCCs to poorly differentiated HCCs. Whole-genome methylation sequencing found that PGC7 could induce promoter demethylation of genes related to development. Pathway-based network analysis indicated that downstream targets of PGC7 might form networks associated with developmental transcription factor activation. Overexpression of PGC7 conferred progenitor-like features of HCC cells both in vitro and in vivo. Mechanism studies revealed that PGC7 could impede nuclear translocation of UHRF1, and thus facilitate promoter demethylation of GLI1 and MYCN, both of which are important regulators of HCC self-renewal and differentiation. Depletion or inhibition of GLI1 effectively downregulated MYCN, abolished the effect of PGC7, and sensitized HCC cells to sorafenib treatment. In addition, we found a significant correlation of PGC7 with GLI1/MYCN and lineage differentiation markers in clinical HCC patients. PGC7 expression might drive HCC toward a “dedifferentiated” progenitor lineage through facilitating promoter demethylation of key developmental transcription factors; further inhibition of PGC7/GLI1/MYCN might reverse poorly differentiated HCCs and provide novel therapeutic strategies.
Collapse
|
10
|
Wei S, Tang J, Cai X. Founder cells for hepatocytes during liver regeneration: from identification to application. Cell Mol Life Sci 2020; 77:2887-2898. [PMID: 32060582 PMCID: PMC11105049 DOI: 10.1007/s00018-020-03457-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Liver regeneration (LR) capacity in vertebrates developed through natural selection over a hundred million years of evolution. To maintain homeostasis or recover from various injuries, liver cells must regenerate; this process includes the renewal of parenchymal and nonparenchymal cells as well as the formation of liver structures. The cellular origin of newly grown tissue is one of the critical questions in this area and has been a subject of prolonged debate. The regenerative tissue may derive from either hepatocyte self-duplication or liver stem/progenitor cells (LSPCs). Recently, hepatocyte subpopulations and cholangiocytes were also described as important founder cells. The niche that triggers the proliferation of hepatocytes and the differentiation of LSPCs has been extensively studied. Meanwhile, in vitro culture systems for liver founder cells and organoids have been developed rapidly for mechanistic studies and potential therapeutic purposes. This review summarizes the cellular sources and niches that give rise to renewed hepatocytes during LR, and it also describes in vitro culture studies of those founder cells for future applications, as well as current reports for stem cell-based therapies for liver diseases.
Collapse
Affiliation(s)
- Saisai Wei
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jiacheng Tang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
11
|
Gu Y, Zheng X, Ji J. Liver cancer stem cells as a hierarchical society: yes or no? Acta Biochim Biophys Sin (Shanghai) 2020; 52:723-735. [PMID: 32490517 DOI: 10.1093/abbs/gmaa050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) are cells possessing abilities of self-renewal, differentiation, and tumorigenicity in NOD/SCID mice. Based on this definition, multiple cell surface markers (such as CD24, CD133, CD90, and EpCAM) as well as chemical methods are discovered to enrich liver CSCs in the recent decade. Accumulated studies have revealed molecular signatures and signaling pathways involved in regulating different liver CSCs. Among liver CSCs positive for different markers, some molecular features and regulatory pathways are commonly shared, while some are only unique in certain CSC populations. These studies imply that liver CSCs exhibit diverse heterogeneity, while a functional relationship also exists. The aim of this review is to revisit the society of liver CSCs and summarize the common or unique molecular features of known liver CSCs. We hope to call for attention of researchers on the relationship of the liver CSC subgroups and to provide clues on the hierarchical structure of the liver CSC society.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xin Zheng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Afify SM, Sanchez Calle A, Hassan G, Kumon K, Nawara HM, Zahra MH, Mansour HM, Khayrani AC, Alam MJ, Du J, Seno A, Iwasaki Y, Seno M. A novel model of liver cancer stem cells developed from induced pluripotent stem cells. Br J Cancer 2020; 122:1378-1390. [PMID: 32203212 PMCID: PMC7188674 DOI: 10.1038/s41416-020-0792-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Liver cancer is the second most common cause of cancer-related death. Every type of tumours including liver cancer contains cancer stem cells (CSCs). To date, the molecular mechanism regulating the development of liver CSCs remains unknown. METHODS In this study, we tried to generate a new model of liver CSCs by converting mouse induced pluripotent stem cells (miPSCs) with hepatocellular carcinoma (HCC) cell line Huh7 cells conditioned medium (CM). miPSCs treated with CM were injected into the liver of BALB/c nude mice. The developed tumours were then excised and analysed. RESULTS The primary cultured cells from the malignant tumour possessed self-renewal capacity, differentiation potential and tumorigenicity in vivo, which were found rich in liver cancer-associated markers as well as CSC markers. CONCLUSIONS We established a model of liver CSCs converting from miPS and showed different stages of stemness during conversion process. Our CSC model will be important to assess the molecular mechanisms necessary to develop liver CSCs and could help in defeating liver cancer.
Collapse
Affiliation(s)
- Said M Afify
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin ElKoum Menoufia, 32511, Egypt.
| | - Anna Sanchez Calle
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, 104- 0045, Japan
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, 10769, Syria
| | - Kazuki Kumon
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hend M Nawara
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Maram H Zahra
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Hager M Mansour
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Apriliana Cahya Khayrani
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Md Jahangir Alam
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Juan Du
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, 48202, USA
| | - Yoshiaki Iwasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Okayama University, Okayama, 700-8558, Japan
| | - Masaharu Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
13
|
Ashokachakkaravarthy K, Pottakkat B. Mitotic quiescence in hepatic cancer stem cells: An incognito mode. Oncol Rev 2020; 14:452. [PMID: 32153726 PMCID: PMC7036709 DOI: 10.4081/oncol.2020.452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma represents one of the most aggressive cancers with high recurrence rates. The high recurrence is a major problem in the management of this disease. Cancer stem cells (CSCs) are often regarded as the basis of cancer recurrence. The anti-proliferative therapy kills the proliferating cells but induces mitotic quiescence in CSCs which remain as residual dormant CSCs. Later on, withdrawal of treatment reactivates the residual CSCs from dormancy to produce new cancer cells. The proliferation of these newly formed cancer cells initiates new tumor formation in the liver leading to tumor recurrence. HCC cells evade the immune surveillance via modulating the key immune cells by alpha feto-protein (AFP) secreted from CSCs or hepatic progenitor cells. This AFP mediated immune evasion assists in establishing new tumors by cancer cells in the liver. In this review, we will summarise the CSC mechanisms of recurrence, mitotic quiescence, dormancy and reactivation of CSCs, metastasis and immune evasion of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kandasamy Ashokachakkaravarthy
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
14
|
Tsuchiya A, Lu WY. Liver stem cells: Plasticity of the liver epithelium. World J Gastroenterol 2019; 25:1037-1049. [PMID: 30862993 PMCID: PMC6406190 DOI: 10.3748/wjg.v25.i9.1037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
The liver has a high regenerative capacity after acute liver injury, but this is often impaired during chronic liver injury. The existence of a dedicated liver stem cell population that acts as a source of regeneration during chronic liver injury has been controversial. Recent advances in transgenic models and cellular reprogramming have provided new insights into the plasticity of the liver epithelium and directions for the development of future therapies. This article will highlight recent findings about the cellular source of regeneration during liver injury and the advances in promoting liver regeneration.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Wei-Yu Lu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, the University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
15
|
Impact of Three-Dimentional Culture Systems on Hepatic Differentiation of Puripotent Stem Cells and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30357683 DOI: 10.1007/978-981-13-0947-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Generation of functional hepatocytes from human pluripotent stem cells (hPSCs) is a vital tool to produce large amounts of human hepatocytes, which hold a great promise for biomedical and regenerative medicine applications. Despite a tremendous progress in developing the differentiation protocols recapitulating the developmental signalling and stages, these resulting hepatocytes from hPSCs yet achieve maturation and functionality comparable to those primary hepatocytes. The absence of 3D milieu in the culture and differentiation of these hepatocytes may account for this, at least partly, thus developing an optimal 3D culture could be a step forward to achieve this aim. Hence, review focuses on current development of 3D culture systems for hepatic differentiation and maturation and the future perspectives of its application.
Collapse
|
16
|
Chen J, Chen CY, Nguyen C, Chen L, Lee K, Stiles BL. Emerging signals regulating liver tumor initiating cells. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Ilic Z, Mondal TK, Guest I, Crawford DR, Sell S. Participation of liver stem cells in cholangiocarcinogenesis after aflatoxin B1 exposure of glutathione S-transferase A3 knockout mice. Tumour Biol 2018; 40:1010428318777344. [DOI: 10.1177/1010428318777344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aflatoxin B1, arguably the most potent human carcinogen, induces liver cancer in humans, rats, trout, ducks, and so on, but adult mice are totally resistant. This resistance is because of a detoxifying enzyme, mouse glutathione S-transferase A3, which binds to and inactivates aflatoxin B1 epoxide, preventing the epoxide from binding to DNA and causing mutations. Glutathione S-transferase A3 or its analog has not been detected in any of the sensitive species, including humans. The generation of a glutathione S-transferase A3 knockout (represented as KO or -/-) mice has allowed us to study the induction of liver cancer in mice by aflatoxin B1. In contrast to the induction of hepatocellular carcinomas in other species, aflatoxin B1 induces cholangiocarcinomas in GSTA3-/- mice. In other species and in knockout mice, the induction of liver cancer is preceded by extensive proliferation of small oval cells, providing additional evidence that oval cells are bipolar stem cells and may give rise to either hepatocellular carcinoma or cholangiocarcinoma depending on the nature of the hepatocarcinogen and the species of animal. The recent development of mouse oval cell lines in our laboratory from aflatoxin B1-treated GSTA3-/- mice should provide a new venue for study of the properties and potential of putative mouse liver stem cells.
Collapse
Affiliation(s)
- Zoran Ilic
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Tapan K Mondal
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ian Guest
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Stewart Sell
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
18
|
Zekri ARN, El-Sisi ER, Youssef ASED, Kamel MM, Nassar A, Ahmed OS, El Kassas M, Barakat AB, Abd El-Motaleb AI, Bahnassy AA. MicroRNA Signatures for circulating CD133-positive cells in hepatocellular carcinoma with HCV infection. PLoS One 2018; 13:e0193709. [PMID: 29534065 PMCID: PMC5849309 DOI: 10.1371/journal.pone.0193709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
AIM Molecular characterization of the CD133+ stem cells associated with hepatocarinogensis through identifying the expression patterns of specific microRNAs (miRNAs). METHODS We investigated the expression pattern of 13 miRNAs in purified CD133+ cells separated from the peripheral blood of healthy volunteers, chronic hepatitis C (CHC), liver cirrhosis (LC) and hepatocellular carcinoma (HCC) patients a long with bone marrow samples from the healthy volunteers and the LC patients using custom miScript miRNA PCR array. RESULTS The differential expression of the 13 studied miRNAs in CD133+ cells separated from the HCC patients' peripheral blood compared to the controls revealed that miR-602, miR-181b, miR-101, miR-122, miR-192, miR-125a-5p, and miR-221 were significantly up regulated (fold change = 1.8, 1.7, 2, 5.4, 1.6, 2.9 & 1.5 P value = 0.039, 0.0019, 0.0013, 0.0370, 00024, 0.000044 &0.000007 respectively). As for the HCC group compared to the CHC group; miR-602, miR-122, miR-181b, miR-125a-5p, and miR-192 were significantly up regulated (fold change = 13, 3.1, 2.8, 1.6 & 1.56, P value = 0.01, 0.001, 0.000004, 0.002 & 0.007 respectively). Upon comparing the HCC group to the LC group; miR-199a-3p, miR-192, miR-122, miR-181b, miR-224, miR-125a-5p, and miR-885-5p were significantly up regulated (fold change = 5, 6.7, 2.3, 3, 2.5, 4.2 & 39.5 P value = 0.001025, 0.000024, 0.000472, 0.000278, 0.000004, 0.000075 & 0.0000001 respectively) whereas miR-22 was significantly down regulated (fold change = 0.57 P value = 0.00002). Only, miR-192, miR-122, miR-181b and miR-125a-5p were significant common miRNAs in CD133+ cells of the HCC group compared to the other non-malignant groups. CONCLUSION We identified a miRNA panel comprised of four miRNAs (miR-192, miR-122, miR-181b and miR-125a-5p) that may serve as a molecular tool for characterization of the CD133+ cells associated with different stages of hepatocarinogensis. This panel may aid in developing a new target therapy specific for those CD133+ cells.
Collapse
Affiliation(s)
- Abdel-Rahman N. Zekri
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Enas Reda El-Sisi
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Amira Salah El-Din Youssef
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mahmoud M. Kamel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Auhood Nassar
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola Sayed Ahmed
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Photobiology and Molecular Biology Department, Laser Institute for Research and Applications (LIRA), Beni-Suef University, Beni Suef, Egypt
| | - Mohamed El Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Helwan, Egypt
| | | | | | - Abeer A. Bahnassy
- Tissue Culture and Cytogenetics Unit, Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Tomita H, Kanayama T, Niwa A, Noguchi K, Tanaka T, Hara A. The Stem Cells in Liver Cancers and the Controversies. STEM CELLS AND CANCER IN HEPATOLOGY 2018:273-287. [DOI: 10.1016/b978-0-12-812301-0.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Involvement of inflammation and its related microRNAs in hepatocellular carcinoma. Oncotarget 2017; 8:22145-22165. [PMID: 27888618 PMCID: PMC5400654 DOI: 10.18632/oncotarget.13530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed type of cancer. The tumor inflammatory microenvironment regulates almost every step towards liver tumorigenesis and subsequent progression, and regulation of the inflammation-related signaling pathways, cytokines, chemokines and non-coding RNAs influences the proliferation, migration and metastasis of liver tumor cells. Inflammation fine-tunes the cancer microenvironment to favor epithelial-mesenchymal transition, in which cancer stem cells maintain tumorigenic potential. Emerging evidence points to inflammation-related microRNAs as crucial molecules to integrate the complex cellular and molecular crosstalk during HCC progression. Thus understanding the mechanisms by which inflammation regulates microRNAs might provide novel and admissible strategies for preventing, diagnosing and treating HCC. In this review, we will update three hypotheses of hepatocarcinogenesis and elaborate the most predominant inflammation signaling pathways, i.e. IL-6/STAT3 and NF-κB. We also try to summarize the crucial tumor-promoting and tumor-suppressing microRNAs and detail how they regulate HCC initiation and progression and collaborate with other critical modulators in this review.
Collapse
|
21
|
Flores-Téllez TNJ, Villa-Treviño S, Piña-Vázquez C. Road to stemness in hepatocellular carcinoma. World J Gastroenterol 2017; 23:6750-6776. [PMID: 29085221 PMCID: PMC5645611 DOI: 10.3748/wjg.v23.i37.6750] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic process has been proposed to relay on the capacity to induce local tissue damage and proliferative repair. Liver has a great regeneration capacity and currently, most studies point towards the dominant role of hepatocytes in regeneration at all levels of liver damage. The most frequent liver cancer is hepatocellular carcinoma (HCC). Historical findings originally led to the idea that the cell of origin of HCC might be a progenitor cell. However, current linage tracing studies put the progenitor hypothesis of HCC origin into question. In agreement with their dominant role in liver regeneration, mature hepatocytes are emerging as the cell of origin of HCC, although, the specific hepatocyte subpopulation of origin is yet to be determined. The relationship between the cancer cell of origin (CCO) and cancer-propagating cells, known as hepatic cancer stem cell (HCSC) is unknown. It has been challenging to identify the definitive phenotypic marker of HCSC, probably due to the existence of different cancer stem cells (CSC) subpopulations with different functions within HCC. There is a dynamic interconversion among different CSCs, and between CSC and non-CSCs. Because of that, CSC-state is currently defined as a description of a highly adaptable and dynamic intrinsic property of tumor cells, instead of a static subpopulation of a tumor. Altered conditions could trigger the gain of stemness, some of them include: EMT-MET, epigenetics, microenvironment and selective stimulus such as chemotherapy. This CSC heterogeneity and dynamism makes them out reach from therapeutic protocols directed to a single target. A further avenue of research in this line will be to uncover mechanisms that trigger this interconversion of cell populations within tumors and target it.
Collapse
Affiliation(s)
- Teresita NJ Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| |
Collapse
|
22
|
Zagory JA, Dietz W, Park A, Fenlon M, Xu J, Utley S, Mavila N, Wang KS. Notch signaling promotes ductular reactions in biliary atresia. J Surg Res 2017; 215:250-256. [DOI: 10.1016/j.jss.2017.03.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/29/2022]
|
23
|
Yu L, Chen S, Luo N, He S. The C-terminus domain of the hepatitis B virus x protein stimulates the proliferation of mouse foetal hepatic progenitor cells, although it is not required for the formation of spheroids. Int J Mol Med 2017. [PMID: 28627604 PMCID: PMC5505023 DOI: 10.3892/ijmm.2017.3026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The hepatitis B virus X (HBx) protein is an important factor in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). The C-terminal region of HBx plays a major role in the replication of HBV. Notably, HBx promotes the expansion and tumourigenesis of hepatic progenitor cells (HPCs) in mice. However, it remains unclear as to whether the C-terminal region of HBx is required for the stimulation fo the proliferation of mouse foetal HPCs (FHPCs). In our study, we used EpCAM+, CD133+ and CD49f+ FHPCs, which are bipotential clonogenic cells. These FHPCs transformed into mature hepatocytes and cholangiocytes when cultured under conditions that facilitate differentiation. Compared with the FHPCs grown as monolayers, spherical cell proliferation occurred more rapidly. Furthermore, spherically cultured FHPCs can grow in semi-solid agar and tend to maintain the morphology and characteristics of stem cells compared with growth in rat tail collagen. Notably, we also demonstrate that the C-terminus of HBx stimulates the proliferation of FHPCs, but is not required for the formation of spheroids, similar to hepatic cancer stem cells. These findings enhance our understanding of the HBx-induced tumourigenicity of FHPCs and may aid in the treatment of HCC.
Collapse
Affiliation(s)
- Liming Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shu Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Na Luo
- Department of ICU, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
24
|
Yagai T, Matsui S, Harada K, Inagaki FF, Saijou E, Miura Y, Nakanuma Y, Miyajima A, Tanaka M. Expression and localization of sterile alpha motif domain containing 5 is associated with cell type and malignancy of biliary tree. PLoS One 2017; 12:e0175355. [PMID: 28388653 PMCID: PMC5384680 DOI: 10.1371/journal.pone.0175355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CC) is a type of relatively rare neoplasm in adenocarcinoma. The characteristics of CCs as well as biliary epithelial cells are heterogeneous at the different portion of the biliary tree. There are two candidate stem/progenitor cells of the biliary tree, i.e., biliary tree stem/progenitor cell (BTSC) at the peribiliary gland (PBG) of large bile ducts and liver stem/progenitor cell (LPC) at the canals of Hering of peripheral small bile duct. Although previous reports suggest that intrahepatic CC (ICC) can arise from such stem/progenitor cells, the characteristic difference between BTSC and LPC in pathological process needs further investigation, and the etiology of CC remains poorly understood. Here we show that Sterile alpha motif domain containing 5 (SAMD5) is exclusively expressed in PBGs of large bile ducts in normal mice. Using a mouse model of cholestatic liver disease, we demonstrated that SAMD5 expression was upregulated in the large bile duct at the hepatic hilum, the extrahepatic bile duct and PBGs, but not in proliferating intrahepatic ductules, suggesting that SAMD5 is expressed in BTSC but not LPC. Intriguingly, human ICCs and extrahepatic CCs exhibited striking nuclear localization of SAMD5 while the normal hilar large bile duct displayed slight-to-moderate expression in cytoplasm. In vitro experiments using siRNA for SAMD5 revealed that SAMD5 expression was associated with the cell cycle regulation of CC cell lines. Conclusion: SAMD5 is a novel marker for PBG but not LPC in mice. In humans, the expression and location of SAMD5 could become a promising diagnostic marker for the cell type as well as malignancy of bile ducts and CCs.
Collapse
Affiliation(s)
- Tomoki Yagai
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Matsui
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Fuyuki F. Inagaki
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Eiko Saijou
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasushi Miura
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yasuni Nakanuma
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Laboratory of Stem Cell Regulation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
25
|
Zekri ARN, El-Sisi ER, Abdallah ZF, Ismail A, Barakat Barakat A. Gene expression profiling of circulating CD133 + cells of hepatocellular carcinoma patients associated with HCV infection. J Egypt Natl Canc Inst 2017; 29:19-24. [PMID: 28258914 DOI: 10.1016/j.jnci.2016.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 12/30/2022] Open
Abstract
AIM Identifying the genetic expression profile of CD133+ cells from HCC patients compared to CD133+ cells from healthy volunteers that may contribute in hepatocarcinogenesis process. METHOD Circulating CD133+ cells were sorted from the peripheral blood of HCC patients as well as from healthy volunteers using magnetic activated cell sorting. The differential expression profile of stem cell related genes was performed using the Stem Cell PCR profiling assay. RESULTS Data analysis of stem cells related genes in CD133+ cells of the HCC group compared to the control group showed that; CCND2, COL1A1, CTNNA1, DLL3, JAG1, KRT15, MYC, NOTCH2, T and TERT were up-regulated (fold change=80, 68.6, 6.67, 7.22, 3.8, 15.2, 14.5, 105.6, 26.6 and 99 respectively while only CD3D was down-regulated (fold change=0.055) in HCC patients. However, after application of Beferroni correction to adjust P-value; KRT15 was the only gene that was significantly over expressed in CD133+ cells of HCC compared to control group (P-value=0.012). CONCLUSION KRT15 can be used to differentiate between circulating CD133+ cells from HCC group and control group. However, further study may be needed to confirm on the protein level.
Collapse
Affiliation(s)
- Abdel-Rahman N Zekri
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Enas R El-Sisi
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Zeinab F Abdallah
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Alaa Ismail
- Surgery Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
26
|
Lukacs-Kornek V, Lammert F. The progenitor cell dilemma: Cellular and functional heterogeneity in assistance or escalation of liver injury. J Hepatol 2017; 66:619-630. [PMID: 27826058 DOI: 10.1016/j.jhep.2016.10.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
Liver progenitor cells (LPCs) are quiescent cells that are activated during liver injury and thought to give rise to hepatocytes and cholangiocytes in order to support liver regeneration and tissue restitution. While hepatocytes are capable of self-renewal, during most chronic injuries the proliferative capacity of hepatocytes is inhibited, thus LPCs provide main source for regeneration. Despite extensive lineage tracing studies, their role and involvement in these processes are often controversial. Additionally, increasing evidence suggests that the LPC compartment consists of heterogeneous cell populations that are actively involved in cellular interactions with myeloid and lymphoid cells during regeneration. On the other hand, LPC expansion has been associated with an increased fibrogenic response, raising concerns about the therapeutic use of these cells. This review aims to summarize the current understanding of the identity, the cellular interactions and the key pathways affecting the biology of LPCs. Understanding the regulatory circuits and the specific role of LPCs is especially important as it could provide novel therapeutic platforms for the treatment of liver inflammation, fibrosis and regeneration.
Collapse
Affiliation(s)
- Veronika Lukacs-Kornek
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
27
|
Julich-Haertel H, Tiwari M, Mehrfeld C, Krause E, Kornek M, Lukacs-Kornek V. Isolation and Enrichment of Liver Progenitor Subsets Identified by a Novel Surface Marker Combination. J Vis Exp 2017. [PMID: 28287574 DOI: 10.3791/55284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
During chronic liver injuries, progenitor cells expand in a process called ductular reaction, which also entails the appearance of inflammatory cellular infiltrate and epithelial cell activation. The progenitor cell population during such inflammatory reactions has mostly been investigated using single surface markers, either by histological analysis or by flow cytometry-based techniques. However, novel surface markers identified various functionally distinct subsets within the liver progenitor/stem cell compartment. The method presented here describes the isolation and detailed flow cytometry analysis of progenitor subsets using novel surface marker combinations. Moreover, it demonstrates how the various progenitor cell subsets can be isolated with high purity using automated magnetic and FACS sorting-based methods. Importantly, novel and simplified enzymatic dissociation of the liver allows for the isolation of these rare cell populations with a high viability that is superior in comparison to other existing methods. This is especially relevant for further studying progenitor cells in vitro or for isolating high-quality RNA to analyze the gene expression profile.
Collapse
Affiliation(s)
| | - Marina Tiwari
- Department of Medicine II, Saarland University Medical Center
| | | | - Elmar Krause
- Department of Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland
| | - Miroslaw Kornek
- Department of Medicine II, Saarland University Medical Center
| | | |
Collapse
|
28
|
Fukuda T, Takayama K, Hirata M, Liu YJ, Yanagihara K, Suga M, Mizuguchi H, Furue MK. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Exp Cell Res 2017; 352:333-345. [PMID: 28215634 DOI: 10.1016/j.yexcr.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.
Collapse
Affiliation(s)
- Takayuki Fukuda
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; K-CONNEX, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhi Hirata
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yu-Jung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
29
|
Abstract
Liver cancer is an often fatal malignant tumor with a high recurrence rate and chemoresistance. The major malignant phenotypes of cancer, including recurrence, metastasis, and chemoresistance, are related to the presence of cancer stem cells (CSCs). In the past few decades, CSCs have been identified and characterized in many tumors including liver cancer. Accumulated evidence has revealed many aspects of the biological behavior of liver CSCs and the mechanism of their regulation. Based on these findings, a number of studies have investigated eradication of liver CSCs. This review focuses on the recent advances in our understanding of the biology of liver CSCs and the development of strategies for their treatment.
Collapse
|
30
|
Nguyen MV, Zagory JA, Dietz WH, Park A, Fenlon M, Zhao M, Xu J, Lua I, Mavila N, Asahina K, Wang KS. Hepatic Prominin-1 expression is associated with biliary fibrosis. Surgery 2017; 161:1266-1272. [PMID: 28104292 DOI: 10.1016/j.surg.2016.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intrahepatic biliary fibrosis, as seen with cholestatic liver injuries such as biliary atresia, is mechanistically distinct from fibrosis caused by hepatocyte toxicity. We previously demonstrated the expansion of cells expressing the stem/progenitor cell marker Prominin-1, within regions of developing fibrosis in biliary atresia. Thus, we hypothesized that Prominin-1 expression is biliary fibrosis-specific. METHODS Gene expression of Prominin-1 was analyzed in adult mice undergoing either cholestatic bile duct ligation or hepatotoxic carbon tetrachloride administration by quantitative polymerase chair reaction. Lineage tracing of Prominin-1-expressing cells and Collagen-1α-expressing cells was performed after bile duct ligation in Prominin-1cre-ert2-lacz;Gfplsl and Collagen-1αGfp transgenic mice, respectively. RESULTS Prominin-1 expression increased significantly after bile duct ligation compared with sham (6.6 ± 0.9-fold change at 2 weeks, P < .05) but not with carbon tetrachloride (-0.7 ± 0.5-fold change, not significant). Upregulation of Prominin-1 was observed histologically throughout the liver as early as 5 days after bile duct ligation in Prominin-1cre-ert2-lacz mice by LacZ staining in nonhepatocyte cells. Lineage tracing of Prominin-1-expressing cells labeled prior to bile duct ligation in Prominin-1cre-ert2-lacz;Gfplsl mice, demonstrated increasing colocalization of GREEN FLUORESCENT PROTEIN with biliary marker CYTOKERATIN-19 within ductular reactions up to 5 weeks after bile duct ligation consistent with biliary transdifferentiation. In contrast, rare colocalization of GREEN FLUORESCENT PROTEIN with mesenchymal marker α-SMOOTH MUSCLE ACTIN in Prominin-1cre-ert2-lacz;Gfplsl mice and some colocalization of GREEN FLUORESCENT PROTEIN with PROMININ-1 in Collagen-1αGfp mice, indicate minimal contribution of Prominin-1 progenitor cells to the pool of collagen-producing myofibroblasts. CONCLUSION During biliary fibrosis Prominin-1-expressing progenitor cells transdifferentiate into cells within ductular reactions. This transdifferentiation may promote fibrosis.
Collapse
Affiliation(s)
- Marie V Nguyen
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Jessica A Zagory
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - William H Dietz
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Alex Park
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Michael Fenlon
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Menghan Zhao
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Jiabo Xu
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Ingrid Lua
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Nirmala Mavila
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Kinji Asahina
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kasper S Wang
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA; Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
31
|
Weng L, Hu X, Kumar B, Garcia M, Todorov I, Jung X, Marcucci G, Forman SJ, Chen CC. Identification of a CD133-CD55- population functions as a fetal common skeletal progenitor. Sci Rep 2016; 6:38632. [PMID: 27929130 PMCID: PMC5144148 DOI: 10.1038/srep38632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 11/10/2016] [Indexed: 01/19/2023] Open
Abstract
In this study, we identified a CD105+CD90.1−CD133−CD55− (CD133−CD55−) population in the fetal skeletal element that can generate bone and bone marrow. Besides osteoblasts and chondrocytes, the CD133−CD55− common progenitors can give rise to marrow reticular stromal cells and perivascular mesenchymal progenitors suggesting they function as the fetal common skeletal progenitor. Suppression of CXCL12 and Kitl expression in CD133−CD55− common progenitors severely disrupted the BM niche formation but not bone generation. Thus, CD133−CD55− common progenitors are the main source of CXCL12 and Kitl producing cells in the developing marrow.
Collapse
Affiliation(s)
- Lihong Weng
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Departments of Cancer Immunotherapeutic and Immunology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xingbin Hu
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 7100032, P.R. China
| | - Bijender Kumar
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Mayra Garcia
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Ivan Todorov
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiaoman Jung
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guido Marcucci
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Departments of Cancer Immunotherapeutic and Immunology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Irell &Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Ching-Cheng Chen
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Irell &Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
32
|
Huch M, Dollé L. The plastic cellular states of liver cells: Are EpCAM and Lgr5 fit for purpose? Hepatology 2016; 64:652-62. [PMID: 26799921 PMCID: PMC4973669 DOI: 10.1002/hep.28469] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/25/2015] [Accepted: 01/17/2016] [Indexed: 12/14/2022]
Abstract
Adult liver cells have been considered restricted regarding their fate and lineage potential. That is, hepatocytes have been thought able only to generate hepatocytes and duct cells, only duct cells. While this may be the case for the majority of scenarios in a state of quiescence or homeostasis, evidence suggests that liver cells are capable of interconverting between cellular states of distinct phenotypic traits. This interconversion or plasticity had been suggested by classical studies using cellular markers, but recently lineage tracing approaches have proven that cells are highly plastic and retain an extraordinary ability to respond differently to normal tissue homeostasis, to tissue repair, or when challenged to expand ex vivo or to differentiate upon transplantation. Stemness, as "self-renewal and multipotency," seems not to be limited to a particular cell type but rather to a cellular state in which cells exhibit a high degree of plasticity and can move back and forth in different phenotypic states. For instance, upon damage cells can dedifferentiate to acquire stem cell potential that allows them to self-renew, repopulate a damaged tissue, and then undergo differentiation. In this review, we will discuss the evidence on cellular plasticity in the liver, focusing our attention on two markers, epithelial cell adhesion molecule and leucine-rich repeat-containing G protein-coupled receptor 5, which identify cells with stem cell potential. (Hepatology 2016;64:652-662).
Collapse
Affiliation(s)
- Meritxell Huch
- Wellcome Trust/Cancer Research UK‐Gurdon Institutethe Wellcome Trust‐Medical Research Council Stem Cell Institute, and Physiology, Development, and Neuroscience, University of CambridgeCambridgeUK
| | - Laurent Dollé
- Laboratory of Liver Cell BiologyDepartment of Basic Biomedical SciencesFaculty of Medicine and PharmacyFree University BrusselsBrusselsBelgium
| |
Collapse
|
33
|
Kamimoto K, Kaneko K, Kok CYY, Okada H, Miyajima A, Itoh T. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. eLife 2016; 5. [PMID: 27431614 PMCID: PMC4951195 DOI: 10.7554/elife.15034] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. DOI:http://dx.doi.org/10.7554/eLife.15034.001 Cell proliferation – the process by which cells multiply – plays an important role in many biological processes, including tissue growth, maintenance and remodeling. In these processes, the way cells proliferate is reportedly related to their roles in the tissue and the structures that they form. The biliary tree, a piping system that exists to drain the bile produced in the liver, forms a complex, tree-like, tubular structure. The biliary tree is essential for healthy livers to work well, and has been known to grow and change its structure quite dynamically during an injury or while the liver regenerates. However, it was not clear how biliary tree cells behave as the biliary tree grows and remodels itself. Does each cell behave in the same way? And how does cell growth relate to changes in the structure of the biliary tree? Kamimoto et al. have now developed new methods to observe detailed three-dimensional tissue structures and to trace the behavior of single cells. Using these techniques to study a mouse model whose liver was injured by toxic chemicals revealed the behavior of biliary cells as they responded to the injury. None of the biliary cells proliferated uniformly, and there were some peculiar cells that proliferated quite vigorously compared to the others. Kamimoto et al. then made a mathematical model that could explain cell behavior and tissue remodeling at different scales. This showed that the activity of those peculiar, rapidly proliferating cells was maintained by chance as the biliary tree expanded. These findings help us understand how the biliary tissue grows and the liver regenerates. They may also provide us with a clue to understanding the nature of the behavior of living things, which is sometimes seemingly ordered and robust, and sometimes unpredictable and mysterious. It remains to be seen whether the new model can be applied to other types of tissues or in other species. Further work is also needed to investigate which genes and proteins are involved in controlling the behavior of cells in the growing biliary tissue. DOI:http://dx.doi.org/10.7554/eLife.15034.002
Collapse
Affiliation(s)
- Kenji Kamimoto
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kota Kaneko
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Cindy Yuet-Yin Kok
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hajime Okada
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Tohru Itoh
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Tian L, Deshmukh A, Prasad N, Jang YY. Alcohol Increases Liver Progenitor Populations and Induces Disease Phenotypes in Human IPSC-Derived Mature Stage Hepatic Cells. Int J Biol Sci 2016; 12:1052-62. [PMID: 27570479 PMCID: PMC4997049 DOI: 10.7150/ijbs.15811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
Alcohol consumption has long been a global problem affecting human health, and has been found to influence both fetal and adult liver functions. However, how alcohol affects human liver development and liver progenitor cells remains largely unknown. Here, we used human induced pluripotent stem cells (iPSCs) as a model to examine the effects of alcohol, on multi-stage hepatic cells including hepatic progenitors, early and mature hepatocyte-like cells derived from human iPSCs. While alcohol has little effect on endoderm development from iPSCs, it reduces formation of hepatic progenitor cells during early hepatic specification. The proliferative activities of early and mature hepatocyte-like cells are significantly decreased after alcohol exposure. Importantly, at a mature stage of hepatocyte-like cells, alcohol treatment increases two liver progenitor subsets, causes oxidative mitochondrial injury and results in liver disease phenotypes (i.e., steatosis and hepatocellular carcinoma associated markers) in a dose dependent manner. Some of the phenotypes were significantly improved by antioxidant treatment. This report suggests that fetal alcohol exposure may impair generation of hepatic progenitors at early stage of hepatic specification and decrease proliferation of fetal hepatocytes; meanwhile alcohol injury in post-natal or mature stage human liver may contribute to disease phenotypes. This human iPSC model of alcohol-induced liver injury can be highly valuable for investigating alcoholic injury in the fetus as well as understanding the pathogenesis and ultimately developing effective treatment for alcoholic liver disease in adults.
Collapse
Affiliation(s)
- Lipeng Tian
- 1 Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center
| | - Abhijeet Deshmukh
- 1 Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center
| | - Neha Prasad
- 1 Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center
| | - Yoon-Young Jang
- 1 Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center; 2 Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
35
|
Chaudhari P, Tian L, Deshmukh A, Jang YY. Expression kinetics of hepatic progenitor markers in cellular models of human liver development recapitulating hepatocyte and biliary cell fate commitment. Exp Biol Med (Maywood) 2016; 241:1653-62. [PMID: 27390263 DOI: 10.1177/1535370216657901] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Due to the limitations of research using human embryos and the lack of a biological model of human liver development, the roles of the various markers associated with liver stem or progenitor cell potential in humans are largely speculative, and based on studies utilizing animal models and certain patient tissues. Human pluripotent stem cell-based in vitro multistage hepatic differentiation systems may serve as good surrogate models for mimicking normal human liver development, pathogenesis and injury/regeneration studies. Here, we describe the implications of various liver stem or progenitor cell markers and their bipotency (i.e. hepatocytic- and biliary-epithelial cell differentiation), based on the pluripotent stem cell-derived model of human liver development. Future studies using the human cellular model(s) of liver and biliary development will provide more human relevant biological and/or pathological roles of distinct markers expressed in heterogeneous liver stem/progenitor cell populations.
Collapse
Affiliation(s)
- Pooja Chaudhari
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21205, USA Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Abhijeet Deshmukh
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Yoon-Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21205, USA Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205, USA
| |
Collapse
|
36
|
Lu J, Zhou Y, Hu T, Zhang H, Shen M, Cheng P, Dai W, Wang F, Chen K, Zhang Y, Wang C, Li J, Zheng Y, Yang J, Zhu R, Wang J, Lu W, Zhang H, Wang J, Xia Y, De Assuncao TM, Jalan-Sakrikar N, Huebert RC, Bin Zhou, Guo C. Notch Signaling Coordinates Progenitor Cell-Mediated Biliary Regeneration Following Partial Hepatectomy. Sci Rep 2016; 6:22754. [PMID: 26951801 PMCID: PMC4782135 DOI: 10.1038/srep22754] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/19/2016] [Indexed: 02/08/2023] Open
Abstract
Aberrant transcriptional regulation contributes to the pathogenesis of both congenital and adult forms of liver disease. Although the transcription factor RBPJ is essential for liver morphogenesis and biliary development, its specific function in the differentiation of hepatic progenitor cells (HPC) has not been investigated, and little is known about its role in adult liver regeneration. HPCs are bipotent liver stem cells that can self-replicate and differentiate into hepatocytes or cholangiocytes in vitro. HPCs are thought to play an important role in liver regeneration and repair responses. While the coordinated repopulation of both hepatocyte and cholangiocyte compartment is pivotal to the structure and function of the liver after regeneration, the mechanisms coordinating biliary regeneration remain vastly understudied. Here, we utilized complex genetic manipulations to drive liver-specific deletion of the Rbpj gene in conjunction with lineage tracing techniques to delineate the precise functions of RBPJ during biliary development and HPC-associated biliary regeneration after hepatectomy. Furthermore, we demonstrate that RBPJ promotes HPC differentiation toward cholangiocytes in vitro and blocks hepatocyte differentiation through mechanisms involving Hippo-Notch crosstalk. Overall, this study demonstrates that the Notch-RBPJ signaling axis critically regulates biliary regeneration by coordinating the fate decision of HPC and clarifies the molecular mechanisms involved.
Collapse
Affiliation(s)
- Jie Lu
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Tianyuan Hu
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Hui Zhang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Miao Shen
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ping Cheng
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yan Zhang
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chengfeng Wang
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jing Yang
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Rong Zhu
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Huawei Zhang
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Junshan Wang
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Thiago M. De Assuncao
- Division of Gastroenterology and Hepatology; Mayo Clinic and Foundation, Rochester, MN, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology; Mayo Clinic and Foundation, Rochester, MN, USA
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology; Mayo Clinic and Foundation, Rochester, MN, USA
| | - Bin Zhou
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
37
|
Alcoholic hepatitis accelerates early hepatobiliary cancer by increasing stemness and miR-122-mediated HIF-1α activation. Sci Rep 2016; 6:21340. [PMID: 26888602 PMCID: PMC4758032 DOI: 10.1038/srep21340] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Alcohol-related hepatocellular carcinoma (HCC) develops with advanced alcoholic liver disease and liver fibrosis. Using adult mice, we evaluate the effect of alcoholic steatohepatitis on early hepatobiliary carcinoma after initiation by diethyl-nitrosamine (DEN). Here we show that alcohol-fed DEN-injected mice have higher ALT and liver-to-body weight ratio compared to pair-fed DEN-injected mice. Alcohol feeding results in steatohepatitis indicated by increased pro-inflammatory cytokines and fibrotic genes. MRI and liver histology of alcohol+DEN mice shows hepatobiliary cysts, early hepatic neoplasia and increase in serum alpha-fetoprotein. Proliferation makers (BrdU, cyclin D1, p53) and cancer stem cell markers (CD133 and nanog) are significantly up-regulated in livers of alcohol-fed DEN-injected mice compared to controls. In livers with tumors, loss of miR-122 expression with a significant up-regulation of miR-122 target HIF-1α is seen. We conclude that alcoholic steatohepatitis accelerates hepatobiliary tumors with characteristic molecular features of HCC by up-regulating inflammation, cell proliferation, stemness, and miR-122 loss.
Collapse
|
38
|
Köhn-Gaone J, Gogoi-Tiwari J, Ramm GA, Olynyk JK, Tirnitz-Parker JEE. The role of liver progenitor cells during liver regeneration, fibrogenesis, and carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G143-54. [PMID: 26608186 DOI: 10.1152/ajpgi.00215.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/19/2015] [Indexed: 01/31/2023]
Abstract
The growing worldwide challenge of cirrhosis and hepatocellular carcinoma due to increasing prevalence of excessive alcohol consumption, viral hepatitis, obesity, and the metabolic syndrome has sparked interest in stem cell-like liver progenitor cells (LPCs) as potential candidates for cell therapy and tissue engineering, as an alternative approach to whole organ transplantation. However, LPCs always proliferate in chronic liver diseases with a predisposition to cancer; they have been suggested to play major roles in driving fibrosis, disease progression, and may even represent tumor-initiating cells. Hence, a greater understanding of the factors that govern their activation, communication with other hepatic cell types, and bipotential differentiation as opposed to their potential transformation is needed before their therapeutic potential can be harnessed.
Collapse
Affiliation(s)
- Julia Köhn-Gaone
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia
| | - Jully Gogoi-Tiwari
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - John K Olynyk
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia; Fiona Stanley and Fremantle Hospitals, Western Australia, Australia; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia; and
| | - Janina E E Tirnitz-Parker
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Fremantle Western Australia, Australia
| |
Collapse
|
39
|
Eckert C, Kim YO, Julich H, Heier EC, Klein N, Krause E, Tschernig T, Kornek M, Lammert F, Schuppan D, Lukacs-Kornek V. Podoplanin discriminates distinct stromal cell populations and a novel progenitor subset in the liver. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1-12. [PMID: 26564718 PMCID: PMC4698439 DOI: 10.1152/ajpgi.00344.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 01/31/2023]
Abstract
Podoplanin/gp38(+) stromal cells present in lymphoid organs play a central role in the formation and reorganization of the extracellular matrix and in the functional regulation of immune responses. Gp38(+) cells are present during embryogenesis and in human livers of primary biliary cirrhosis. Since little is known about their function, we studied gp38(+) cells during chronic liver inflammation in models of biliary and parenchymal liver fibrosis and steatohepatitis. Gp38(+) cells were analyzed using flow cytometry and confocal microscopy, and the expression of their steady state and inflammation-associated genes was evaluated from healthy and inflamed livers. Gp38(+) cells significantly expanded in all three models of liver injury and returned to baseline levels during regression of inflammation. Based on CD133 and gp38 expression in the CD45(-)CD31(-)Asgpr1(-) liver cell fraction, numerous subsets could be identified that were negative for CD133 (gp38(hi)CD133(-), gp38(low)CD133(-), and gp38(-)CD133(-)). Moreover, among the CD133(+) cells, previously identified as progenitor population in injured liver, two subpopulations could be distinguished based on their gp38 expression (gp38(-)CD133(+) and CD133(+)gp38(+)). Importantly, the distribution of the identified subsets in inflammation illustrated injury-specific changes. Moreover, the gp38(+)CD133(+) cells exhibited liver progenitor cell characteristics similar to the gp38(-)CD133(+) population, thus representing a novel subset within the classical progenitor cell niche. Additionally, these cells expressed distinct sets of inflammatory genes during liver injury. Our study illuminates a novel classification of the stromal/progenitor cell compartment in the liver and pinpoints a hitherto unrecognized injury-related alteration in progenitor subset composition in chronic liver inflammation and fibrosis.
Collapse
MESH Headings
- AC133 Antigen
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Antigens, CD/metabolism
- Biomarkers/metabolism
- Cell Separation/methods
- Cells, Cultured
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/metabolism
- Chemical and Drug Induced Liver Injury/pathology
- Flow Cytometry
- Gene Expression Regulation
- Glycoproteins/metabolism
- Inflammation Mediators/metabolism
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Biliary/genetics
- Liver Cirrhosis, Biliary/metabolism
- Liver Cirrhosis, Biliary/pathology
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Male
- Membrane Glycoproteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Non-alcoholic Fatty Liver Disease/genetics
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Peptides/metabolism
- Phenotype
- Stem Cells/metabolism
- Stem Cells/pathology
- Stromal Cells/metabolism
- Stromal Cells/pathology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Christoph Eckert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Henrike Julich
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Eva-Carina Heier
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Niklas Klein
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Elmar Krause
- Department of Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Saarland, Germany
| | - Thomas Tschernig
- Insitute of Anatomy and Cell Biology, University of Saarland, Saarland, Germany; and
| | - Miroslaw Kornek
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
40
|
Abstract
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.
Collapse
Affiliation(s)
- Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
41
|
Lu WY, Bird TG, Boulter L, Tsuchiya A, Cole AM, Hay T, Guest RV, Wojtacha D, Man TY, Mackinnon A, Ridgway RA, Kendall T, Williams MJ, Jamieson T, Raven A, Hay DC, Iredale JP, Clarke AR, Sansom OJ, Forbes SJ. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol 2015; 17:971-983. [PMID: 26192438 PMCID: PMC4612439 DOI: 10.1038/ncb3203] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022]
Abstract
Hepatocytes and cholangiocytes self-renew following liver injury. Following severe injury hepatocytes are increasingly senescent, but whether hepatic progenitor cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where the E3 ubiquitin ligase Mdm2 is inducibly deleted in more than 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease.
Collapse
Affiliation(s)
- Wei-Yu Lu
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Thomas G Bird
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Alicia M Cole
- The CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Trevor Hay
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, CF24 4HQ
| | - Rachel V Guest
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Davina Wojtacha
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Tak Yung Man
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Alison Mackinnon
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Rachel A Ridgway
- The CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Timothy Kendall
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU
| | - Michael J Williams
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - Thomas Jamieson
- The CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Alex Raven
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - David C Hay
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| | - John P Iredale
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alan R Clarke
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, CF24 4HQ
| | - Owen J Sansom
- The CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU
| |
Collapse
|
42
|
Dollé L, Theise ND, Schmelzer E, Boulter L, Gires O, van Grunsven LA. EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol 2015; 308:G233-50. [PMID: 25477371 PMCID: PMC4329473 DOI: 10.1152/ajpgi.00069.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell-cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration.
Collapse
Affiliation(s)
- Laurent Dollé
- Department of Biomedical Sciences, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium;
| | - Neil D. Theise
- 2Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York;
| | - Eva Schmelzer
- 3McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Luke Boulter
- 4Medical Research Council Human Genetics Unit, Institute for Genetics and Molecular Medicine, Edinburgh, Scotland; and
| | - Olivier Gires
- 5Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Leo A. van Grunsven
- 1Department of Biomedical Sciences, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium;
| |
Collapse
|
43
|
Tsuneto M, Tokoyoda K, Kajikhina E, Hauser AE, Hara T, Tani-Ichi S, Ikuta K, Melchers F. B-cell progenitors and precursors change their microenvironment in fetal liver during early development. Stem Cells 2015; 31:2800-12. [PMID: 23666739 DOI: 10.1002/stem.1421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/15/2013] [Indexed: 01/16/2023]
Abstract
The microenvironments, in which B lymphocytes develop in fetal liver, are largely still unknown. Among the nonhematopoietic cells, we have identified and FACS-separated two subpopulations, CD45(-) TER119(-) VCAM-1(+) cells that are either CD105(high) LYVE-1(high) or CD105(low) ALCAM(high) . Immunohistochemical analyses find three of four c-Kit(+) IL-7Rα(+) B220(low) CD19(-) SLC(-) B progenitors in contact with vascular endothelial-type LYVE-1(high) cells on embryonic day 13.5. One day later c-Kit(+) IL-7Rα(+) cells develop to CD19(- and +) , SLC-expressing, DHJH-rearranged pre/pro and pro/preB-I cells. Less than 10% are still in contact with LYVE-1(high) cells, but half of them are now in contact with mesenchymally derived ALCAM(high) liver cells. All of these ALCAM(high) cells, but not the LYVE-1(high) cells produce IL-7 and CXCL12, while both produce CXCL10. Progenitors and pro/preB-I cells are chemoattracted in vitro toward CXCL10 and 12, suggesting that lymphoid progenitors with Ig gene loci in germline configuration enter the developing fetal liver at E13.5 from vascular endothelium, attracted by CXCL10, and then migrate within a day to an ALCAM(high) liver cell microenvironment, differentiating to DHJH-rearranging, surrogate light chain-expressing pre/proB and pro/preB-I cells, attracted by CXCL10 and 12. Between E15.5 and E16.5 preB-I cells expand 10-fold in continued contact with ALCAM(high) cells and begin VH- to DHJH-rearrangements in further differentiated c-Kit(-) IL-7Rα(-) preBII cells. STEM Cells 2013;31:2800-2812.
Collapse
Affiliation(s)
- Motokazu Tsuneto
- Lymphocyte Development Group, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Verhulst S, Best J, van Grunsven LA, Dollé L. Advances in hepatic stem/progenitor cell biology. EXCLI JOURNAL 2015; 14:33-47. [PMID: 26600740 PMCID: PMC4650945 DOI: 10.17179/excli2014-576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022]
Abstract
The liver is famous for its strong regenerative capacity, employing different modes of regeneration according to type and extent of injury. Mature liver cells are able to proliferate in order to replace the damaged tissue allowing the recovery of the parenchymal function. In more severe scenarios hepatocytes are believed to arise also from a facultative liver progenitor cell compartment. In human, severe acute liver failure and liver cirrhosis are also both important clinical targets in which regeneration is impaired, where the role of this stem cell compartment seems more convincing. In animal models, the current state of ambiguity regarding the identity and role of liver progenitor cells in liver physiology dampens the enthusiasm for the potential use of these cells in regenerative medicine. The aim of this review is to give the basics of liver progenitor cell biology and discuss recent results vis-à-vis their identity and contribution to liver regeneration.
Collapse
Affiliation(s)
- Stefaan Verhulst
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jan Best
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
45
|
Kamiya A, Inagaki Y. Stem and progenitor cell systems in liver development and regeneration. Hepatol Res 2015; 45:29-37. [PMID: 24773763 DOI: 10.1111/hepr.12349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/13/2014] [Accepted: 04/24/2014] [Indexed: 12/15/2022]
Abstract
The liver comprises two stem/progenitor cell systems: fetal and adult liver stem/progenitor cells. Fetal hepatic progenitor cells, derived from foregut endoderm, differentiate into mature hepatocytes and cholangiocytes during liver development. Adult hepatic progenitor cells contribute to regeneration after severe and chronic liver injuries. However, the characteristics of these somatic hepatic stem/progenitor cells remain unknown. Culture systems that can be used to analyze these cells were recently established and hepatic stem/progenitor cell-specific surface markers including delta-like 1 homolog (DLK), cluster of differentiation (CD) 13, CD133, and LIV2 were identified. Cells purified using antibodies against these markers proliferate for an extended period and differentiate into mature cells both in vitro and in vivo. Methods to force the differentiation of human embryonic stem and induced pluripotent stem (iPS) cells into hepatic progenitor cells have been recently established. We demonstrated that the CD13(+) CD133(+) fraction of human iPS-derived cells contained numerous hepatic progenitor-like cells. These analyses of hepatic stem/progenitor cells derived from somatic tissues and pluripotent stem cells will contribute to the development of new therapies for severe liver diseases.
Collapse
Affiliation(s)
- Akihide Kamiya
- Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University School of Medicine, Isehara, Japan
| | | |
Collapse
|
46
|
Mavila N, James D, Shivakumar P, Nguyen MV, Utley S, Mak K, Wu A, Zhou S, Wang L, Vendyres C, Groff M, Asahina K, Wang KS. Expansion of prominin-1-expressing cells in association with fibrosis of biliary atresia. Hepatology 2014; 60:941-953. [PMID: 24798639 PMCID: PMC4146699 DOI: 10.1002/hep.27203] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Biliary atresia (BA), the most common cause of end-stage liver disease and the leading indication for pediatric liver transplantation, is associated with intrahepatic ductular reactions within regions of rapidly expanding periportal biliary fibrosis. Whereas the extent of such biliary fibrosis is a negative predictor of long-term transplant-free survival, the cellular phenotypes involved in the fibrosis are not well established. Using a rhesus rotavirus-induced mouse model of BA, we demonstrate significant expansion of a cell population expressing the putative stem/progenitor cell marker, PROMININ-1 (PROM1), adjacent to ductular reactions within regions of periportal fibrosis. PROM1positive (pos) cells express Collagen-1α1. Subsets of PROM1pos cells coexpress progenitor cell marker CD49f, epithelial marker E-CADHERIN, biliary marker CYTOKERATIN-19, and mesenchymal markers VIMENTIN and alpha-SMOOTH MUSCLE ACTIN (αSMA). Expansion of the PROM1pos cell population is associated with activation of Fibroblast Growth Factor (FGF) and Transforming Growth Factor-beta (TGFβ) signaling. In vitro cotreatment of PROM1-expressing Mat1a-/- hepatic progenitor cells with recombinant human FGF10 and TGFβ1 promotes morphologic transformation toward a myofibroblastic cell phenotype with increased expression of myofibroblastic genes Collagen-1α1, Fibronectin, and α-Sma. Infants with BA demonstrate similar expansion of periportal PROM1pos cells with activated Mothers Against Decapentaplegic Homolog 3 (SMAD3) signaling in association with increased hepatic expression of FGF10, FGFR1, and FGFR2 as well as mesenchymal genes SLUG and SNAIL. Infants with perinatal subtype of BA have higher tissue levels of PROM1 expression than those with embryonic subtype. CONCLUSION Expansion of collagen-producing PROM1pos cells within regions of periportal fibrosis is associated with activated FGF and TGFβ pathways in both experimental and human BA. PROM1pos cells may therefore play an important role in the biliary fibrosis of BA.
Collapse
Affiliation(s)
- Nirmala Mavila
- Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tarlow BD, Finegold MJ, Grompe M. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology 2014; 60:278-89. [PMID: 24700457 PMCID: PMC4077948 DOI: 10.1002/hep.27084] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/19/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Proliferating ducts, termed "oval cells," have long been thought to be bipotential, that is, produce both biliary ducts and hepatocytes during chronic liver injury. The precursor to oval cells is considered to be a facultative liver stem cell (LSC). Recent lineage tracing experiments indicated that the LSC is SRY-related HMG box transcription factor 9 positive (Sox9(+) ) and can replace the bulk of hepatocyte mass in several settings. However, no clonal relationship between Sox9(+) cells and the two epithelial liver lineages was established. We labeled Sox9(+) mouse liver cells at low density with a multicolor fluorescent confetti reporter. Organoid formation validated the progenitor activity of the labeled population. Sox9(+) cells were traced in multiple oval cell injury models using both histology and fluorescence-activated cell sorting. Surprisingly, only rare clones containing both hepatocytes and oval cells were found in any experiment. Quantitative analysis showed that Sox9(+) cells contributed only minimally (<1%) to the hepatocyte pool, even in classic oval cell injury models. In contrast, clonally marked mature hepatocytes demonstrated the ability to self-renew in all classic mouse oval cell activation injuries. A hepatocyte chimera model to trace hepatocytes and nonparenchymal cells also demonstrated the prevalence of hepatocyte-driven regeneration in mouse oval cell injury models. CONCLUSION Sox9(+) ductal progenitor cells give rise to clonal oval cell proliferation and bipotential organoids, but rarely produce hepatocytes in vivo. Hepatocytes themselves are the predominant source of new parenchyma cells in prototypical mouse models of oval cell activation.
Collapse
Affiliation(s)
- Branden D Tarlow
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR
| | | | | |
Collapse
|
48
|
Lua I, James D, Wang J, Wang KS, Asahina K. Mesodermal mesenchymal cells give rise to myofibroblasts, but not epithelial cells, in mouse liver injury. Hepatology 2014; 60:311-22. [PMID: 24488807 PMCID: PMC4077971 DOI: 10.1002/hep.27035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/26/2014] [Indexed: 12/18/2022]
Abstract
UNLABELLED Hepatic stellate cells (HSCs) and portal fibroblasts (PFs) are believed to be the major source of myofibroblasts that participate in fibrogenesis by way of synthesis of proinflammatory cytokines and extracellular matrices. Previous lineage tracing studies using MesP1(Cre) and Rosa26lacZ(flox) mice demonstrated that MesP1+ mesoderm gives rise to mesothelial cells (MCs), which differentiate into HSCs and PFs during liver development. In contrast, several in vivo and in vitro studies reported that HSCs can differentiate into other cell types, including hepatocytes, cholangiocytes, and progenitor cell types known as oval cells, thereby acting as stem cells in the liver. To test whether HSCs give rise to epithelial cells in adult liver, we determined the hepatic lineages of HSCs and PFs using MesP1(Cre) and Rosa26mTmG(flox) mice. Genetic cell lineage tracing revealed that the MesP1+ mesoderm gives rise to MCs, HSCs, and PFs, but not to hepatocytes or cholangiocytes, in the adult liver. Upon carbon tetrachloride injection or bile duct ligation surgery-mediated liver injury, mesodermal mesenchymal cells, including HSCs and PFs, differentiate into myofibroblasts but not into hepatocytes or cholangiocytes. Furthermore, differentiation of the mesodermal mesenchymal cells into oval cells was not observed. These results indicate that HSCs are not sufficiently multipotent to produce hepatocytes, cholangiocytes, or oval cells by way of mesenchymal-epithelial transition in vivo. CONCLUSION Cell lineage tracing demonstrated that mesodermal mesenchymal cells including HSCs are the major source of myofibroblasts but do not differentiate into epithelial cell types such as hepatocytes, cholangiocytes, and oval cells.
Collapse
Affiliation(s)
- Ingrid Lua
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California
| | - David James
- Saban Research Institute, Children’s Hospital Los Angeles
| | - Jiaohong Wang
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California
| | - Kasper S. Wang
- Saban Research Institute, Children’s Hospital Los Angeles
| | - Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California
| |
Collapse
|
49
|
Jin L, Feng T, Chai J, Ghazalli N, Gao D, Zerda R, Li Z, Hsu J, Mahdavi A, Tirrell DA, Riggs AD, Ku HT. Colony-forming progenitor cells in the postnatal mouse liver and pancreas give rise to morphologically distinct insulin-expressing colonies in 3D cultures. Rev Diabet Stud 2014; 11:35-50. [PMID: 25148366 DOI: 10.1900/rds.2014.11.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In our previous studies, colony-forming progenitor cells isolated from murine embryonic stem cell-derived cultures were differentiated into morphologically distinct insulin-expressing colonies. These colonies were small and not light-reflective when observed by phase-contrast microscopy (therefore termed "Dark" colonies). A single progenitor cell capable of giving rise to a Dark colony was termed a Dark colony-forming unit (CFU-Dark). The goal of the current study was to test whether endogenous pancreas, and its developmentally related liver, harbored CFU-Dark. Here we show that dissociated single cells from liver and pancreas of one-week-old mice give rise to Dark colonies in methylcellulose-based semisolid culture media containing either Matrigel or laminin hydrogel (an artificial extracellular matrix protein). CFU-Dark comprise approximately 0.1% and 0.03% of the postnatal hepatic and pancreatic cells, respectively. Adult liver also contains CFU-Dark, but at a much lower frequency (~0.003%). Microfluidic qRT-PCR, immunostaining, and electron microscopy analyses of individually handpicked colonies reveal the expression of insulin in many, but not all, Dark colonies. Most pancreatic insulin-positive Dark colonies also express glucagon, whereas liver colonies do not. Liver CFU-Dark require Matrigel, but not laminin hydrogel, to become insulin-positive. In contrast, laminin hydrogel is sufficient to support the development of pancreatic Dark colonies that express insulin. Postnatal liver CFU-Dark display a cell surface marker CD133⁺CD49f(low)CD107b(low) phenotype, while pancreatic CFU-Dark are CD133⁻. Together, these results demonstrate that specific progenitor cells in the postnatal liver and pancreas are capable of developing into insulin-expressing colonies, but they differ in frequency, marker expression, and matrix protein requirements for growth.
Collapse
Affiliation(s)
- Liang Jin
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Tao Feng
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Jing Chai
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Nadiah Ghazalli
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Dan Gao
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Ricardo Zerda
- Electron Microscopy Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Zhuo Li
- Electron Microscopy Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Jasper Hsu
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Alborz Mahdavi
- Department of Bioengineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Arthur D Riggs
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Hsun Teresa Ku
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
50
|
Stem/Progenitor Cells in Liver Development, Homeostasis, Regeneration, and Reprogramming. Cell Stem Cell 2014; 14:561-74. [DOI: 10.1016/j.stem.2014.04.010] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|