1
|
Xu K, Wu K, Chen L, Zhao Y, Li H, Lin N, Ye Z, Xu J, Huang D, Huang X. Selective promotion of sensory innervation-mediated immunoregulation for tissue repair. SCIENCE ADVANCES 2025; 11:eads9581. [PMID: 40117376 PMCID: PMC11927663 DOI: 10.1126/sciadv.ads9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Sensory innervation triggers the regenerative response after injury. However, dysfunction and impairment of sensory nerves, accompanied by excessive inflammation impede tissue regeneration. Consequently, specific induction of sensory innervation to mediate immunoregulation becomes a promising therapeutic approach. Herein, we developed a cell/drug-free strategy to selectively boost endogenous sensory innervation to harness immune responses for promoting tissue rehabilitation. Specifically, a dual-functional phage was constructed with a sensory nerve-homing peptide and a β-subunit of nerve growth factor (β-NGF)-binding peptide. These double-displayed phages captured endogenic β-NGF and localized to sensory nerves to promote sensory innervation. Furthermore, regarding bone regeneration, phage-loaded hydrogels achieved rapid sensory nerve ingrowth in bone defect areas. Mechanistically, sensory neurotization facilitated M2 polarization of macrophages through the Sema3A/XIAP/PAX6 pathway, thus decreasing the M1/M2 ratio to induce the dissipation of local inflammation. Collectively, these findings highlight the essential role of sensory innervation in manipulating inflammation and provide a conceptual framework based on neuroimmune interactions for promoting tissue regeneration.
Collapse
Affiliation(s)
- Kaicheng Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kaile Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yubin Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Donghua Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Chen X, Tang P, Wan J, Zhang W, Zhong L. Adaptive Raman spectral unmixing method based on Voigt peak compensation for quantitative analysis of cellular biochemical components. BIOMEDICAL OPTICS EXPRESS 2025; 16:1284-1298. [PMID: 40109542 PMCID: PMC11919365 DOI: 10.1364/boe.553461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Raman spectroscopy, with its unique "molecular fingerprint" characteristics, is an essential tool for label-free, non-invasive biochemical analysis of cells. It provides precise information on cellular biochemical components, such as proteins, lipids, and nucleic acids by analyzing molecular vibrational modes. However, overlapping Raman spectral signals make spectral unmixing crucial for accurate quantification. Traditional unmixing methods face challenges: unsupervised algorithms yield poorly interpretable results, while supervised methods like BCA rely heavily on accurate reference spectra and are sensitive to environmental changes (e.g., pH, temperature, excitation wavelength), causing spectral distortion and reducing quantitative reliability. This study addresses these challenges by introducing a parameterized Voigt function into the linear spectral mixing model for element spectrum compensation, using iterative least-squares optimization for adaptive unmixing and quantitative analysis. Simulations show that the Voigt-compensated unmixing algorithm improves spectral fitting accuracy and robustness. Applied to Raman spectra from Hela cell apoptosis and iPSCs differentiation, the algorithm accurately tracks biochemical molecular changes, proving its applicability in cellular Raman spectral analysis and a precise, reliable, and versatile tool for quantitative biochemical analysis.
Collapse
Affiliation(s)
- Xiang Chen
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Tang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianhui Wan
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Weina Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Liyun Zhong
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Zhang B, Hou M, Huang J, Liu Y, Yang C, Lin J. Pax6 regulates neuronal migration and cell proliferation via interacting with Wnt3a during cortical development. Sci Rep 2025; 15:4726. [PMID: 39922861 PMCID: PMC11807113 DOI: 10.1038/s41598-025-88662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
The paired box 6 (Pax6) gene encodes a highly conserved transcription factor, involved in the development of eyes, brain, and endocrine glands. Homozygous loss of Pax6 resulted in neonatal death in mice, plus loss of eyes and malformation of cerebral cortex. In patients with heterozygous Pax6 mutations, a reduction in thickness of the frontoparietal cortex was detected, which was also observed in small eye mice. In this study, we found that Pax6 overexpression increased the cortical thickness, especially in the intermediate zone of the cortex, which conflicts with the report of Manuel et al. Pax6 overexpression appears to detain neurons in the intermediate zone while promoting cell proliferation. It is worth noting that the impact of Pax6 overexpression on cortical thickness and neuronal migration was temporal, explaining the differences with other reports. We postulated that the alteration of Pax6 isoform ratio by autoregulation might be responsible for this. JASPAR analysis together with the results of qPCR, Western blot, CUT&Tag, and rescue experiments revealed that Pax6 regulates neuronal migration and cell proliferation by indirectly mediating Wnt3a expression. Therefore, we propose that Pax6 participates in corticogenesis via interaction with Wnt3a in regulating neuronal migration and cell proliferation.
Collapse
Affiliation(s)
- Bichao Zhang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Meihua Hou
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiayan Huang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yunfei Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ciqing Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China.
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Herrera-Astorga L, Silva S, Berrosteguieta I, Rosillo JC, Fernández AS. Müller glia in short-term dark adaptation of the Austrolebias charrua retina: Cell proliferation and cytoarchitecture. Exp Cell Res 2025; 444:114394. [PMID: 39722301 DOI: 10.1016/j.yexcr.2024.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Fish with unique life cycles offer valuable insights into retinal plasticity, revealing mechanisms of environmental adaptation, cell proliferation, and thus, potentially regeneration. The variability of the environmental factors to which Austrolebias annual fishes are exposed has acted as a strong selective pressure shaping traits such as nervous system plasticity. This has contributed to adaptation to their extreme conditions including the decreased luminosity as ponds dry out. In particular, the retina of A. charrua has been shown to respond to 30 days of decreased luminosity by exacerbating cell proliferation Now, we aimed to determine the cellular component of the retina involved in shorter-term responses. To this end, we performed 5-bromo-2'-deoxyuridine (BrdU) experiments, exposing adult fish to a short period (11 days) of constant darkness. Strikingly, in control conditions, neurogenesis in the inner nuclear and ganglion cell layer in the differentiated retina was detected. In constant darkness, we observed an effect on inner nuclear layer cell proliferation and changes in retinal cytoarchitecture of the retina with cell clusters located in the inner plexiform layer. Additionally, increased BLBP (brain lipid-binding protein) presence was detected in darkness, which has been previously associated with immature and reactivated Müller glia. Thus, our results suggest that the A. charrua retina can respond to environmental changes via rapid activation of progenitor cells in the INL, namely the Müller glia This leads us to hypothesize, that cell proliferation and neurogenesis might contribute to the responses to the functional needs of organisms, potentially playing an adaptive role.
Collapse
Affiliation(s)
- Laura Herrera-Astorga
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| | - Stephanie Silva
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay.
| | - Inés Berrosteguieta
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay.
| | - Juan Carlos Rosillo
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800, Montevideo, Uruguay.
| | - Anabel Sonia Fernández
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
5
|
Zhang X, Du P, Bai B, Lian X, Xue G. Molecular mechanism of METTL14-mediated m6A modification regulating microglial function post ischemic stroke. Brain Res Bull 2025; 220:111156. [PMID: 39622391 DOI: 10.1016/j.brainresbull.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/08/2024]
Abstract
This study explores the molecular mechanism of METTL14 regulating microglial function post ischemic stroke. A murine model was established by tMCAO. The neurological function was evaluated by mNSS. The cerebral infarct size and pathological changes were observed by TTC and H&E staining. M1 and M2 microglia in brain tissues were detected by flow cytometry. BV2 cells were subjected to OGD/R to establish an in vitro model. qRT-PCR and Western blot were used for detecting METTL14, PAX6, YTHDF2, TREM2, iNOS, and Arg1 expressions. The m6A level was quantitatively analyzed, and the binding of YTHDF2 or m6A to PAX6 was analyzed by RIP. PAX6 mRNA stability was assessed after actinomycin D treatment. ChIP was utilized for determining the enrichment of PAX6 on TREM2 promoter. The binding relationship between TREM2 and PAX6 was verified by dual-luciferase reporter assay. METTL14 was highly expressed after tMCAO, and silence of METTL14 alleviated symptoms of tMCAO mice and promoted microglial M2 polarization. METTL14 enhanced PAX6 mRNA m6A modification to promote YTHDF2 binding to PAX6 mRNA and its degradation. PAX6 bound to TREM2 promoter and facilitated its transcription and expression. In conclusion, METTL14-mediated m6A modification aggravates ischemic stroke by promoting microglial M1 polarization via YTHDF2/PAX6/TREM2 axis.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Pengyang Du
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Bo Bai
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xia Lian
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Guofang Xue
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
6
|
Minchenko OH, Khita OO, Krasnytska DA, Viletska YM, Rudnytska OV, Hnatiuk OS, Minchenko DO. Inhibition of ERN1 affects the expression of TGIF1 and other homeobox gene expressions in U87MG glioblastoma cells. Arch Biochem Biophys 2024; 758:110073. [PMID: 38914217 DOI: 10.1016/j.abb.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The ERN1 (endoplasmic reticulum to nucleus signaling 1) pathway plays an important role in the regulation of gene expression in glioblastoma, but molecular mechanism has not yet been fully elucidated. The aim of this study was to evaluate the relative relevance of ERN1 activity as a kinase in comparison to its endoribonuclease activity in the regulation of homeobox gene expression. METHODS Two sublines of U87MG glioblastoma cells with different ways of ERN1 inhibition were used: dnERN1 (overexpressed transgene without protein kinase and endoribonuclease) and dnrERN1 (overexpressed transgene with mutation in endoribonuclease). ERN1 suppression was also done using siRNA for ERN1. Silencing of XBP1 mRNA by specific siRNA was used for suppression of ERN1 endoribonuclease function mediated by XBP1s. The expression levels of homeobox genes and microRNAs were evaluated by qPCR. RESULTS The expression of TGIF1 and ZEB2 genes was downregulated in both types of glioblastoma cells with inhibition of ERN1 showing the ERN1 endoribonuclease-dependent mechanism of their regulation. However, the expression of PBX3 and PRPRX1 genes did not change significantly in dnrERN1 glioblastoma cells but was upregulated in dnERN1 cells indicating the dependence of these gene expressions on the ERN1 protein kinase. At the same time, the changes in PAX6 and PBXIP1 gene expressions introduced in glioblastoma cells by dnrERN1 and dnERN1 were different in direction and magnitude indicating the interaction of ERN1 protein kinase and endoribonuclease activities in regulation of these gene expressions. The impact of ERN1 and XBP1 silencing on the expression of studied homeobox genes is similar to that observed in dnERN1 and dnrERN1 glioblastoma cells, correspondingly. CONCLUSION The expression of TGIF1 and other homeobox genes is dependent on the ern1 signaling pathways by diverse mechanisms because inhibition of ERN1 endoribonuclease and both ERN1 enzymatic activities had dissimilar impacts on the expression of most studied genes showing that ERN1 protein kinase plays an important role in controlling homeobox gene expression associated with glioblastoma cell invasion.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Daria A Krasnytska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olha V Rudnytska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana S Hnatiuk
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
7
|
Mack CM, Tsui-Bowen A, Smith AR, Jensen KF, Kodavanti PRS, Moser VC, Mundy WR, Shafer TJ, Herr DW. Identification of neural-relevant toxcast high-throughput assay intended gene targets: Applicability to neurotoxicity and neurotoxicant putative molecular initiating events. Neurotoxicology 2024; 103:256-265. [PMID: 38977203 DOI: 10.1016/j.neuro.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The US EPA's Toxicity Forecaster (ToxCast) is a suite of high-throughput in vitro assays to screen environmental toxicants and predict potential toxicity of uncharacterized chemicals. This work examines the relevance of ToxCast assay intended gene targets to putative molecular initiating events (MIEs) of neurotoxicants. This effort is needed as there is growing interest in the regulatory and scientific communities about developing new approach methodologies (NAMs) to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity. Assay gene function (GeneCards, NCBI-PUBMED) was used to categorize gene target neural relevance (1 = neural, 2 = neural development, 3 = general cellular process, 3 A = cellular process critical during neural development, 4 = unlikely significance). Of 481 unique gene targets, 80 = category 1 (16.6 %); 16 = category 2 (3.3 %); 303 = category 3 (63.0 %); 97 = category 3 A (20.2 %); 82 = category 4 (17.0 %). A representative list of neurotoxicants (548) was researched (ex. PUBMED, PubChem) for neurotoxicity associated MIEs/Key Events (KEs). MIEs were identified for 375 compounds, whereas only KEs for 173. ToxCast gene targets associated with MIEs were primarily neurotransmitter (ex. dopaminergic, GABA)receptors and ion channels (calcium, sodium, potassium). Conversely, numerous MIEs associated with neurotoxicity were absent. Oxidative stress (OS) mechanisms were 79.1 % of KEs. In summary, 40 % of ToxCast assay gene targets are relevant to neurotoxicity mechanisms. Additional receptor and ion channel subtypes and increased OS pathway coverage are identified for potential future assay inclusion to provide more complete coverage of neural and developmental neural targets in assessing neurotoxicity.
Collapse
Affiliation(s)
- Cina M Mack
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | - Alicia R Smith
- Oak Ridge Institute for Science Education, Oak Ridge, TN 37830, USA.
| | - Karl F Jensen
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Virginia C Moser
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - William R Mundy
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - David W Herr
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
8
|
Elagoz AM, Van Dijck M, Lassnig M, Seuntjens E. Embryonic development of a centralised brain in coleoid cephalopods. Neural Dev 2024; 19:8. [PMID: 38907272 PMCID: PMC11191162 DOI: 10.1186/s13064-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
The last common ancestor of cephalopods and vertebrates lived about 580 million years ago, yet coleoid cephalopods, comprising squid, cuttlefish and octopus, have evolved an extraordinary behavioural repertoire that includes learned behaviour and tool utilization. These animals also developed innovative advanced defence mechanisms such as camouflage and ink release. They have evolved unique life cycles and possess the largest invertebrate nervous systems. Thus, studying coleoid cephalopods provides a unique opportunity to gain insights into the evolution and development of large centralised nervous systems. As non-model species, molecular and genetic tools are still limited. However, significant insights have already been gained to deconvolve embryonic brain development. Even though coleoid cephalopods possess a typical molluscan circumesophageal bauplan for their central nervous system, aspects of its development are reminiscent of processes observed in vertebrates as well, such as long-distance neuronal migration. This review provides an overview of embryonic coleoid cephalopod research focusing on the cellular and molecular aspects of neurogenesis, migration and patterning. Additionally, we summarize recent work on neural cell type diversity in embryonic and hatchling cephalopod brains. We conclude by highlighting gaps in our knowledge and routes for future research.
Collapse
Affiliation(s)
- Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Marie Van Dijck
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mark Lassnig
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Espinoza F, Carrazana R, Retamal-Fredes E, Ávila D, Papes F, Muotri AR, Ávila A. Tcf4 dysfunction alters dorsal and ventral cortical neurogenesis in Pitt-Hopkins syndrome mouse model showing sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167178. [PMID: 38636614 DOI: 10.1016/j.bbadis.2024.167178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by haploinsufficiency of transcription factor 4 (TCF4). In this work, we focused on the cerebral cortex and investigated in detail the progenitor cell dynamics and the outcome of neurogenesis in a PTHS mouse model. Labeling and quantification of progenitors and newly generated neurons at various time points during embryonic development revealed alterations affecting the dynamic of cortical progenitors since the earliest stages of cortex formation in PTHS mice. Consequently, establishment of neuronal populations and layering of the cortex were found to be altered in heterozygotes subjects at birth. Interestingly, defective layering process of pyramidal neurons was partially rescued by reintroducing TCF4 expression using focal in utero electroporation in the cerebral cortex. Coincidentally with a defective dorsal neurogenesis, we found that ventral generation of interneurons was also defective in this model, which may lead to an excitation/inhibition imbalance in PTHS. Overall, sex-dependent differences were detected with more marked effects evidenced in males compared with females. All of this contributes to expand our understanding of PTHS, paralleling the advances of research in autism spectrum disorder and further validating the PTHS mouse model as an important tool to advance preclinical studies.
Collapse
Affiliation(s)
- Francisca Espinoza
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción (UCSC), Concepción, Chile
| | - Ramón Carrazana
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción (UCSC), Concepción, Chile
| | - Eduardo Retamal-Fredes
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción (UCSC), Concepción, Chile
| | - Denisse Ávila
- Department of Biochemical Engineering, University College of London (UCL), London, UK
| | - Fabio Papes
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ariel Ávila
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción (UCSC), Concepción, Chile.
| |
Collapse
|
10
|
Chen C, Lee S, Zyner KG, Fernando M, Nemeruck V, Wong E, Marshall LL, Wark JR, Aryamanesh N, Tam PPL, Graham ME, Gonzalez-Cordero A, Yang P. Trans-omic profiling uncovers molecular controls of early human cerebral organoid formation. Cell Rep 2024; 43:114219. [PMID: 38748874 DOI: 10.1016/j.celrep.2024.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
Defining the molecular networks orchestrating human brain formation is crucial for understanding neurodevelopment and neurological disorders. Challenges in acquiring early brain tissue have incentivized the use of three-dimensional human pluripotent stem cell (hPSC)-derived neural organoids to recapitulate neurodevelopment. To elucidate the molecular programs that drive this highly dynamic process, here, we generate a comprehensive trans-omic map of the phosphoproteome, proteome, and transcriptome of the exit of pluripotency and neural differentiation toward human cerebral organoids (hCOs). These data reveal key phospho-signaling events and their convergence on transcriptional factors to regulate hCO formation. Comparative analysis with developing human and mouse embryos demonstrates the fidelity of our hCOs in modeling embryonic brain development. Finally, we demonstrate that biochemical modulation of AKT signaling can control hCO differentiation. Together, our data provide a comprehensive resource to study molecular controls in human embryonic brain development and provide a guide for the future development of hCO differentiation protocols.
Collapse
Affiliation(s)
- Carissa Chen
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Scott Lee
- Stem Cell and Organoid Facility, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Katherine G Zyner
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Milan Fernando
- Stem Cell and Organoid Facility, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Victoria Nemeruck
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Emilie Wong
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Lee L Marshall
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Nader Aryamanesh
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Anai Gonzalez-Cordero
- Stem Cell and Organoid Facility, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Pengyi Yang
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Yuan L, Liu Y, Sun Y, Ren L, Gu X, Chen L, Zhou G, Sun X, Huang Q, Chen X, Gong G. Puerarin attenuates remifentanil‑induced postoperative hyperalgesia via targeting PAX6 to regulate the transcription of TRPV1. Mol Med Rep 2024; 29:81. [PMID: 38516772 PMCID: PMC10975072 DOI: 10.3892/mmr.2024.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Remifentanil‑induced hyperalgesia (RIH) is characterized by the emergence of stimulation‑induced pain, including phenomena such as allodynia and thermal hyperalgesia following remifentanil infusion. As a sequence‑specific DNA binding transcription factor, PAX6 positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system. It was hypothesized that puerarin could relieve RIH via targeting PAX6 to regulate transcription of transient receptor potential cation channel subfamily V Member 1 (TRPV1). A total of 32 rats were randomly divided into five groups, namely control group, RI group, RI + 10 mg/kg puerarin group (RI + puerarin10), RI + 20 mg/kg puerarin group (RI + puerarin20), and RI + 40 mg/kg puerarin group (RI + puerarin40). Mechanical and thermal hyperalgesia were tested at ‑24, 2, 6, 24 and 48 h after remifentanil infusion. Following the sacrifice of rats after the last behavioral test, western blot was used to detect the expression levels of TRPV1 in the tissues; Immunofluorescence staining and western blotting were used to detect the expression of PAX6 in the spinal cord. PharmMapper and JASPAR were used to predict the binding sites of puerarin/PAX6/TRPV1. Chromatin immunoprecipitation‑PCR and dual luciferase reporter assay were used to verify the targeting relationship between PAX6 and TRPV1. Immunofluorescence was used to detect the expression levels of TRPV1 and p‑NR2B. The results revealed that puerarin (10, 20, 40 mg/kg) dose‑dependently reduced thermal and mechanical hyperalgesia from 2 to 48 h after remifentanil infusion. Remifentanil infusion remarkably stimulated the expression of phosphorylated (p‑)NR2B. Nevertheless, the increased amount of p‑NR2B by RIH was dose‑dependently suppressed by puerarin in rats. In conclusion, puerarin was revealed to attenuate postoperative RIH via targeting PAX6 to regulate the transcription of TRPV1.
Collapse
Affiliation(s)
- Libang Yuan
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Yinghai Liu
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Yangyang Sun
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Ling Ren
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoping Gu
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Liang Chen
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Gongrui Zhou
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoqin Sun
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Qingqing Huang
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
12
|
Zhou Y, Xu MF, Chen J, Zhang JL, Wang XY, Huang MH, Wei YL, She ZY. Loss-of-function of kinesin-5 KIF11 causes microcephaly, chorioretinopathy, and developmental disorders through chromosome instability and cell cycle arrest. Exp Cell Res 2024; 436:113975. [PMID: 38367657 DOI: 10.1016/j.yexcr.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Xin-Yao Wang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Min-Hui Huang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
13
|
Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, Krogan NJ. A foundational atlas of autism protein interactions reveals molecular convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569805. [PMID: 38076945 PMCID: PMC10705567 DOI: 10.1101/2023.12.03.569805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.
Collapse
|
14
|
Zechel C, Loy M, Wegner C, Dahlke E, Soetje B, Baehr L, Leppert J, Ostermaier JJ, Lueg T, Nielsen J, Elßner J, Willeke V, Marzahl S, Tronnier V, Madany Mamlouk A. Molecular signature of stem-like glioma cells (SLGCs) from human glioblastoma and gliosarcoma. PLoS One 2024; 19:e0291368. [PMID: 38306361 PMCID: PMC10836714 DOI: 10.1371/journal.pone.0291368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/28/2023] [Indexed: 02/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) and the GBM variant gliosarcoma (GS) are among the tumors with the highest morbidity and mortality, providing only palliation. Stem-like glioma cells (SLGCs) are involved in tumor initiation, progression, therapy resistance, and relapse. The identification of general features of SLGCs could contribute to the development of more efficient therapies. Commercially available protein arrays were used to determine the cell surface signature of eight SLGC lines from GBMs, one SLGC line obtained from a xenotransplanted GBM-derived SLGC line, and three SLGC lines from GSs. By means of non-negative matrix factorization expression metaprofiles were calculated. Using the cophenetic correlation coefficient (CCC) five metaprofiles (MPs) were identified, which are characterized by specific combinations of 7-12 factors. Furthermore, the expression of several factors, that are associated with GBM prognosis, GBM subtypes, SLGC differentiation stages, or neural identity was evaluated. The investigation encompassed 24 distinct SLGC lines, four of which were derived from xenotransplanted SLGCs, and included the SLGC lines characterized by the metaprofiles. It turned out that all SLGC lines expressed the epidermal growth factor EGFR and EGFR ligands, often in the presence of additional receptor tyrosine kinases. Moreover, all SLGC lines displayed a neural signature and the IDH1 wildtype, but differed in their p53 and PTEN status. Pearson Correlation analysis identified a positive association between the pluripotency factor Sox2 and the expression of FABP7, Musashi, CD133, GFAP, but not with MGMT or Hif1α. Spherical growth, however, was positively correlated with high levels of Hif1α, CDK4, PTEN, and PDGFRβ, whereas correlations with stemness factors or MGMT (MGMT expression and promoter methylation) were low or missing. Factors highly expressed by all SLGC lines, irrespective of their degree of stemness and growth behavior, are Cathepsin-D, CD99, EMMPRIN/CD147, Intβ1, the Galectins 3 and 3b, and N-Cadherin.
Collapse
Affiliation(s)
- Christina Zechel
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Mira Loy
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Christiane Wegner
- Institute for Neuro- and Bioinformatics (INB), University Lübeck, Lübeck, Germany
| | - Eileen Dahlke
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Birga Soetje
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Laura Baehr
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Jan Leppert
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Johannes J. Ostermaier
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Thorben Lueg
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Jana Nielsen
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Julia Elßner
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Viktoria Willeke
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Svenja Marzahl
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Amir Madany Mamlouk
- Institute for Neuro- and Bioinformatics (INB), University Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
16
|
Marzoog BA. Transcription Factors in Brain Regeneration: A Potential Novel Therapeutic Target. Curr Drug Targets 2024; 25:46-61. [PMID: 38444255 DOI: 10.2174/0113894501279977231210170231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/07/2024]
Abstract
Transcription factors play a crucial role in providing identity to each cell population. To maintain cell identity, it is essential to balance the expression of activator and inhibitor transcription factors. Cell plasticity and reprogramming offer great potential for future therapeutic applications, as they can regenerate damaged tissue. Specific niche factors can modify gene expression and differentiate or transdifferentiate the target cell to the required fate. Ongoing research is being carried out on the possibilities of transcription factors in regenerating neurons, with neural stem cells (NSCs) being considered the preferred cells for generating new neurons due to their epigenomic and transcriptome memory. NEUROD1/ASCL1, BRN2, MYTL1, and other transcription factors can induce direct reprogramming of somatic cells, such as fibroblasts, into neurons. However, the molecular biology of transcription factors in reprogramming and differentiation still needs to be fully understood.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
17
|
Lu Z, Zhang M, Lee J, Sziraki A, Anderson S, Zhang Z, Xu Z, Jiang W, Ge S, Nelson PT, Zhou W, Cao J. Tracking cell-type-specific temporal dynamics in human and mouse brains. Cell 2023; 186:4345-4364.e24. [PMID: 37774676 PMCID: PMC10545416 DOI: 10.1016/j.cell.2023.08.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Progenitor cells are critical in preserving organismal homeostasis, yet their diversity and dynamics in the aged brain remain underexplored. We introduced TrackerSci, a single-cell genomic method that combines newborn cell labeling and combinatorial indexing to characterize the transcriptome and chromatin landscape of proliferating progenitor cells in vivo. Using TrackerSci, we investigated the dynamics of newborn cells in mouse brains across various ages and in a mouse model of Alzheimer's disease. Our dataset revealed diverse progenitor cell types in the brain and their epigenetic signatures. We further quantified aging-associated shifts in cell-type-specific proliferation and differentiation and deciphered the associated molecular programs. Extending our study to the progenitor cells in the aged human brain, we identified conserved genetic signatures across species and pinpointed region-specific cellular dynamics, such as the reduced oligodendrogenesis in the cerebellum. We anticipate that TrackerSci will be broadly applicable to unveil cell-type-specific temporal dynamics in diverse systems.
Collapse
Affiliation(s)
- Ziyu Lu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Melissa Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Sonya Anderson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Zehao Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Zihan Xu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Weirong Jiang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Amel A, Rabeling A, Rossouw S, Goolam M. Wnt and BMP signalling direct anterior-posterior differentiation in aggregates of mouse embryonic stem cells. Biol Open 2023; 12:bio059981. [PMID: 37622734 PMCID: PMC10508691 DOI: 10.1242/bio.059981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Stem-cell-based embryo models have allowed greater insight into peri-implantation mammalian developmental events that are otherwise difficult to manipulate due to the inaccessibility of the early embryo. The rapid development of this field has resulted in the precise roles of frequently used supplements such as N2, B27 and Chiron in driving stem cell lineage commitment not being clearly defined. Here, we investigate the effects of these supplements on embryoid bodies to better understand their roles in stem cell differentiation. We show that Wnt signalling has a general posteriorising effect on stem cell aggregates and directs differentiation towards the mesoderm, as confirmed through the upregulation of posterior and mesodermal markers. N2 and B27 can mitigate these effects and upregulate the expression of anterior markers. To control the Wnt gradient and the subsequent anterior versus posterior fate, we make use of a BMP4 signalling centre and show that aggregates in these conditions express cephalic markers. These findings indicate that there is an intricate balance between various culture supplements and their ability to guide differentiation in stem cell embryo models.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Alexa Rabeling
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Simoné Rossouw
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| |
Collapse
|
19
|
Singh N, Siebzehnrubl FA, Martinez-Garay I. Transcriptional control of embryonic and adult neural progenitor activity. Front Neurosci 2023; 17:1217596. [PMID: 37588515 PMCID: PMC10426504 DOI: 10.3389/fnins.2023.1217596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Neural precursors generate neurons in the embryonic brain and in restricted niches of the adult brain in a process called neurogenesis. The precise control of cell proliferation and differentiation in time and space required for neurogenesis depends on sophisticated orchestration of gene transcription in neural precursor cells. Much progress has been made in understanding the transcriptional regulation of neurogenesis, which relies on dose- and context-dependent expression of specific transcription factors that regulate the maintenance and proliferation of neural progenitors, followed by their differentiation into lineage-specified cells. Here, we review some of the most widely studied neurogenic transcription factors in the embryonic cortex and neurogenic niches in the adult brain. We compare functions of these transcription factors in embryonic and adult neurogenesis, highlighting biochemical, developmental, and cell biological properties. Our goal is to present an overview of transcriptional regulation underlying neurogenesis in the developing cerebral cortex and in the adult brain.
Collapse
Affiliation(s)
- Niharika Singh
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, United Kingdom
| | - Florian A. Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, United Kingdom
| | - Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
20
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
21
|
Suppinger S, Zinner M, Aizarani N, Lukonin I, Ortiz R, Azzi C, Stadler MB, Vianello S, Palla G, Kohler H, Mayran A, Lutolf MP, Liberali P. Multimodal characterization of murine gastruloid development. Cell Stem Cell 2023; 30:867-884.e11. [PMID: 37209681 PMCID: PMC10241222 DOI: 10.1016/j.stem.2023.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
Gastruloids are 3D structures generated from pluripotent stem cells recapitulating fundamental principles of embryonic pattern formation. Using single-cell genomic analysis, we provide a resource mapping cell states and types during gastruloid development and compare them with the in vivo embryo. We developed a high-throughput handling and imaging pipeline to spatially monitor symmetry breaking during gastruloid development and report an early spatial variability in pluripotency determining a binary response to Wnt activation. Although cells in the gastruloid-core revert to pluripotency, peripheral cells become primitive streak-like. These two populations subsequently break radial symmetry and initiate axial elongation. By performing a compound screen, perturbing thousands of gastruloids, we derive a phenotypic landscape and infer networks of genetic interactions. Finally, using a dual Wnt modulation, we improve the formation of anterior structures in the existing gastruloid model. This work provides a resource to understand how gastruloids develop and generate complex patterns in vitro.
Collapse
Affiliation(s)
- Simon Suppinger
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Marietta Zinner
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Nadim Aizarani
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Roche Institute of Human Biology, 4058 Basel, Switzerland
| | - Raphael Ortiz
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Babraham Institute, Cambridge CB22 3AT, UK
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Stefano Vianello
- School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Giovanni Palla
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Munich, Germany; TUM School of Life Sciences Weihenstephan, Technical University of Munich, 80333 Munich, Germany
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Alexandre Mayran
- School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Matthias P Lutolf
- Roche Institute of Human Biology, 4058 Basel, Switzerland; School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
22
|
Pan Q, Luo J, Jiang Y, Wang Z, Lu K, Chen T. Medaka (Oryzias latipes) Olpax6.2 acquires maternal inheritance and germ cells expression, but was functionally degenerated in the eye. Gene 2023; 872:147439. [PMID: 37094695 DOI: 10.1016/j.gene.2023.147439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Gene duplication provides raw material for the evolution of genetic and phenotypic complexity. It has remained a long-standing mystery how duplicated genes evolve into new genes by neofunctionalization via the acquisition of new expression and/or activity and simultaneous loss of the old expression and activity. Fishes have many gene duplicates from whole genome duplication, making them excellent for studying the evolution of gene duplicates. In the fish medaka (Oryzias latipes), an ancestral pax6 gene has given rise to Olpax6.1 and Olpax6.2. Here we report that medaka Olpax6.2 is evolving towards neofunctionalization. A chromosomal syntenic analysis indicated that Olpax6.1 and Olpax6.2 are structurally co-homologous to the single pax6 in other organisms. Interestingly, Olpax6.2 maintains all conserved coding exons but loses the non-coding exons of Olpax6.1, and has 4 promoters versus 8 in Olpax6.1. RT-PCR revealed that Olpax6.2 maintained expression in the brain eye, pancreas as Olpax6.1. Surprisingly, Olpax6.2 also exhibited maternal inheritance and gonadal expression by RT-PCR, in situ hybridization and RNA transcriptome analysis. The expression and distribution of Olpax6.2 is not different from Olpax6.1 in the adult brain, eye and pancreas, but exhibited overlapping and distinct expression in early embryogenesis. We show that ovarian Olpax6.2 expression occurs in female germ cells. Olpax6.2 knockout showed no obvious defect in eye development, while Olpax6.1 F0 mutant have severe defects in eye development. Thus, Olpax6.2 has acquired maternal inheritance and germ cell expression, but was functionally degenerated in the eye, making this gene as an excellent model to study the neofunctionalization of duplicated genes.
Collapse
Affiliation(s)
- Qihua Pan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, China; College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junzhi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuewen Jiang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhi Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ke Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tiansheng Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, China; College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Neuro-immunohistochemical and molecular expression variations during hibernation and activity phases between Rana mascareniensis and Rana ridibunda. J Therm Biol 2023. [DOI: 10.1016/j.jtherbio.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
24
|
Inada H, Corales LG, Osumi N. A novel feature of the ancient organ: A possible involvement of the subcommissural organ in neurogenic/gliogenic potential in the adult brain. Front Neurosci 2023; 17:1141913. [PMID: 36960167 PMCID: PMC10027738 DOI: 10.3389/fnins.2023.1141913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
The subcommissural organ (SCO) is a circumventricular organ highly conserved in vertebrates from Cyclostomata such as lamprey to mammals including human. The SCO locates in the boundary between the third ventricle and the entrance of the aqueduct of Sylvius. The SCO functions as a secretory organ producing a variety of proteins such as SCO-spondin, transthyretin, and basic fibroblast growth factor (FGF) into the cerebrospinal fluid (CSF). A significant contribution of the SCO has been thought to maintain the homeostasis of CSF dynamics. However, evidence has shown a possible role of SCO on neurogenesis in the adult brain. This review highlights specific features of the SCO related to adult neurogenesis, suggested by the progress of understanding SCO functions. We begin with a brief history of the SCO discovery and continue to structural features, gene expression, and a possible role in adult neurogenesis suggested by the SCO transplant experiment.
Collapse
Affiliation(s)
- Hitoshi Inada
- Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
- *Correspondence: Hitoshi Inada,
| | - Laarni Grace Corales
- Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
25
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
26
|
Adami R, Bottai D. NSC Physiological Features in Spinal Muscular Atrophy: SMN Deficiency Effects on Neurogenesis. Int J Mol Sci 2022; 23:ijms232315209. [PMID: 36499528 PMCID: PMC9736802 DOI: 10.3390/ijms232315209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022] Open
Abstract
While the U.S. Food and Drug Administration and the European Medicines Evaluation Agency have recently approved new drugs to treat spinal muscular atrophy 1 (SMA1) in young patients, they are mostly ineffective in older patients since many motor neurons have already been lost. Therefore, understanding nervous system (NS) physiology in SMA patients is essential. Consequently, studying neural stem cells (NSCs) from SMA patients is of significant interest in searching for new treatment targets that will enable researchers to identify new pharmacological approaches. However, studying NSCs in these patients is challenging since their isolation damages the NS, making it impossible with living patients. Nevertheless, it is possible to study NSCs from animal models or create them by differentiating induced pluripotent stem cells obtained from SMA patient peripheral tissues. On the other hand, therapeutic interventions such as NSCs transplantation could ameliorate SMA condition. This review summarizes current knowledge on the physiological properties of NSCs from animals and human cellular models with an SMA background converging on the molecular and neuronal circuit formation alterations of SMA fetuses and is not focused on the treatment of SMA. By understanding how SMA alters NSC physiology, we can identify new and promising interventions that could help support affected patients.
Collapse
|
27
|
Establishment and characterization of human pluripotent stem cells-derived brain organoids to model cerebellar diseases. Sci Rep 2022; 12:12513. [PMID: 35869235 PMCID: PMC9307606 DOI: 10.1038/s41598-022-16369-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
The establishment of robust human brain organoids to model cerebellar diseases is essential to study new therapeutic strategies for cerebellum-associated disorders. Machado-Joseph disease (MJD) is a cerebellar hereditary neurodegenerative disease, without therapeutic options able to prevent the disease progression. In the present work, control and MJD induced-pluripotent stem cells were used to establish human brain organoids. These organoids were characterized regarding brain development, cell type composition, and MJD-associated neuropathology markers, to evaluate their value for cerebellar diseases modeling. Our data indicate that the organoids recapitulated, to some extent, aspects of brain development, such as astroglia emerging after neurons and the presence of ventricular-like zones surrounded by glia and neurons that are found only in primate brains. Moreover, the brain organoids presented markers of neural progenitors proliferation, neuronal differentiation, inhibitory and excitatory synapses, and firing neurons. The established brain organoids also exhibited markers of cerebellar neurons progenitors and mature cerebellar neurons. Finally, MJD brain organoids showed higher ventricular-like zone numbers, an indication of lower maturation, and an increased number of ataxin-3-positive aggregates, compared with control organoids. Altogether, our data indicate that the established organoids recapitulate important characteristics of human brain development and exhibit cerebellar features, constituting a resourceful tool for testing therapeutic approaches for cerebellar diseases.
Collapse
|
28
|
Akter M, Ding B. Modeling Movement Disorders via Generation of hiPSC-Derived Motor Neurons. Cells 2022; 11:3796. [PMID: 36497056 PMCID: PMC9737271 DOI: 10.3390/cells11233796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Generation of motor neurons (MNs) from human-induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain tissues and provides an unprecedent approach for modeling MN-related diseases. In this review, we discuss the recent progression in understanding the regulatory mechanisms of MN differentiation and their applications in the generation of MNs from hiPSCs, with a particular focus on two approaches: induction by small molecules and induction by lentiviral delivery of transcription factors. At each induction stage, different culture media and supplements, typical growth conditions and cellular morphology, and specific markers for validation of cell identity and quality control are specifically discussed. Both approaches can generate functional MNs. Currently, the major challenges in modeling neurological diseases using iPSC-derived neurons are: obtaining neurons with high purity and yield; long-term neuron culture to reach full maturation; and how to culture neurons more physiologically to maximize relevance to in vivo conditions.
Collapse
Affiliation(s)
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
29
|
Tomas-Roca L, Qiu Z, Fransén E, Gokhale R, Bulovaite E, Price DJ, Komiyama NH, Grant SGN. Developmental disruption and restoration of brain synaptome architecture in the murine Pax6 neurodevelopmental disease model. Nat Commun 2022; 13:6836. [PMID: 36369219 PMCID: PMC9652404 DOI: 10.1038/s41467-022-34131-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodevelopmental disorders of genetic origin delay the acquisition of normal abilities and cause disabling phenotypes. Nevertheless, spontaneous attenuation and even complete amelioration of symptoms in early childhood and adolescence can occur in many disorders, suggesting that brain circuits possess an intrinsic capacity to overcome the deficits arising from some germline mutations. We examined the molecular composition of almost a trillion excitatory synapses on a brain-wide scale between birth and adulthood in mice carrying a mutation in the homeobox transcription factor Pax6, a neurodevelopmental disorder model. Pax6 haploinsufficiency had no impact on total synapse number at any age. By contrast, the molecular composition of excitatory synapses, the postnatal expansion of synapse diversity and the acquisition of normal synaptome architecture were delayed in all brain regions, interfering with networks and electrophysiological simulations of cognitive functions. Specific excitatory synapse types and subtypes were affected in two key developmental age-windows. These phenotypes were reversed within 2-3 weeks of onset, restoring synapse diversity and synaptome architecture to the normal developmental trajectory. Synapse subtypes with rapid protein turnover mediated the synaptome remodeling. This brain-wide capacity for remodeling of synapse molecular composition to recover and maintain the developmental trajectory of synaptome architecture may help confer resilience to neurodevelopmental genetic disorders.
Collapse
Affiliation(s)
- Laura Tomas-Roca
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Erik Fransén
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-171 65, Solna, Sweden
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David J Price
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
30
|
Chen X, Liu F, Li B, Wang Y, Yuan L, Yin A, Chen Q, Hu W, Yao Y, Zhang M, Wu Y, Chen K. Neuropathy-associated Fars2 deficiency affects neuronal development and potentiates neuronal apoptosis by impairing mitochondrial function. Cell Biosci 2022; 12:103. [PMID: 35794642 PMCID: PMC9258231 DOI: 10.1186/s13578-022-00838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Background Neurodegenerative diseases encompass an extensive and heterogeneous group of nervous system disorders which are characterized by progressive degeneration and death of neurons. Many lines of evidence suggest the participation of mitochondria dysfunction in these diseases. Mitochondrial phenylalanyl-tRNA synthetase, encoded by FARS2, catalyzes the transfer of phenylalanine to its cognate tRNA for protein synthesis. As a member of mt-aaRSs genes, FARS2 missense homozygous mutation c.424G > T (p.D142Y) found in a Chinese consanguineous family first built the relationship between pure hereditary spastic paraplegia (HSP) and FARS2 gene. More FARS2 variations were subsequently found to cause heterogeneous group of neurologic disorders presenting three main phenotypic manifestations: infantile-onset epileptic mitochondrial encephalopathy, later-onset spastic paraplegia and juvenile onset refractory epilepsy. Studies showed that aminoacylation activity is frequently disrupt in cases with FARS2 mutations, indicating a loss-of-function mechanism. However, the underlying pathogenesis of neuropathy-associated Fars2 deficiency is still largely unknown. Results Early gestation lethality of global Fars2 knockout mice was observed prior to neurogenesis. The conditional Fars2 knockout-mouse model delayed lethality to late-gestation, resulting in a thinner cortex and an enlarged ventricle which is consist with the MRI results revealing cortical atrophy and reduced cerebral white matter volume in FARS2-deficient patients. Delayed development of neurite outgrowth followed by neuronal apoptosis was confirmed in Fars2-knockdown mouse primary cultured neurons. Zebrafish, in which fars2 was knocked down, exhibited aberrant motor neuron function including reduced locomotor capacity which well restored the spastic paraplegia phenotype of FARS2-deficient patients. Altered mitochondrial protein synthesis and reduced levels of oxidative phosphorylation complexes were detected in Fars2-deficient samples. And thus, reduced ATP, total NAD levels and mitochondrial membrane potential, together with increased ROS production, revealed mitochondrial dysfunction both in vitro and in vivo. Dctn3 is a potential downstream molecule in responds to Fars2 deficient in neurons, which may provide some evidence for the development of pathogenesis study and therapeutic schedule. Conclusions The Fars2 deficiency genetic models developed in this study cover the typical clinical manifestations in FARS2 patients, and help clarify how neuropathy-associated Fars2 deficiency, by damaging the mitochondrial respiratory chain and impairing mitochondrial function, affects neuronal development and potentiates neuronal cell apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00838-y.
Collapse
Affiliation(s)
- Xihui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Fangfang Liu
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Bowen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yufeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Lijuan Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Anan Yin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Department of Plastic surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Qi Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Weihong Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Yan Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - YuanMing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China. .,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
31
|
de Souza VS, da Cunha GCR, Versiani BR, de Oliveira CP, Rosa MTAS, de Oliveira SF, Moretti PN, Mazzeu JF, Pic-Taylor A. Characterization of Associated Nonclassical Phenotypes in Patients with Deletion in the WAGR Region Identified by Chromosomal Microarray: New Insights and Literature Review. Mol Syndromol 2022; 13:290-304. [PMID: 36158055 PMCID: PMC9421677 DOI: 10.1159/000518872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023] Open
Abstract
WAGR syndrome (Wilms' tumor, aniridia, genitourinary changes, and intellectual disability) is a contiguous gene deletion syndrome characterized by the joint deletion of PAX6 and WT1 genes, located in the short arm of chromosome 11. However, most deletions include other genes, leading to multiple associated phenotypes. Therefore, understanding how genes deleted together can contribute to other clinical phenotypes is still considered a challenge. In order to establish genotype-phenotype correlation in patients with interstitial deletions of the short arm of chromosome 11, we selected 17 patients with deletions identified by chromosomal microarray analysis: 4 new subjects and 13 subjects previously described in the literature with detailed clinical data. Through the analysis of deleted regions and the phenotypic changes, it was possible to suggest the contribution of specific genes to several nonclassical phenotypes, contributing to the accuracy of clinical characterization of the syndrome and emphasizing the broad phenotypic spectrum found in the patients. This study reports the first patient with a PAX6 partial deletion who does not present any eye anomaly thus opening a new set of questions about the functional activity of PAX6.
Collapse
Affiliation(s)
- Vanessa Sodré de Souza
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Gabriela Corassa Rodrigues da Cunha
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Beatriz R. Versiani
- Hospital de Apoio de Brasília, Secretária de Estado de Saúde do Distrito Federal, Brasília, Brazil,Hospital Universitário, Universidade de Brasília, Brasília, Brazil
| | - Claudiner Pereira de Oliveira
- Hospital de Apoio de Brasília, Secretária de Estado de Saúde do Distrito Federal, Brasília, Brazil,Hospital Universitário, Universidade de Brasília, Brasília, Brazil
| | - Maria Teresa Alves Silva Rosa
- Hospital Universitário, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil
| | - Silviene F. de Oliveira
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Patricia N. Moretti
- Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil
| | - Juliana F. Mazzeu
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil,Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil,*Juliana F. Mazzeu,
| | - Aline Pic-Taylor
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil,**Aline Pic-Taylor,
| |
Collapse
|
32
|
Corales LG, Inada H, Hiraoka K, Araki S, Yamanaka S, Kikkawa T, Osumi N. The subcommissural organ maintains features of neuroepithelial cells in the adult mouse. J Anat 2022; 241:820-830. [PMID: 35638289 PMCID: PMC9358730 DOI: 10.1111/joa.13709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
The subcommissural organ (SCO) is a part of the circumventricular organs located in the dorsocaudal region of the third ventricle at the entrance of the aqueduct of Sylvius. The SCO comprises epithelial cells and produces high molecular weight glycoproteins, which are secreted into the third ventricle and become part of Reissner's fibre in the cerebrospinal fluid. Abnormal development of the SCO has been linked with congenital hydrocephalus, a condition characterized by excessive accumulation of cerebrospinal fluid in the brain. In the present study, we characterized the SCO cells in the adult mouse brain to gain insights into the possible role of this brain region. Immunohistochemical analyses revealed that expression of Pax6, a transcription factor essential for SCO differentiation during embryogenesis, is maintained in the SCO at postnatal stages from P0 to P84. SCO cells in the adult brain expressed known neural stem/progenitor cell (NSPC) markers, Sox2 and vimentin. The adult SCO cells also expressed proliferating marker PCNA, although expression of another proliferation marker Ki67, indicating a G2/M phase, was not detected. The SCO cells did not incorporate BrdU, a marker for DNA synthesis in the S phase. Therefore, the SCO cells have a potential for proliferation but are quiescent for cell division in the adult. The SCO cells also expressed GFAP, a marker for astrocytes or NSPCs, but not NeuN (for neurons). A few cells positive for Iba1 (microglia), Olig2 (for oligodendrocytes) and PDGFRα (oligodendrocyte progenitors) existed within or on the periphery of the SCO. These findings revealed that the SCO cells have a unique feature as secretory yet immature neuroepithelial cells in the adult mouse brain.
Collapse
Affiliation(s)
- Laarni Grace Corales
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kotaro Hiraoka
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Shun Araki
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinya Yamanaka
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
33
|
Ochi S, Manabe S, Kikkawa T, Osumi N. Thirty Years' History since the Discovery of Pax6: From Central Nervous System Development to Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:6115. [PMID: 35682795 PMCID: PMC9181425 DOI: 10.3390/ijms23116115] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Pax6 is a sequence-specific DNA binding transcription factor that positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system (CNS). As indicated by the morphological and functional abnormalities in spontaneous Pax6 mutant rodents, Pax6 plays pivotal roles in various biological processes in the CNS. At the initial stage of CNS development, Pax6 is responsible for brain patterning along the anteroposterior and dorsoventral axes of the telencephalon. Regarding the anteroposterior axis, Pax6 is expressed inversely to Emx2 and Coup-TF1, and Pax6 mutant mice exhibit a rostral shift, resulting in an alteration of the size of certain cortical areas. Pax6 and its downstream genes play important roles in balancing the proliferation and differentiation of neural stem cells. The Pax6 gene was originally identified in mice and humans 30 years ago via genetic analyses of the eye phenotypes. The human PAX6 gene was discovered in patients who suffer from WAGR syndrome (i.e., Wilms tumor, aniridia, genital ridge defects, mental retardation). Mutations of the human PAX6 gene have also been reported to be associated with autism spectrum disorder (ASD) and intellectual disability. Rodents that lack the Pax6 gene exhibit diverse neural phenotypes, which might lead to a better understanding of human pathology and neurodevelopmental disorders. This review describes the expression and function of Pax6 during brain development, and their implications for neuropathology.
Collapse
Affiliation(s)
| | | | | | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.O.); (S.M.); (T.K.)
| |
Collapse
|
34
|
Flitsch LJ, Börner K, Stüllein C, Ziegler S, Sonntag-Buck V, Wiedtke E, Semkova V, Au Yeung SWC, Schlee J, Hajo M, Mathews M, Ludwig BS, Kossatz S, Kessler H, Grimm D, Brüstle O. Identification of adeno-associated virus variants for gene transfer into human neural cell types by parallel capsid screening. Sci Rep 2022; 12:8356. [PMID: 35589936 PMCID: PMC9120183 DOI: 10.1038/s41598-022-12404-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Human brain cells generated by in vitro cell programming provide exciting prospects for disease modeling, drug discovery and cell therapy. These applications frequently require efficient and clinically compliant tools for genetic modification of the cells. Recombinant adeno-associated viruses (AAVs) fulfill these prerequisites for a number of reasons, including the availability of a myriad of AAV capsid variants with distinct cell type specificity (also called tropism). Here, we harnessed a customizable parallel screening approach to assess a panel of natural or synthetic AAV capsid variants for their efficacy in lineage-related human neural cell types. We identified common lead candidates suited for the transduction of directly converted, early-stage induced neural stem cells (iNSCs), induced pluripotent stem cell (iPSC)-derived later-stage, radial glia-like neural progenitors, as well as differentiated astrocytic and mixed neuroglial cultures. We then selected a subset of these candidates for functional validation in iNSCs and iPSC-derived astrocytes, using shRNA-induced downregulation of the citrate transporter SLC25A1 and overexpression of the transcription factor NGN2 for proofs-of-concept. Our study provides a comparative overview of the susceptibility of different human cell programming-derived brain cell types to AAV transduction and a critical discussion of the assets and limitations of this specific AAV capsid screening approach.
Collapse
Affiliation(s)
- Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Kathleen Börner
- Center for Infectious Diseases, Virology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg, 69120, Heidelberg, Germany.,AskBio GmbH, Am Taubenfeld 21, 69123, Heidelberg, Germany
| | - Christian Stüllein
- CLADIAC GmbH, Kurfürsten-Anlage 52-58, 69115, Heidelberg, Germany.,Stüllein Software Engineering (SSE), Friedrich-Hartung-Str. 16, 64560, Riedstadt, Germany
| | - Simon Ziegler
- CLADIAC GmbH, Kurfürsten-Anlage 52-58, 69115, Heidelberg, Germany.,KINSYS GmbH, Holtzstr. 2, 76135, Karlsruhe, Germany
| | - Vera Sonntag-Buck
- Center for Infectious Diseases, Virology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg, 69120, Heidelberg, Germany
| | - Ellen Wiedtke
- Center for Infectious Diseases, Virology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.,LIFE and BRAIN GmbH, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Si Wah Christina Au Yeung
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Julia Schlee
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.,Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Mona Mathews
- LIFE and BRAIN GmbH, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Beatrice Stefanie Ludwig
- Department of Nuclear Medicine, School of Medicine, Technical University Munich (TUM), University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (Transla TUM, Einsteinstr. 25, 81675, Munich, Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, School of Medicine, Technical University Munich (TUM), University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (Transla TUM, Einsteinstr. 25, 81675, Munich, Germany
| | - Horst Kessler
- Institute for Advanced Study, Department Chemie, Technical University Munich (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Dirk Grimm
- Center for Infectious Diseases, Virology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany. .,BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,German Center for Infection Research (DZIF), partner site Heidelberg, 69120, Heidelberg, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120, Heidelberg, Germany.
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany. .,LIFE and BRAIN GmbH, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.
| |
Collapse
|
35
|
Zhang XZ, Huo HQ, Zhu YQ, Feng HY, Jiao J, Tan JX, Wang Y, Hu P, Xu ZF. Folic Acid Rescues Valproic Acid-Induced Morphogenesis Inhibition in Neural Rosettes Derived From Human Pluripotent Stem Cells. Front Cell Neurosci 2022; 16:888152. [PMID: 35651759 PMCID: PMC9148965 DOI: 10.3389/fncel.2022.888152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022] Open
Abstract
The ability of human pluripotent stem cells (hPSCs) to specialize in neuroepithelial tissue makes them ideal candidates for use in the disease models of neural tube defects. In this study, we cultured hPSCs in suspension with modified neural induction method, and immunostaining was applied to detect important markers associated with cell fate and morphogenesis to verify the establishment of the neural tube model in vitro. We carried out the drug experiments to further investigate the toxicity of valproic acid (VPA) exposure and the potential protective effect of folic acid (FA). The results demonstrated that neural rosette undergoes cell fate speciation and lumen formation accompanied by a spatiotemporal shift in the expression patterns of cadherin, indicating the model was successfully established. The results showed that VPA caused morphogenesis inhibition of lumen formation by altering cytoskeletal function and cell polarization, which could be rescued by FA supplement.
Collapse
|
36
|
Enzymatic Degradation of Cortical Perineuronal Nets Reverses GABAergic Interneuron Maturation. Mol Neurobiol 2022; 59:2874-2893. [PMID: 35233718 PMCID: PMC9016038 DOI: 10.1007/s12035-022-02772-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/16/2022] [Indexed: 12/03/2022]
Abstract
Perineuronal nets (PNNs) are specialised extracellular matrix structures which preferentially enwrap fast-spiking (FS) parvalbumin interneurons and have diverse roles in the cortex. PNN maturation coincides with closure of the critical period of cortical plasticity. We have previously demonstrated that BDNF accelerates interneuron development in a c-Jun-NH2-terminal kinase (JNK)–dependent manner, which may involve upstream thousand-and-one amino acid kinase 2 (TAOK2). Chondroitinase-ABC (ChABC) enzymatic digestion of PNNs reportedly reactivates ‘juvenile-like’ plasticity in the adult CNS. However, the mechanisms involved are unclear. We show that ChABC produces an immature molecular phenotype in cultured cortical neurons, corresponding to the phenotype prior to critical period closure. ChABC produced different patterns of PNN-related, GABAergic and immediate early (IE) gene expression than well-characterised modulators of mature plasticity and network activity (GABAA-R antagonist, bicuculline, and sodium-channel blocker, tetrodotoxin (TTX)). ChABC downregulated JNK activity, while this was upregulated by bicuculline. Bicuculline, but not ChABC, upregulated Bdnf expression and ERK activity. Furthermore, we found that BDNF upregulation of semaphorin-3A and IE genes was TAOK mediated. Our data suggest that ChABC heightens structural flexibility and network disinhibition, potentially contributing to ‘juvenile-like’ plasticity. The molecular phenotype appears to be distinct from heightened mature synaptic plasticity and could relate to JNK signalling. Finally, we highlight that BDNF regulation of plasticity and PNNs involves TAOK signalling.
Collapse
|
37
|
Kusena JWT, Shariatzadeh M, Thomas RJ, Wilson SL. Understanding cell culture dynamics: a tool for defining protocol parameters for improved processes and efficient manufacturing using human embryonic stem cells. Bioengineered 2021; 12:979-996. [PMID: 33757391 PMCID: PMC8806349 DOI: 10.1080/21655979.2021.1902696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Standardization is crucial when culturing cells including human embryonic stem cells (hESCs) which are valuable for therapy development and disease modeling. Inherent issues regarding reproducibility of protocols are problematic as they hinder translation to good manufacturing practice (GMP), thus reducing clinical efficacy and uptake. Pluripotent cultures require standardization to ensure that input material is consistent prior to differentiation, as inconsistency of input cells creates end-product variation. To improve protocols, developers first must understand the cells they are working with and their related culture dynamics. This innovative work highlights key conditions required for optimized and cost-effective bioprocesses compared to generic protocols typically implemented. This entailed investigating conditions affecting growth, metabolism, and phenotype dynamics to ensure cell quality is appropriate for use. Results revealed critical process parameters (CPPs) including feeding regime and seeding density impact critical quality attributes (CQAs) including specific metabolic rate (SMR) and specific growth rate (SGR). This implied that process understanding, and control is essential to maintain key cell characteristics, reduce process variation and retain CQAs. Examination of cell dynamics and CPPs permitted the formation of a defined protocol for culturing H9 hESCs. The authors recommend that H9 seeding densities of 20,000 cells/cm2, four-day cultures or three-day cultures following a recovery passage from cryopreservation and 100% medium exchange after 48 hours are optimal. These parameters gave ~SGR of 0.018 hour-1 ± 1.5x10-3 over three days and cell viabilities ≥95%±0.4, while producing cells which highly expressed pluripotent and proliferation markers, Oct3/4 (>99% positive) and Ki-67 (>99% positive).
Collapse
Affiliation(s)
- J W T Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - M Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - R J Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - S L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
38
|
Bhatia S, Kleinjan DJ, Uttley K, Mann A, Dellepiane N, Bickmore WA. Quantitative spatial and temporal assessment of regulatory element activity in zebrafish. eLife 2021; 10:65601. [PMID: 34796872 PMCID: PMC8604437 DOI: 10.7554/elife.65601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations or genetic variation in noncoding regions of the genome harbouring cis-regulatory elements (CREs), or enhancers, have been widely implicated in human disease and disease risk. However, our ability to assay the impact of these DNA sequence changes on enhancer activity is currently very limited because of the need to assay these elements in an appropriate biological context. Here, we describe a method for simultaneous quantitative assessment of the spatial and temporal activity of wild-type and disease-associated mutant human CRE alleles using live imaging in zebrafish embryonic development. We generated transgenic lines harbouring a dual-CRE dual-reporter cassette in a pre-defined neutral docking site in the zebrafish genome. The activity of each CRE allele is reported via expression of a specific fluorescent reporter, allowing simultaneous visualisation of where and when in development the wild-type allele is active and how this activity is altered by mutation.
Collapse
Affiliation(s)
- Shipra Bhatia
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Dirk Jan Kleinjan
- Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsty Uttley
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Anita Mann
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Nefeli Dellepiane
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Zhang Y, Zhang Y, Aman Y, Ng CT, Chau WH, Zhang Z, Yue M, Bohm C, Jia Y, Li S, Yuan Q, Griffin J, Chiu K, Wong DSM, Wang B, Jin D, Rogaeva E, Fraser PE, Fang EF, St George-Hyslop P, Song YQ. Amyloid-β toxicity modulates tau phosphorylation through the PAX6 signalling pathway. Brain 2021; 144:2759-2770. [PMID: 34428276 DOI: 10.1093/brain/awab134] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular link between amyloid-β plaques and neurofibrillary tangles, the two pathological hallmarks of Alzheimer's disease, is still unclear. Increasing evidence suggests that amyloid-β peptide activates multiple regulators of cell cycle pathways, including transcription factors CDKs and E2F1, leading to hyperphosphorylation of tau protein. However, the exact pathways downstream of amyloid-β-induced cell cycle imbalance are unknown. Here, we show that PAX6, a transcription factor essential for eye and brain development which is quiescent in adults, is increased in the brains of patients with Alzheimer's disease and in APP transgenic mice, and plays a key role between amyloid-β and tau hyperphosphorylation. Downregulation of PAX6 protects against amyloid-β peptide-induced neuronal death, suggesting that PAX6 is a key executor of the amyloid-β toxicity pathway. Mechanistically, amyloid-β upregulates E2F1, followed by the induction of PAX6 and c-Myb, while Pax6 is a direct target for both E2F1 and its downstream target c-Myb. Furthermore, PAX6 directly regulates transcription of GSK-3β, a kinase involved in tau hyperphosphorylation and neurofibrillary tangles formation, and its phosphorylation of tau at Ser356, Ser396 and Ser404. In conclusion, we show that signalling pathways that include CDK/pRB/E2F1 modulate neuronal death signals by activating downstream transcription factors c-Myb and PAX6, leading to GSK-3β activation and tau pathology, providing novel potential targets for pharmaceutical intervention.
Collapse
Affiliation(s)
- Yalun Zhang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong, China.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Medical Biophysics, and Medicine (Neurology), University of Toronto, Krembil Discovery Tower, Toronto, ON, M5T 2S8, Canada
| | - Yi Zhang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and the Akershus University Hospital, 1478 Lørenskog, Norway
| | - Cheung Toa Ng
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong, China
| | - Wing-Hin Chau
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Zhigang Zhang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Ming Yue
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Christopher Bohm
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Medical Biophysics, and Medicine (Neurology), University of Toronto, Krembil Discovery Tower, Toronto, ON, M5T 2S8, Canada
| | - Yizhen Jia
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Siwen Li
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Qiuju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jennifer Griffin
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Medical Biophysics, and Medicine (Neurology), University of Toronto, Krembil Discovery Tower, Toronto, ON, M5T 2S8, Canada
| | - Kin Chiu
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Dana S M Wong
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Binbin Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Dongyan Jin
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Medical Biophysics, and Medicine (Neurology), University of Toronto, Krembil Discovery Tower, Toronto, ON, M5T 2S8, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Medical Biophysics, and Medicine (Neurology), University of Toronto, Krembil Discovery Tower, Toronto, ON, M5T 2S8, Canada
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and the Akershus University Hospital, 1478 Lørenskog, Norway
| | - Peter St George-Hyslop
- Department of Medical Biophysics, and Medicine (Neurology), University of Toronto, Krembil Discovery Tower, Toronto, ON, M5T 2S8, Canada.,Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - You-Qiang Song
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong, China.,The State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Samoilova EM, Belopasov VV, Baklaushev VP. Transcription Factors of Direct Neuronal Reprogramming in Ontogenesis and Ex Vivo. Mol Biol 2021; 55:645-669. [DOI: 10.1134/s0026893321040087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 03/07/2025]
|
41
|
Abstract
We developed dbCNS (http://yamasati.nig.ac.jp/dbcns), a new database for conserved noncoding sequences (CNSs). CNSs exist in many eukaryotes and are assumed to be involved in protein expression control. Version 1 of dbCNS, introduced here, includes a powerful and precise CNS identification pipeline for multiple vertebrate genomes. Mutations in CNSs may induce morphological changes and cause genetic diseases. For this reason, many vertebrate CNSs have been identified, with special reference to primate genomes. We integrated ∼6.9 million CNSs from many vertebrate genomes into dbCNS, which allows users to extract CNSs near genes of interest using keyword searches. In addition to CNSs, dbCNS contains published genome sequences of 161 species. With purposeful taxonomic sampling of genomes, users can employ CNSs as queries to reconstruct CNS alignments and phylogenetic trees, to evaluate CNS modifications, acquisitions, and losses, and to roughly identify species with CNSs having accelerated substitution rates. dbCNS also produces links to dbSNP for searching pathogenic single-nucleotide polymorphisms in human CNSs. Thus, dbCNS connects morphological changes with genetic diseases. A test analysis using 38 gnathostome genomes was accomplished within 30 s. dbCNS results can evaluate CNSs identified by other stand-alone programs using genome-scale data.
Collapse
Affiliation(s)
- Jun Inoue
- Population Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan.,Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Naruya Saitou
- Population Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan.,Department of Okinawa Bioinformation Bank, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
42
|
Hua T(T, Bejoy J, Song L, Wang Z, Zeng Z, Zhou Y, Li Y, Sang QXA. Cerebellar Differentiation from Human Stem Cells Through Retinoid, Wnt, and Sonic Hedgehog Pathways. Tissue Eng Part A 2021; 27:881-893. [PMID: 32873223 PMCID: PMC8336229 DOI: 10.1089/ten.tea.2020.0135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
Differentiating cerebellar organoids can be challenging due to complex cell organization and structure in the cerebellum. Different approaches were investigated to recapitulate differentiation process of the cerebellum from human-induced pluripotent stem cells (hiPSCs) without high efficiency. This study was carried out to test the hypothesis that the combination of different signaling factors including retinoic acid (RA), Wnt activator, and sonic hedgehog (SHH) activator promotes the cerebellar differentiation of hiPSCs. Wnt, RA, and SHH pathways were activated by CHIR99021 (CHIR), RA, and purmorphamine (PMR), respectively. Different combinations of the morphogens (RA/CHIR, RA/PMR, CHIR/PMR, and RA/CHIR/PMR) were utilized, and the spheroids (day 35) were characterized for the markers of three cerebellum layers (the molecular layer, the Purkinje cell layer, and the granule cell layer). Of all the combinations tested, RA/CHIR/PMR promoted both the Purkinje cell layer and the granule cell layer differentiation. The cells also exhibited electrophysiological characteristics using whole-cell patch clamp recording, especially demonstrating Purkinje cell electrophysiology. This study should advance the understanding of different signaling pathways during cerebellar development to engineer cerebellum organoids for drug screening and disease modeling. Impact statement This study investigated the synergistic effects of retinoic acid, Wnt activator, and sonic hedgehog activator on cerebellar patterning of human-induced pluripotent stem cell (hiPSC) spheroids and organoids. The results indicate that the combination promotes the differentiation of the Purkinje cell layer and the granule cell layer. The cells also exhibit electrophysiological characteristics using whole-cell patch clamp recording, especially demonstrating Purkinje cell electrophysiology. The findings are significant for understanding the biochemical signaling of three-dimensional microenvironment on neural patterning of hiPSCs for applications in organoid engineering, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Thien (Timothy) Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Ziwei Zeng
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
- Department of Colorectal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
43
|
Liu J, Liu Y, Wang F, Liang M. miR-204: Molecular Regulation and Role in Cardiovascular and Renal Diseases. Hypertension 2021; 78:270-281. [PMID: 34176282 DOI: 10.1161/hypertensionaha.121.14536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of microRNA research has evolved from studies aiming to gauge the importance of microRNAs to those focusing on understanding a subset of specific microRNAs that have emerged as potent regulators of molecular systems and pathophysiological conditions. In this article, we review the molecular features and regulation of miR-204 and the growing body of evidence for an important role of miR-204 in the regulation of cardiovascular and renal physiology and pathophysiological processes. miR-204 exhibits a highly tissue-specific expression pattern, and miR-204 abundance is regulated by several transcriptional and posttranscriptional mechanisms. Strong evidence supports a role for miR-204 in attenuating pulmonary arterial hypertension and hypertensive and diabetic renal injury while promoting hypertension and endothelial dysfunction in a wide range of model systems. miR-204 may influence these disease processes by targeting several biological pathways in a tissue-specific manner. miR-204 is dysregulated in patients with cardiovascular and renal diseases. The unequivocal functional roles and clear clinical relevance indicate that miR-204 is a high-value microRNA in cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Yong Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Feng Wang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
44
|
Bayramov AV, Ermakova GV, Kuchryavyy AV, Zaraisky AG. Genome Duplications as the Basis of Vertebrates’ Evolutionary Success. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Su C, Argenziano M, Lu S, Pippin JA, Pahl MC, Leonard ME, Cousminer DL, Johnson ME, Lasconi C, Wells AD, Chesi A, Grant SFA. 3D promoter architecture re-organization during iPSC-derived neuronal cell differentiation implicates target genes for neurodevelopmental disorders. Prog Neurobiol 2021; 201:102000. [PMID: 33545232 PMCID: PMC8096691 DOI: 10.1016/j.pneurobio.2021.102000] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/07/2020] [Accepted: 01/23/2021] [Indexed: 12/27/2022]
Abstract
Neurodevelopmental disorders are thought to arise from interrupted development of the brain at an early age. Genome-wide association studies (GWAS) have identified hundreds of loci associated with susceptibility to neurodevelopmental disorders; however, which noncoding variants regulate which genes at these loci is often unclear. To implicate neuronal GWAS effector genes, we performed an integrated analysis of transcriptomics, epigenomics and chromatin conformation changes during the development from Induced pluripotent stem cell-derived neuronal progenitor cells (NPCs) into neurons using a combination of high-resolution promoter-focused Capture-C, ATAC-seq and RNA-seq. We observed that gene expression changes during the NPC-to-neuron transition were highly dependent on both promoter accessibility changes and long-range interactions which connect distal cis-regulatory elements (enhancer or silencers) to developmental-stage-specific genes. These genome-scale promoter-cis-regulatory-element atlases implicated 454 neurodevelopmental disorder-associated, putative causal variants mapping to 600 distal targets. These putative effector genes were significantly enriched for pathways involved in the regulation of neuronal development and chromatin organization, with 27 % expressed in a stage-specific manner. The intersection of open chromatin and chromatin conformation revealed development-stage-specific gene regulatory architectures during neuronal differentiation, providing a rich resource to aid characterization of the genetic and developmental basis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chun Su
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Mariana Argenziano
- Heart Institute, University of South Florida, 560 Channelside Dr, Tampa FL 33602, United States
| | - Sumei Lu
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - James A Pippin
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Matthew C Pahl
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Michelle E Leonard
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Diana L Cousminer
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Chiara Lasconi
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Andrew D Wells
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Alessandra Chesi
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Struan F A Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States; Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, United States; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, United States.
| |
Collapse
|
46
|
Kalusa M, Heinrich MD, Sauerland C, Morawski M, Fietz SA. Developmental Differences in Neocortex Neurogenesis and Maturation Between the Altricial Dwarf Rabbit and Precocial Guinea Pig. Front Neuroanat 2021; 15:678385. [PMID: 34135738 PMCID: PMC8200626 DOI: 10.3389/fnana.2021.678385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mammals are born on a precocial-altricial continuum. Altricial species produce helpless neonates with closed distant organs incapable of locomotion, whereas precocial species give birth to well-developed young that possess sophisticated sensory and locomotor capabilities. Previous studies suggest that distinct patterns of cortex development differ between precocial and altricial species. This study compares patterns of neocortex neurogenesis and maturation in the precocial guinea pig and altricial dwarf rabbit, both belonging to the taxon of Glires. We show that the principal order of neurodevelopmental events is preserved in the neocortex of both species. Moreover, we show that neurogenesis starts at a later postconceptional day and takes longer in absolute gestational days in the precocial than the altricial neocortex. Intriguingly, our data indicate that the dwarf rabbit neocortex contains a higher abundance of highly proliferative basal progenitors than the guinea pig, which might underlie its higher encephalization quotient, demonstrating that the amount of neuron production is determined by complex regulation of multiple factors. Furthermore, we show that the guinea pig neocortex exhibits a higher maturation status at birth, thus providing evidence for the notions that precocial species might have acquired the morphological machinery required to attain their high functional state at birth and that brain expansion in the precocial newborn is mainly due to prenatally initiating processes of gliogenesis and neuron differentiation instead of increased neurogenesis. Together, this study reveals important insights into the timing and cellular differences that regulate mammalian brain growth and maturation and provides a better understanding of the evolution of mammalian altriciality and presociality.
Collapse
Affiliation(s)
- Mirjam Kalusa
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Maren D. Heinrich
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Christine Sauerland
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Markus Morawski
- Medical Faculty, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Simone A. Fietz
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
47
|
Ben-Reuven L, Reiner O. Dynamics of cortical progenitors and production of subcerebral neurons are altered in embryos of a maternal inflammation model for autism. Mol Psychiatry 2021; 26:1535-1550. [PMID: 31740755 DOI: 10.1038/s41380-019-0594-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 11/09/2022]
Abstract
The broad impairments in cognitive and neurologic functioning found in Autism Spectrum Disorder (ASD) patients are thought to originate during early prenatal developmental stages. Indeed, postmortem and imaging studies in ASD patients detected white-matter abnormalities, as well as prefrontal and temporal cortex deficits, evident from early childhood. Here, we used Maternal Immune Activation (MIA), a mouse model for ASD, in which the offsprings exhibit Autistic-like behaviors as well as cortical abnormalities. However, the dynamics that influence the number and the identity of newly born cortical neurons following maternal inflammation remains unknown. Our study shows early changes in the duration of the S-phase of PAX6+ progenitors, leading to an increased proportion of neurogenic divisions and a reciprocal decrease in the proliferative divisions. In two different time points of maternal inflammation, MIA resulted in an overproduction of CTIP2+ cortical neurons, which remained overrepresented at the end of gestation and in postnatal mice. Interestingly, MIA-resistant IL6-KO mice did not exhibit these changes. Lastly, we propose that elevated levels of the transcription factor PAX6 following MIA supports the overproduction of CTIP2+ neurons. Taken together, our data reveals a possible link between maternal immune activation and the excess of cortical neurons found in the cortex of ASD patients.
Collapse
Affiliation(s)
- Lihi Ben-Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
48
|
Ermakova GV, Kucheryavyy AV, Zaraisky AG, Bayramov AV. Comparative Analysis of Expression Patterns of the Noggin Gene Family Genes at the Early Development Stages of Head Structures in the European River Lamprey Lampetra fluviatilis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Grant MK, Bobilev AM, Branch A, Lauderdale JD. Structural and functional consequences of PAX6 mutations in the brain: Implications for aniridia. Brain Res 2021; 1756:147283. [PMID: 33515537 DOI: 10.1016/j.brainres.2021.147283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
Abstract
The paired-box 6 (PAX6) gene encodes a highly conserved transcription factor essential for the proper development of the eye and brain. Heterozygous loss-of-function mutations in PAX6 are causal for a condition known as aniridia in humans and the Small eye phenotype in mice. Aniridia is characterized by iris hypoplasia and other ocular abnormalities, but recent evidence of neuroanatomical, sensory, and cognitive impairments in this population has emerged, indicating brain-related phenotypes as a prevalent feature of the disorder. Determining the neurophysiological origins of brain-related phenotypes in this disorder presents a substantial challenge, as the majority of extra-ocular traits in aniridia demonstrate a high degree of heterogeneity. Here, we summarize and integrate findings from human and rodent model studies, which have focused on neuroanatomical and functional consequences of PAX6 mutations. We highlight novel findings from PAX6 central nervous system studies in adult mammals, and integrate these findings into what we know about PAX6's role in development of the central nervous system. This review presents the current literature in the field in order to inform clinical application, discusses what is needed in future studies, and highlights PAX6 as a lens through which to understand genetic disorders affecting the human nervous system.
Collapse
Affiliation(s)
- Madison K Grant
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA.
| | - Anastasia M Bobilev
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Audrey Branch
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA; Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
50
|
Xu C, Fan W, Zhang Y, Loh HH, Law PY. Kappa opioid receptor controls neural stem cell differentiation via a miR-7a/Pax6 dependent pathway. Stem Cells 2021; 39:600-616. [PMID: 33452745 DOI: 10.1002/stem.3334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023]
Abstract
Although the roles of opioid receptors in neurogenesis have been implicated in previous studies, the mechanism by which κ-opioid receptor (OPRK1) regulates adult neurogenesis remains elusive. We now demonstrate that two agonists of OPRK1, U50,488H and dynorphin A, inhibit adult neurogenesis by hindering neuronal differentiation of mouse hippocampal neural stem cells (NSCs), both in vitro and in vivo. This effect was blocked by nor-binaltorphimine (nor-BNI), a specific antagonist of OPRK1. By examining neurogenesis-related genes, we found that OPRK1 agonists were able to downregulate the expression of Pax6, Neurog2, and NeuroD1 in mouse hippocampal NSCs, in a way that Pax6 regulates the transcription of Neurog2 and Neurod1 by directly interacting with their promoters. Moreover, this effect of OPRK1 was accomplished by inducing expression of miR-7a, a miRNA that specifically targeted Pax6 by direct interaction with its 3'-UTR sequence, and thereby decreased the levels of Pax6, Neurog2, and NeuroD1, thus resulted in hindrance of neuronal differentiation of NSCs. Thus, by modulating Pax6/Neurog2/NeuroD1 activities via upregulation of miR-7a expression, OPRK1 agonists hinder the neuronal differentiation of NSCs and hence inhibit adult neurogenesis in mouse hippocampus.
Collapse
Affiliation(s)
- Chi Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Wenxiang Fan
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ying Zhang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|