1
|
Chacón RD, Sánchez-Llatas CJ, L Pajuelo S, Diaz Forero AJ, Jimenez-Vasquez V, Médico JA, Soto-Ugaldi LF, Astolfi-Ferreira CS, Piantino Ferreira AJ. Molecular characterization of the meq oncogene of Marek's disease virus in vaccinated Brazilian poultry farms reveals selective pressure on prevalent strains. Vet Q 2024; 44:1-13. [PMID: 38465827 DOI: 10.1080/01652176.2024.2318198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Christian J Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | | - Andrea J Diaz Forero
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Jack A Médico
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | | | | |
Collapse
|
2
|
Boaventura ICR, Ribeiro VL, de Souza AJS, Chacón RD, Ferreira AJP, Marutani VHB, Guimarães JP, Sá LRM. Lymphomas in seabirds: case reports in a black skimmer (Rynchops niger) and a brown booby (Sula leucogaster). J Comp Pathol 2024; 211:12-16. [PMID: 38643606 DOI: 10.1016/j.jcpa.2024.03.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
A black skimmer (Rynchops niger) and a brown booby (Sula leucogaster) were rescued and gross, histopathological, immunohistochemical and polymerase chain reaction evaluations were conducted to investigate the cause of death. There were neoplastic infiltrations of CD3+ PAX5- lymphocytes in the black skimmer and CD3- PAX5+ lymphocytes in the brown booby. Molecular assays for viral agents were negative in both cases. This is the first report of disseminated lymphoma as the cause of stranding and death in these species in Brazil.
Collapse
Affiliation(s)
- Isabella C R Boaventura
- Instituto Biopesca, R. Carlos Eduardo Conte de Castro, 93 - Canto do Forte, Praia Grande, São Paulo, 11700-430, Brazil; Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Vanessa L Ribeiro
- Instituto Biopesca, R. Carlos Eduardo Conte de Castro, 93 - Canto do Forte, Praia Grande, São Paulo, 11700-430, Brazil
| | - Alex J S de Souza
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Antônio J P Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Victor H B Marutani
- State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380, Paraná, 86057-970, Brazil
| | - Juliana P Guimarães
- Instituto Biopesca, R. Carlos Eduardo Conte de Castro, 93 - Canto do Forte, Praia Grande, São Paulo, 11700-430, Brazil
| | - Lilian R M Sá
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil.
| |
Collapse
|
3
|
Kannaki TR, Edigi P, Yalagandula N, Haunshi S. Simultaneous detection and differentiation of three oncogenic viral diseases of chicken by use of multiplex PCR. Anim Biotechnol 2022; 33:1760-1765. [PMID: 33928832 DOI: 10.1080/10495398.2021.1914643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Avian oncogenic or tumor diseases are common in poultry industry causing significant economic loss. Marek's disease (MD), avian leukosis (AL) and Reticuloendotheliosis (RE) are the three major viral oncogenic infections that are difficult to differentiate with gross lesions. Multiplex PCR for simultaneous detection and differentiation of these three viruses was developed and validated. The primers targeting the genes of pp38, pol and LTR for MDV, ALV and REV were designed to yield 206, 429, and 128 bp, respectively. The sensitivity of the PCR primers was checked with serial dilution of positive template DNA for each virus and found to be in the range of 10-5 to 10-7 of 1 µg/µl of initial template DNA. Out of 114 suspected tumor samples screened, 8 samples were positive for MDV, 13 samples were positive for ALV and 31 samples positive for REV. Five samples were positive for both MD and ALV; 3 samples were positive for MD and REV and 25 samples were positive for ALV and REV. Eight samples were positive for all three viruses. Multiplex PCR demonstrated to be a useful technique for simultaneous, rapid detection and differentiation of major tumor causing and immunosuppressive viral diseases of chicken.
Collapse
Affiliation(s)
- T R Kannaki
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Priyanka Edigi
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Nishitha Yalagandula
- Department of Veterinary Microbiology, P. V. Narsimha Rao Telangana Veterinary University, Hyderabad, India
| | - Santosh Haunshi
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Du X, Zhou D, Zhou J, Xue J, Cheng Z. RIOK3-mediated Akt phosphorylation facilitates synergistic replication of Marek's disease and reticuloendotheliosis viruses. Virulence 2022; 13:1184-1198. [PMID: 35795905 PMCID: PMC9331201 DOI: 10.1080/21505594.2022.2096247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Co-infection of Marek’s disease virus (MDV) and reticuloendotheliosis virus (REV) synergistically drives disease progression, yet little is known about the mechanism of the synergism. Here, we found that co-infection of REV and MDV increased their replication via the RIOK3-Akt pathway. Initially, we noticed that the viral titres of MDV and REV significantly increased in REV and MDV co-infected cells compared with single-infected cells. Furthermore, tandem mass tag peptide labelling coupled with LC/MS analysis showed that Akt was upregulated in REV and MDV co-infected cells. Overexpression of Akt promoted synergistic replication of MDV and REV. Conversely, inhibition of Akt suppressed synergistic replication of MDV and REV. However, PI3K inhibition did not affect synergistic replication of MDV and REV, suggesting that the PI3K/Akt pathway is not involved in the synergism of MDV and REV. In addition, we revealed that RIOK3 was recruited to regulate Akt in REV and MDV co-infected cells. Moreover, wild-type RIOK3, but not kinase-dead RIOK3, mediated Akt phosphorylation and promoted synergistic replication of MDV and REV. Our results illustrate that MDV and REV activated a novel RIOK3-Akt signalling pathway to facilitate their synergistic replication.
Collapse
Affiliation(s)
- Xusheng Du
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Jingwen Xue
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, China
| |
Collapse
|
5
|
Outbreaks of Avipoxvirus Clade E in Vaccinated Broiler Breeders with Exacerbated Beak Injuries and Sex Differences in Severity. Viruses 2022; 14:v14040773. [PMID: 35458503 PMCID: PMC9028998 DOI: 10.3390/v14040773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Avipoxvirus affects chickens and wild birds, and it is characterized by lesions on the nonfeathered parts of the body (the cutaneous form), or necrotic lesions in the upper respiratory tract (the diphtheritic form). In poultry farming, avian pox is usually controlled by live attenuated vaccines. However, there have been many reports of outbreaks, even in flocks of vaccinated birds. In the present study, different outbreaks of the emerging clade E avipoxvirus were detected in commercial breeder flocks of chickens vaccinated against fowlpox virus in Southeast Brazil. Clinical manifestations of these outbreaks included a marked prevalence of moderate to severe progressive lesions in the beaks of affected birds, especially in roosters with increased mortality (up to 8.48%). Also, a reduced hatchability (up to 20.77% fewer hatching eggs) was observed in these flocks. Analysis of clinical samples through light and transmission electron microscopy revealed the presence of Bollinger bodies and poxvirus particles in epithelial cells and affecting chondrocytes. PCR, sequencing, and phylogenetic analysis of major core protein (P4b) and DNA polymerase (pol) genes identified this virus as clade E avipoxvirus. We also developed qPCR assays for open reading frames (ORFs) 49, 114, and 159 to detect and quantify this emergent virus. These results show the arrival and initial spread of this pathogen in the poultry industry, which was associated with harmful outbreaks and exacerbated clinical manifestations in vaccinated commercial breeder flocks. This study also highlights the relevance of permanent vigilance and the need to improve sanitary and vaccination programs.
Collapse
|
6
|
Detection and Molecular Characterization of a Natural Coinfection of Marek's Disease Virus and Reticuloendotheliosis Virus in Brazilian Backyard Chicken Flock. Vet Sci 2019; 6:vetsci6040092. [PMID: 31756886 PMCID: PMC6958383 DOI: 10.3390/vetsci6040092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/12/2023] Open
Abstract
Marek’s disease virus (MDV) and the reticuloendotheliosis virus (REV) are two of the primary oncogenic viruses that significantly affect chickens. In Brazil, there have been no previous published reports on the presence of field REV alone or in coinfection. This retrospective study analyzes samples from a case of lymphoproliferative lesions from a backyard chicken flock. MDV and REV were detected by PCR and classified as MDV1 and REV3, respectively, through sequencing and phylogenetic analysis based on the glycoprotein B (gB) genes for MDV and the polymerase (pol) and envelope (env) genes for REV. Real-time PCR reactions were performed for MDV to rule out the presence of the Rispens vaccine strain. This is the first report of the presence of REV in coinfection with a MDV clinical case in Brazil and the first molecular characterization of REV in South America. This study highlights the importance of molecular diagnosis for REV and MDV in poultry. In addition, this study highlights the distribution of these two viruses worldwide and the latent risk of them solely or in coinfection to this part of the world.
Collapse
|
7
|
Cong F, Zhu Y, Wang J, Lian Y, Liu X, Xiao L, Huang R, Zhang Y, Chen M, Guo P. A multiplex xTAG assay for the simultaneous detection of five chicken immunosuppressive viruses. BMC Vet Res 2018; 14:347. [PMID: 30442149 PMCID: PMC6238339 DOI: 10.1186/s12917-018-1663-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/22/2018] [Indexed: 02/04/2023] Open
Abstract
Background Chicken anemia virus (CAV), avian reovirus (ARV), infectious bursal disease virus (IBDV), Marek’s disease virus (MDV) and reticuloendotheliosis virus (REV) all cause immunosuppressive disease in birds through vertical or horizontal transmission. Mixed infections with these immunosuppressive pathogens lead to atypical clinical signs and obstruct accurate diagnoses and epidemiological investigations. Therefore, it is essential to develop a high-throughput assay for the simultaneous detection of these immunosuppressive viruses with high specificity and sensitivity. The aim of this study was to establish a novel method using a RT-PCR assay combined with fluorescence labeled polystyrene bead microarray (multiplex xTAG assay) to detect single or mixed viral infections. Results The results showed that the established xTAG assay had no nonspecific reactions with avian influenza virus (AIV), infectious bronchitis virus (IBV), newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV), Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS). The limit of detection was 1.0 × 103 copies/μL for IBDV and 1.0 × 102copies/μL for the other four viruses. Ninety field samples were tested and the results were confirmed using conventional RT-PCR methods. The detection results of these two methods were 100% consistent. The established multiplex xTAG assay allows a high throughput and simultaneous detection of five chicken immunosuppressive viruses. Conclusion The multiplex xTAG assay has been showed to be an additional tool for molecular epidemiology studies of five chicken immunosuppressive viruses in the poultry industry. Electronic supplementary material The online version of this article (10.1186/s12917-018-1663-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feng Cong
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Yujun Zhu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Jing Wang
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Yuexiao Lian
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China
| | - Xiangnan Liu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China
| | - Li Xiao
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Ren Huang
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Yu Zhang
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Meili Chen
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.
| | - Pengju Guo
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.
| |
Collapse
|
8
|
Ahmed H, Mays J, Kiupel M, Dunn JR. Development of reliable techniques for the differential diagnosis of avian tumour viruses by immunohistochemistry and polymerase chain reaction from formalin-fixed paraffin-embedded tissue sections. Avian Pathol 2018. [PMID: 29533078 DOI: 10.1080/03079457.2018.1451620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A variety of techniques have been developed as diagnostic tools for the differential diagnosis of tumours produced by Marek's disease virus from those induced by avian leukosis virus and reticuloendotheliosis virus. However, most current techniques are unreliable when used in formalin-fixed paraffin-embedded (FFPE) tissues, which often is the only sample type available for definitive diagnosis. A collection of tumours was generated by the inoculation of different strains of Marek's disease virus, reticuloendotheliosis virus or avian leukosis virus singularly or in combination. FFPE tissue sections from tumour and non-tumour tissues were analysed by optimized immunohistochemistry (IHC) techniques and traditional as well as quantitative polymerase chain reaction (PCR) with newly designed primers ideal for DNA fragmented by fixation. IHC and PCR results were highly sensitive and specific in tissues from single-infected birds. Virus quantity was higher in tumours compared to non-tumour spleens from Marek's disease (MD) virus-infected birds. Thus, using FFPE sections alone may be sufficient for the diagnosis of MD by demonstration of high quantities of viral antigens or genome in tumour cells, along with the absence of other tumour viruses by traditional PCR, and if standard criteria are met based on clinical history and histology. IHC furthermore allowed detection of the specific cells that were infected with different viruses in tumours from birds that had been inoculated simultaneously with multiple viruses. Following validation with field samples, these new protocols can be applied for both diagnostic and research purposes to help accurately identify avian tumour viruses in routine FFPE tissue sections.
Collapse
Affiliation(s)
- Husnain Ahmed
- a Avian Disease and Oncology Laboratory, US National Poultry Research Center, US Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA.,b Department of Comparative Medicine and Integrative Biology , College of Veterinary Medicine, Michigan State University , East Lansing , MI , USA
| | - Jody Mays
- a Avian Disease and Oncology Laboratory, US National Poultry Research Center, US Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| | - Matti Kiupel
- c Veterinary Diagnostic Laboratory , Michigan State University , Lansing , MI , USA
| | - John R Dunn
- a Avian Disease and Oncology Laboratory, US National Poultry Research Center, US Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| |
Collapse
|
9
|
Khordadmehr M, Firouzamandi M, Zehtab-Najafi M, Shahbazi R. Naturally Occurring Co-infection of Avian Leukosis Virus (subgroups A-E) and Reticuloendotheliosis Virus in Green Peafowls (Pavo muticus). BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2017-0506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Abd-Ellatieff HA, Abou Rawash AA, Ellakany HF, Goda WM, Suzuki T, Yanai T. Molecular characterization and phylogenetic analysis of a virulent Marek's disease virus field strain in broiler chickens in Japan. Avian Pathol 2017; 47:47-57. [PMID: 28762757 DOI: 10.1080/03079457.2017.1362497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Marek's disease is a lymphoproliferative disease causing a serious threat in poultry production. Field strains of Marek's disease virus (MDVs) are continuously re-emerging, causing great economical losses to the poultry industry worldwide in spite of the intensive vaccination and restrictive management policy used. Histopathological and molecular characterizations of MDVs are essential for monitoring the changes of viruses and evaluating the effectiveness of existing vaccines. During 2016, 190 visceral tumour tissues representing 30 vaccinated chicken flocks from the Gifu prefecture, Japan, were analysed. A pathological examination revealed the presence of lymphoproliferative lesions in the visceral organs. Polymerase chain reaction screening of tissue specimens using specific primers for avian leucosis virus, reticuloendotheliosis virus, and MDV was positive only for MDV. The polymerase chain reaction products of meq, pp38, virus-induced IL-8 homology, and glycoprotein MDV genes were sequenced and used for homology, phylogenetic, and similarity level analysis with the published reference of MDVs in the database. The results revealed high similarity between the field isolates, vv and vv+ strains of MDV from the USA and China. Several point mutations in the nucleotide sequence of the field isolates and their deduced amino acid sequences were detected in those genes. The present molecular analyses indicated that nucleotide and amino acid changes could be valuable criteria for differentiation and determination of the pathogenicity and oncogenicity of MDVs according to the Avian Disease and Oncology Laboratory pathotyping in vivo studies. Furthermore, the results suggest that development of a new vaccine must be considered to overcome this devastating avian oncogenic viral disease.
Collapse
Affiliation(s)
- Hoda A Abd-Ellatieff
- a Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences , Gifu University , Gifu , Japan.,b Department of Pathology and Parasitology, Faculty of Veterinary Medicine , Damanhour University , El-Beheira , Egypt
| | - Abdelrahman A Abou Rawash
- a Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences , Gifu University , Gifu , Japan.,b Department of Pathology and Parasitology, Faculty of Veterinary Medicine , Damanhour University , El-Beheira , Egypt
| | - Hany F Ellakany
- c Department of Poultry and Fish Disease, Faculty of Veterinary Medicine , Damanhour University , El-Beheira , Egypt
| | - Wael M Goda
- b Department of Pathology and Parasitology, Faculty of Veterinary Medicine , Damanhour University , El-Beheira , Egypt
| | - T Suzuki
- d Laboratory of Genome Microbiology, Faculty of Applied Biological , Gifu University , Gifu , Japan
| | - Tokuma Yanai
- a Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences , Gifu University , Gifu , Japan
| |
Collapse
|
11
|
Mete A, Gharpure R, Pitesky ME, Famini D, Sverlow K, Dunn J. Marek's Disease in Backyard Chickens, A Study of Pathologic Findings and Viral Loads in Tumorous and Nontumorous Birds. Avian Dis 2016; 60:826-836. [DOI: 10.1637/11458-062216-reg] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Hausmann JC, Mans C, Gosling A, Miller JL, Chamberlin T, Dunn JR, Miller PE, Sladky KK. Bilateral Uveitis and Hyphema in a Catalina Macaw (Ara ararauna×Ara macao) With Multicentric Lymphoma. J Avian Med Surg 2016; 30:172-8. [DOI: 10.1647/2015-105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Wang LC, Lin DY, Thong W, Wang CH. MULTIPLEX REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION FOR CHICKEN TUMOR VIRUS DETECTION. ACTA ACUST UNITED AC 2016. [DOI: 10.1142/s168264851550016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tumor diseases occur frequently in chickens causing a great economic loss. Infected chickens’ pathological lesions are not pathognomonic. This study developed an accurate diagnosis for tumor diseases in chickens. Specific primers to reticuloendotheliosis virus (REV), avian leucosis virus subgroup A (ALV-A), avian leucosis virus subgroup J (ALV-J), and Marek’s disease virus (MDV) were combined into one tube with a single step multiplex reverse transcription polymerase chain reaction (mRT-PCR) performed to amplify the genes from each virus. A total of 117 sample pools containing blood and tissues were collected from chickens. Three of these pools (2.6%) showed REV positive, 22 (18.8%) ALV-J positive, 1 (0.8%) ALV-A positive, and 3 (2.6%) MDV positive. A total of 268 blood samples were used to compare the viral RNA detection from plasma using RT-PCR and provirus DNA from buffy coat using PCR. The result showed no difference from both tests. In conclusion, the present mRT-PCR could be used for tumor virus detections in chickens.
Collapse
Affiliation(s)
- Lih-Chiann Wang
- School of Veterinary Medicine, National Taiwan University, No. 1 Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Der-Yuh Lin
- Livestock Research Institute, Council of Agriculture, No. 112 Muchang Road Xinhua District, Tainan City 71246, Taiwan
| | - Wei Thong
- School of Veterinary Medicine, National Taiwan University, No. 1 Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ching-Ho Wang
- School of Veterinary Medicine, National Taiwan University, No. 1 Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|