1
|
Watts JR, Clinton JLS, Pollet J, Peng R, Tan J, Ling PD. Multi-Antigen Elephant Endotheliotropic Herpesvirus (EEHV) mRNA Vaccine Induces Humoral and Cell-Mediated Responses in Mice. Vaccines (Basel) 2024; 12:1429. [PMID: 39772089 PMCID: PMC11728668 DOI: 10.3390/vaccines12121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Elephant endotheliotropic herpesvirus (EEHV) causes lethal hemorrhagic disease (HD) in Asian and African elephants in human care and the wild. It is the leading cause of death for young Asian elephants in North American and European zoos despite sensitive diagnostic tests and improved treatments. Thus, there is a critical need to develop an effective vaccine to prevent severe illness and reduce mortality from EEHV-HD. We generated a multi-antigenic EEHV mRNA vaccine to address this need that encodes the EEHV1A-subtype glycoproteins gB, gH, gL, and gO. These conserved proteins are the entry machinery for several herpesviruses in the betaherpesvirus subfamily and elicit humoral and cellular immunity in naturally infected elephants. Methods: Outbred CD-1 mice were vaccinated with two doses of an mRNA vaccine comprising modified EEHV1A gB, gH, gL, and gO mRNAs encapsulated into lipid nanoparticles. Humoral and T-cell immunity was assessed three weeks after the first dose or three weeks after the booster dose using luciferase immunoprecipitation system assays and flow cytometry, respectively. Results: The CD-1 mice vaccinated once had detectable antibody titers against gB, gH, and gL that increased significantly three weeks after a booster dose. Activated CD4+ and CD8+ T cells secreting cytokines associated with a TH1 response were induced against all four glycoproteins. No adverse effects were observed following one or two doses of the vaccine. Conclusions: We found that gB, gH, gL, and gO as a multivalent vaccine stimulated robust humoral and cell-mediated immunity. This is a critical step for moving this candidate EEHV1A mRNA vaccine into clinical trials in Asian elephants.
Collapse
Affiliation(s)
- Jessica R. Watts
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.W.); (R.P.); (J.T.)
| | - Jennifer L. Spencer Clinton
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (J.L.S.C.); (J.P.)
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeroen Pollet
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (J.L.S.C.); (J.P.)
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.W.); (R.P.); (J.T.)
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.W.); (R.P.); (J.T.)
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.W.); (R.P.); (J.T.)
| |
Collapse
|
2
|
Spencer Clinton JL, Hoornweg TE, Tan J, Peng R, Schaftenaar W, Rutten VPMG, de Haan CAM, Ling PD. The EEHV1A gH/gL complex elicits humoral and cell-mediated immune responses in mice. Vaccine 2024; 42:126227. [PMID: 39180978 DOI: 10.1016/j.vaccine.2024.126227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Elephant endotheliotropic herpesvirus (EEHV) causes lethal hemorrhagic disease (HD) in Asian and African elephants. Although rapid detection of viremia and supportive treatments may improve survival rates, an effective vaccine would mitigate the devastating effects of this virus. In elephants, chronic infection with EEHV leads to adaptive immunity against glycoproteins gB and gH/gL, the core entry machinery for most herpesviruses. We previously evaluated two EEHV gB vaccines in mice but not a gH/gL vaccine. Here, we found that inoculation of mice with an adjuvanted EEHV gH/gL subunit vaccine induced a significant antibody response that was similar to the response observed in elephants chronically infected with EEHV. Moreover, the gH/gL heterodimer elicited polyfunctional T cells with a Th1 phenotype but no detectable Th2 response. These results suggest that gH/gL, possibly in combination with gB, may be suitable immunogens for a vaccine comprising herpesvirus glycoproteins that are known to mediate cell entry and infection.
Collapse
Affiliation(s)
- Jennifer L Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| | - Tabitha E Hoornweg
- Department of Biomolecular Health Sciences, Div of Infectious Diseases and Immunology, Fac of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, Netherlands.
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| | - Willem Schaftenaar
- Veterinary Advisor EAZA Elephant TAG, Rotterdam Zoo, Blijdorplaan 8, 3041, JG, Rotterdam, Netherlands.
| | - Victor P M G Rutten
- Department of Biomolecular Health Sciences, Div of Infectious Diseases and Immunology, Fac of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa.
| | - Cornelis A M de Haan
- Department of Biomolecular Health Sciences, Div of Infectious Diseases and Immunology, Fac of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, Netherlands.
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Sylvester H, Raines J, Burgdorf-Moisuk A, Connolly M, Wilson S, Ripple L, Rivera S, McCain S, Latimer E. SELECTED INSTANCES OF ELEPHANT ENDOTHELIOTROPIC HERPESVIRUS SHEDDING IN TRUNK SECRETIONS BY AFRICAN ELEPHANTS ( LOXODONTA AFRICANA) IN COMPARISON TO SHEDDING BY ASIAN ELEPHANTS ( ELEPHAS MAXIMUS). J Zoo Wildl Med 2024; 55:182-194. [PMID: 38453501 DOI: 10.1638/2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 03/09/2024] Open
Abstract
This study examined the viral shedding kinetics of elephant endotheliotropic herpesvirus (EEHV) in African elephants (Loxodonta africana) compared to viral shedding behavior in Asian elephants (Elephas maximus). Little is known about the transmission dynamics and epidemiology of this disease in African elephants. In light of recent clinical cases and mortalities, this paper aims to identify trends in viral biology. Trunk wash samples were collected from 22 African elephants from four North American zoological institutions that had recently experienced herd viremias or translocations. Processing of these samples included DNA extraction followed by qPCR to quantitate viral DNA load. The results were then compared with available literature that chronicled similar cases in Asian and African elephants. Minimal EEHV shedding was detected in response to varied herd translocations. Increased shedding was recorded in herds in which an elephant experienced an EEHV viremia when compared to baseline shedding. These index infections were followed by subsequent viremias in other elephants, although it is not known if these were recrudescence, transient controlled viremias, and/or primary infections via transmission to other elephants. When compared to historically published data, it was observed that EEHV3 cases in African elephants and EEHV1A cases in Asian elephants had consistently higher levels of viral DNA in the blood than were shed in trunk secretions, a fact that is seemingly inconsistent with such severe cases of disease and the high mortality rates associated with those respective types. The findings produced in this study highlight the need for more routine monitoring of viral shedding in African elephant herds to elucidate possible EEHV transmission and recrudescence factors for ex situ population management.
Collapse
Affiliation(s)
- Hannah Sylvester
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| | | | | | | | | | | | | | | | - Erin Latimer
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC 20008, USA,
| |
Collapse
|
4
|
Fayette MA, Minich DJ, Sylvester H, Latimer E. FIRST DETECTION OF CLINICAL DISEASE DUE TO ELEPHANT ENDOTHELIOTROPIC HERPESVIRUS 7A IN TWO AFRICAN ELEPHANTS ( LOXODONTA AFRICANA) IN HUMAN CARE. J Zoo Wildl Med 2024; 55:290-294. [PMID: 38453514 DOI: 10.1638/2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 03/09/2024] Open
Abstract
Multiple species of elephant endotheliotropic herpesvirus (EEHV) have caused fatal hemorrhagic disease in African (Loxodonta africana) and Asian (Elephas maximus) elephants. To date, EEHV7 has been detected only in benign pulmonary and skin nodules and in saliva of African elephants and has not been associated with clinical illness. Low-level viremia due to EEHV7A was detected via qPCR in two subadult African elephants during routine surveillance. Hematologic changes were noted in both elephants, including leukopenia, lymphopenia, monocytopenia, and band heterophilia. Treatment was initiated with famciclovir, antimicrobials, and rectal fluids, and one elephant received plasma transfusions due to a progressive decrease in platelet count. Both elephants remained asymptomatic throughout the viremias, with rapid resolution of hematologic abnormalities. These cases add to the current understanding of the epidemiology of EEHV in African elephants; to the authors' knowledge, they represent the first documentation of clinical disease due to EEHV7 infection in any elephant.
Collapse
Affiliation(s)
| | | | - Hannah Sylvester
- National Elephant Herpesvirus Laboratory, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| | - Erin Latimer
- National Elephant Herpesvirus Laboratory, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
5
|
Prado NA, Armstrong EE, Brown JL, Goldenberg SZ, Leimgruber P, Pearson VR, Maldonado JE, Campana MG. Genomic resources for Asian (Elephas maximus) and African savannah elephant (Loxodonta africana) conservation and health research. J Hered 2023; 114:529-538. [PMID: 37246890 DOI: 10.1093/jhered/esad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023] Open
Abstract
We provide novel genomic resources to help understand the genomic traits involved in elephant health and to aid conservation efforts. We sequence 11 elephant genomes (5 African savannah, 6 Asian) from North American zoos, including 9 de novo assemblies. We estimate elephant germline mutation rates and reconstruct demographic histories. Finally, we provide an in-solution capture assay to genotype Asian elephants. This assay is suitable for analyzing degraded museum and noninvasive samples, such as feces and hair. The elephant genomic resources we present here should allow for more detailed and uniform studies in the future to aid elephant conservation efforts and disease research.
Collapse
Affiliation(s)
- Natalia A Prado
- Biology Department, College of Arts and Sciences, Adelphi University, Garden City, NY, United States
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Endocrinology Research Laboratory, Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Ellie E Armstrong
- Department of Biology, Stanford University, Stanford, CA, United States
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Janine L Brown
- Endocrinology Research Laboratory, Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Shifra Z Goldenberg
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, United States
| | - Peter Leimgruber
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Virginia R Pearson
- Glenn Rall Laboratory, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| |
Collapse
|
6
|
Steyrer C, Miller M, Hewlett J, Buss P, Hooijberg EH. Markers of inflammation in free-living African elephants (Loxodonta africana): Reference intervals and diagnostic performance of acute phase reactants. Vet Clin Pathol 2023; 52 Suppl 1:75-86. [PMID: 36303463 DOI: 10.1111/vcp.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Acute phase reactants (APRs) have not been investigated in free-living African elephants (Loxodonta africana), and there is little information about negative APRs albumin and serum iron in elephants. OBJECTIVES We aimed to generate reference intervals (RIs) for APRs for free-living African elephants, and to determine the diagnostic performance of APRs in apparently healthy elephants and elephants with inflammatory lesions. METHODS Stored serum samples from 49 apparently healthy and 16 injured free-living elephants were used. The following APRs and methods were included: albumin, bromocresol green; haptoglobin, colorimetric assay; serum amyloid A (SAA), multispecies immunoturbidometric assay, and serum iron with ferrozine method. Reference intervals were generated using the nonparametric method. Indices of diagnostic accuracy were determined by receiver-operator characteristic (ROC) curve analysis. RESULTS Reference intervals were: albumin 41-55 g/L, haptoglobin 0.16-3.51 g/L, SAA < 10 mg/L, and serum iron 8.60-16.99 μmol/L. Serum iron and albumin concentrations were lower and haptoglobin and SAA concentrations were higher in the injured group. Serum iron had the best ability to predict health or inflammation, followed by haptoglobin, SAA, and albumin, with the area under the ROC curve ranging from 0.88-0.93. CONCLUSIONS SAA concentrations were lower in healthy African vs Asian elephants, and species-specific RIs should be used. Serum iron was determined to be a diagnostically useful negative APR which should be added to APR panels for elephants.
Collapse
Affiliation(s)
- Christine Steyrer
- Department of Companion Animal Clinical Studies and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Michele Miller
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jennie Hewlett
- Department of Production Animal Studies and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Peter Buss
- Department of Production Animal Studies and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.,Veterinary Wildlife Services, South African National Parks, South Africa
| | - Emma H Hooijberg
- Department of Companion Animal Clinical Studies and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Pursell T, Spencer Clinton JL, Tan J, Peng R, Ling PD. Modified vaccinia Ankara expressing EEHV1A glycoprotein B elicits humoral and cell-mediated immune responses in mice. PLoS One 2022; 17:e0265424. [PMID: 35312707 PMCID: PMC8936464 DOI: 10.1371/journal.pone.0265424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) can cause lethal hemorrhagic disease (EEHV-HD) in Asian elephants and is the largest cause of death in captive juvenile Asian elephants in North America and Europe. EEHV-HD also has been documented in captive and wild elephants in their natural range countries. A safe and effective vaccine to prevent lethal EEHV infection would significantly improve conservation efforts for this endangered species. Recent studies from our laboratory suggest that EEHV morbidity and mortality are often associated with primary infection. Therefore, we aim to generate a vaccine, particularly for EEHV1 naïve animals, with the goal of preventing lethal EEHV-HD. To address this goal, we generated a Modified Vaccinia Ankara (MVA) recombinant virus expressing a truncated form of glycoprotein B (gBΔfur731) from EEHV1A, the strain associated with the majority of lethal EEHV cases. Vaccination of CD-1 mice with this recombinant virus induced robust antibody and polyfunctional T cell responses significantly above mice inoculated with wild-type MVA. Although the vaccine-induced T cell response was mainly observed in CD8+ T cell populations, the CD4+ T cell response was also polyfunctional. No adverse responses to vaccination were observed. Overall, our data demonstrates that MVA-gBΔfur731 stimulates robust humoral and cell-mediated responses, supporting its potential translation for use in elephants.
Collapse
Affiliation(s)
- Taylor Pursell
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
8
|
Costa T, Rocchigiani G, Zendri F, Drake G, Lopez J, Chantrey J, Ricci E. Elephant Endotheliotropic Herpesvirus 4 and Clostridium perfringens Type C Fatal Co-Infection in an Adult Asian Elephant (Elephas maximus). Animals (Basel) 2022; 12:ani12030349. [PMID: 35158672 PMCID: PMC8833544 DOI: 10.3390/ani12030349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/25/2023] Open
Abstract
Elephant endotheliotropic herpesvirus hemorrhagic disease (EEHV-HD) is an acute, often fatal, multisystemic hemorrhagic disease and one of the most significant causes of mortality of Asian elephants in captivity. Most fatal cases of EEHV-HD are associated with EEHV1A and EEHV1B in juveniles. This case report describes the clinical and pathological features of a fatal co-infection of Clostridium perfringens type C and EEHV-HD, caused by EEHV4, in an adult female Asian elephant. Although fatal clostridial enterotoxemia has been occasionally reported in elephants, this report highlights the importance of having both EEHV-HD and clostridial enterotoxemia as potential differential diagnoses in cases of widespread tissue necrosis and internal hemorrhage in elephants, regardless of the animal age group, due to their macroscopic similarities, frequent co-occurrence and cumulative morbid potential.
Collapse
Affiliation(s)
- Taiana Costa
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Chester High Road, Neston CH64 7TE, UK; (T.C.); (G.R.); (F.Z.); (J.C.)
| | - Guido Rocchigiani
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Chester High Road, Neston CH64 7TE, UK; (T.C.); (G.R.); (F.Z.); (J.C.)
| | - Flavia Zendri
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Chester High Road, Neston CH64 7TE, UK; (T.C.); (G.R.); (F.Z.); (J.C.)
| | - Gabby Drake
- Chester Zoo, Upton-by-Chester, Cheshire CH2 1LH, UK; (G.D.); (J.L.)
| | - Javier Lopez
- Chester Zoo, Upton-by-Chester, Cheshire CH2 1LH, UK; (G.D.); (J.L.)
| | - Julian Chantrey
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Chester High Road, Neston CH64 7TE, UK; (T.C.); (G.R.); (F.Z.); (J.C.)
| | - Emanuele Ricci
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Chester High Road, Neston CH64 7TE, UK; (T.C.); (G.R.); (F.Z.); (J.C.)
- Correspondence:
| |
Collapse
|
9
|
Lee MH, Nathan SKSS, Benedict L, Nagalingam P, Latimer E, Hughes T, Ramirez D, Sukor JRA. The first reported cases of elephant endotheliotropic herpesvirus infectious haemorrhagic disease in Malaysia: case report. Virol J 2021; 18:231. [PMID: 34819101 PMCID: PMC8611640 DOI: 10.1186/s12985-021-01694-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Abstract
Background Elephant endotheliotropic herpesvirus haemorrhagic disease (EEHV HD) is the leading cause of death in captive Asian elephant calves in Asia, North America, and Europe with a mortality rate of ~ 65% in calves that are under human care. Although EEHV HD was first found in elephant camps, more recently it was identified in wild populations which poses a greater threat to the elephant population. Deaths due to EEHV HD have been seen in wild elephants, but the in-situ prevalence and mortality rate is unknown. We report the first EEHV HD cases in Malaysia from 3 wild born endangered Bornean elephant calves from Sabah with known typical clinical signs. Case presentation The first calf died within 24 h of the onset of clinical signs; the second calf died within 12 h of the onset of clinical signs. The third calf succumbed within 72 h. Necropsies revealed that all 3 calves had similar presentations of EEHV HD but in the third calf with less severity. We conducted conventional polymerase chain reaction (cPCR) assays and found EEHV DNA at all 7 loci in the 3 calves; it was identified as EEHV1A, the virus type that has been found in most other reported cases. Conclusion Typical EEHV HD clinical signs and the molecular confirmation of EEHV by cPCR and sequencing point to EEHV as the cause of death. Further genetic investigation of the strain is in progress.
Collapse
Affiliation(s)
- Mei-Ho Lee
- Conservation Medicine, 47000, Sungai Buloh, Selangor, Malaysia. .,EcoHealth Alliance, New York, NY, 10018, USA.
| | - Senthilvel K S S Nathan
- Sabah Wildlife Department, 88100, Kota Kinabalu, Sabah, Malaysia.,Wildlife Rescue Unit, Sabah Wildlife Department, 88100, Kota Kinabalu, Sabah, Malaysia
| | - Laura Benedict
- Wildlife Rescue Unit, Sabah Wildlife Department, 88100, Kota Kinabalu, Sabah, Malaysia
| | - Pakeeyaraj Nagalingam
- Wildlife Rescue Unit, Sabah Wildlife Department, 88100, Kota Kinabalu, Sabah, Malaysia
| | - Erin Latimer
- National Elephant Herpesvirus Laboratory, Wildlife Health Sciences Department, Smithsonian's National Zoo, Washington, DC, 20008, USA
| | - Tom Hughes
- Conservation Medicine, 47000, Sungai Buloh, Selangor, Malaysia.,EcoHealth Alliance, New York, NY, 10018, USA
| | - Diana Ramirez
- Wildlife Rescue Unit, Sabah Wildlife Department, 88100, Kota Kinabalu, Sabah, Malaysia
| | | |
Collapse
|
10
|
Patterns of serum immune biomarkers during elephant endotheliotropic herpesvirus viremia in Asian and African elephants. PLoS One 2021; 16:e0252175. [PMID: 34793450 PMCID: PMC8601435 DOI: 10.1371/journal.pone.0252175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Hemorrhagic disease (HD) caused by a group of elephant endotheliotropic herpesviruses (EEHV) is one of the leading causes of death for young elephants in human care. These viruses are widespread and typically persist latently in adult elephants with no negative effects; however, in juvenile Asian and more recently young African elephants, the onset of disease can be rapid and the mortality rate high. Measuring biomarkers associated with the immune response could be beneficial to understanding underlying disease processes, as well as the management of infection and HD. The goal of this study was to measure acute phase proteins and cytokines in serum collected from elephants infected with EEHV (13 Asian and 1 African) and compare concentrations according to presence, severity and outcome of disease. Serum amyloid A (SAA) and haptoglobin (HP) were higher in elephants with EEHV viremia than those without; concentrations increased with increasing viral load, and were higher in fatal cases compared to those that survived. In Asian elephants, SAA was also higher during EEHV1 viremia compared to EEHV5. Cytokine concentrations were typically low, and no statistical differences existed between groups. However, in individuals with detectable levels, longitudinal profiles indicated changes in tumor necrosis factor alpha (TNF-α) and interleukin-2 (IL-2) that may reflect an immune response to EEHV infection. However, the overall low concentrations detected using previously validated assays do not support the presence of a 'cytokine storm' and suggest more work is needed to understand if sub-optimal immune responses could be involved in disease progression. These results highlight the potential benefit of measuring circulating biomarker concentrations, such as APPs and cytokines, to improve our understanding of EEHV viremia and HD, assist with monitoring the progression of disease and determining the impact of interventions.
Collapse
|
11
|
Primary Infection May Be an Underlying Factor Contributing to Lethal Hemorrhagic Disease Caused by Elephant Endotheliotropic Herpesvirus 3 in African Elephants ( Loxodonta africana). Microbiol Spectr 2021; 9:e0098321. [PMID: 34668724 PMCID: PMC8528115 DOI: 10.1128/spectrum.00983-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distinct but related species of elephant endotheliotropic herpesviruses (EEHVs) circulate within Asian and African elephant populations. Primary infection with EEHVs endemic among Asian elephants can cause clinical illness and lethal EEHV hemorrhagic disease (EEHV-HD). The degree to which this occurs among African elephants has not been fully established. Recent cases of EEHV-HD caused by the EEHV3 species in African elephants housed in North American zoos has heightened concern about the susceptibility of this elephant species to EEHV-HD. In this study, we utilize the luciferase immunoprecipitation system (LIPS) to generate a serological assay specific for EEHV3 in African elephants by detecting antibodies against the EEHV3 E34 protein. The results showed that the majority of tested elephants from four separate and genetically unrelated herds, including five elephants that survived clinical illness associated with EEHV3, were positive for prior infection with EEHV3. However, African elephants who succumbed to EEHV3-HD were seronegative for EEHV3 prior to lethal infection. This supports the hypothesis that fatal EEHV-HD caused by EEHV3 is associated with primary infection rather than reactivation of latent virus. Lastly, we observed that African elephants, like Asian elephants, acquire abundant anti-EEHV antibodies prenatally and that anti-EEHV3 specific antibodies were either never detected or declined to undetectable levels in those animals that died from lethal disease following EEHV3 infection. IMPORTANCE Prior to 2019, only five cases of clinical disease from EEHV infection among African elephants had been documented. Since 2019, there have been at least seven EEHV-HD cases in North American zoos, resulting in three fatalities, all associated with EEHV3. Evidence is accumulating to suggest that EEHV-associated clinical illness and death among Asian elephants is due to primary infection and may be associated with waning anti-EEHV antibody levels in young elephants. The development of the EEHV3 serological test described in this study enabled us to confirm that similar dynamics may be contributing to EEHV-HD in African elephants. The ability to screen for EEHV immune status in African elephant calves will have a major impact on managing captive African elephant herds and will provide new tools for investigating and understanding EEHV in wild populations.
Collapse
|
12
|
ACUTE HEMORRHAGIC DISEASE DUE TO ELEPHANT ENDOTHELIOTROPIC HERPESVIRUS 3A INFECTION IN FIVE AFRICAN ELEPHANTS ( LOXODONTA AFRICANA) AT ONE NORTH AMERICAN ZOOLOGICAL INSTITUTION. J Zoo Wildl Med 2021; 52:357-365. [PMID: 33827199 DOI: 10.1638/2020-0126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 11/21/2022] Open
Abstract
Acute hemorrhagic disease caused by elephant endotheliotropic herpesvirus (EEHV) infection is well recognized as a major threat to young Asian elephants (Elephas maximus) but has been less frequently documented in African elephants (Loxodonta africana). This report describes five sequential cases of EEHV3A infection in African elephants in managed care at one institution. All elephants developed disease within a 4-mo period. The first two cases were 6.5- and 7.5-yr-old females that presented with depressed mentation, anorexia, hematuria, and diarrhea. Both elephants died within 48-72 hr of the onset of illness despite treatment. Postmortem findings included widespread edema, ascites, and extensive petechiae and ecchymoses on the heart, liver, and spleen and within the gastrointestinal and urogenital tracts. Histologic examination identified disseminated vascular necrosis with edema, hemorrhage, and rare endothelial cell intranuclear inclusions typical of herpesvirus in multiple organs. The third and fourth cases were a 13-yr-old male and a 12-yr-old female that presented with minimal to no clinical signs, but with marked changes in hematologic parameters and high viremia detected by quantitative polymerase chain reaction (qPCR). Both elephants survived the infection with early and aggressive treatment. The fifth case was a 37-yr-old female that presented with lethargy and a decreased appetite. Low viremia was detected by qPCR, and mild to moderate hematologic changes were noted. Early treatment resulted in a successful outcome. This case series documents the first known reports of clinical disease and fatality associated with EEHV3A in African elephants.
Collapse
|
13
|
Pearson VR, Bosse JB, Koyuncu OO, Scherer J, Toruno C, Robinson R, Abegglen LM, Schiffman JD, Enquist LW, Rall GF. Identification of African Elephant Polyomavirus in wild elephants and the creation of a vector expressing its viral tumor antigens to transform elephant primary cells. PLoS One 2021; 16:e0244334. [PMID: 33544724 PMCID: PMC7864673 DOI: 10.1371/journal.pone.0244334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 11/29/2022] Open
Abstract
Wild elephant populations are declining rapidly due to rampant killing for ivory and body parts, range fragmentation, and human-elephant conflict. Wild and captive elephants are further impacted by viruses, including highly pathogenic elephant endotheliotropic herpesviruses. Moreover, while the rich genetic diversity of the ancient elephant lineage is disappearing, elephants, with their low incidence of cancer, have emerged as a surprising resource in human cancer research for understanding the intrinsic cellular response to DNA damage. However, studies on cellular resistance to transformation and herpesvirus reproduction have been severely limited, in part due to the lack of established elephant cell lines to enable in vitro experiments. This report describes creation of a recombinant plasmid, pAelPyV-1-Tag, derived from a wild isolate of African Elephant Polyomavirus (AelPyV-1), that can be used to create immortalized lines of elephant cells. This isolate was extracted from a trunk nodule biopsy isolated from a wild African elephant, Loxodonta africana, in Botswana. The AelPyV-1 genome contains open-reading frames encoding the canonical large (LTag) and small (STag) tumor antigens. We cloned the entire early region spanning the LTag and overlapping STag genes from this isolate into a high-copy vector to construct a recombinant plasmid, pAelPyV-1-Tag, which effectively transformed primary elephant endothelial cells. We expect that the potential of this reagent to transform elephant primary cells will, at a minimum, facilitate study of elephant-specific herpesviruses.
Collapse
Affiliation(s)
- Virginia R. Pearson
- Fox Chase Cancer Center, Program in Blood Cell Development and Function, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Jens B. Bosse
- RESIST Cluster of Excellence, Institute of Virology at Hannover Medical School, Center for Structural Systems Biology, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Orkide O. Koyuncu
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, United States of America
| | - Julian Scherer
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, United States of America
| | - Cristhian Toruno
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Rosann Robinson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Lisa M. Abegglen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Joshua D. Schiffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Lynn W. Enquist
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, United States of America
| | - Glenn F. Rall
- Fox Chase Cancer Center, Program in Blood Cell Development and Function, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Serum Health Biomarkers in African and Asian Elephants: Value Ranges and Clinical Values Indicative of the Immune Response. Animals (Basel) 2020; 10:ani10101756. [PMID: 32992555 PMCID: PMC7601509 DOI: 10.3390/ani10101756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Biomarkers are biological molecules found in the blood or other fluids or tissues that can indicate normal or abnormal processes or disease. Developing tools to measure biomarkers that indicate immune function and establishing concentrations observed within a species is an important first step in their use for managing health and understanding disease processes. Here we report assays, observed value ranges, and concentrations during illness or injury for seven immune biomarkers measured in the serum of African and Asian elephants under human care. Concentrations were variable in both clinical and non-clinical samples, but all seven biomarkers were elevated in at least one case and most increased in response to routine vaccination in a single Asian elephant. These tools provide an exciting avenue for monitoring health status and helping diagnose and treat health problems in wildlife species, like elephants. Abstract Serum biomarkers indicative of inflammation and disease can provide useful information regarding host immune processes, responses to treatment and prognosis. The aims of this study were to assess the use of commercially available anti-equine reagents for the quantification of cytokines (tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukins (IL) 2, 6, and 10) in African (Loxodonta africana, n = 125) and Asian (Elephas maximus, n = 104) elephants, and alongside previously validated anti-human reagents for acute-phase proteins (serum amyloid A and haptoglobin), calculate species-specific biomarker value ranges. In addition, we used opportunistically collected samples to investigate the concentrations of each biomarker during identified clinical cases of illness or injury, as a first step to understanding what biomarkers may be useful to managing elephant health. Immune biomarkers were each elevated above the calculated species-specific value ranges in at least one clinical case, but due to variability in both clinical and non-clinical samples, only serum amyloid A was significantly higher in clinical compared to non-clinical paired samples, with tendencies for higher TNF-α and IL-10. We also detected increased secretion of serum amyloid A and all five cytokines following routine vaccination of a single Asian elephant, indicating that these biomarkers can be beneficial for studying normal immune processes as well as pathology. This study indicates that assays developed with commercial reagents can be used to quantify health biomarkers in wildlife species and identifies several that warrant further investigation to elucidate immune responses to various pathologies.
Collapse
|
15
|
NONINVASIVE SAMPLING FOR DETECTION OF ELEPHANT ENDOTHELIOTROPIC HERPESVIRUS AND GENOMIC DNA IN ASIAN ( ELEPHAS MAXIMUS) AND AFRICAN ( LOXODONTA AFRICANA) ELEPHANTS. J Zoo Wildl Med 2020; 51:433-437. [PMID: 32549575 DOI: 10.1638/2019-0112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2020] [Indexed: 11/21/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) hemorrhagic disease (EEHV-HD) threatens Asian elephant (Elephas maximus) population sustainability in North America. Clusters of cases have also been reported in African elephants (Loxodonta africana). Risk to range country elephant populations is unknown. Currently, EEHV detection depends upon sampling elephants trained for invasive blood and trunk wash collection. To evaluate noninvasive sample collection options, paired invasively collected (blood, trunk wash and oral swabs), and noninvasively collected (chewed plant and fecal) samples were compared over 6 wk from 9 Asian elephants and 12 African elephants. EEHV shedding was detected simultaneously in a paired trunk wash and fecal sample from one African elephant. Elephant γ herpesvirus-1 shedding was identified in six chewed plant samples collected from four Asian elephants. Noninvasively collected samples can be used to detect elephant herpesvirus shedding. Longer sampling periods are needed to evaluate the clinical usefulness of noninvasive sampling for EEHV detection.
Collapse
|
16
|
Lethal Hemorrhagic Disease and Clinical Illness Associated with Elephant Endotheliotropic Herpesvirus 1 Are Caused by Primary Infection: Implications for the Detection of Diagnostic Proteins. J Virol 2020; 94:JVI.01528-19. [PMID: 31723022 PMCID: PMC7000966 DOI: 10.1128/jvi.01528-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
Whether clinical illness and deaths associated with elephant endotheliotropic herpesvirus (EEHV) infection result from primary infection or reactivation of latent virus is a longstanding question in the field. By applying a relatively new assay, the luciferase immunoprecipitation system (LIPS), combined with the genomic sequences of the viruses, we gained the insights and tools needed to resolve this issue. Our EEHV1-specific LIPS assay should be useful for assessing the vulnerability of elephant calves to infection with different EEHVs and evaluating antibody responses to anti-EEHV vaccines. A significant proportion of the Asian elephant population is under some form of human care. Hence, the ability to screen for EEHV immune status in elephant calves should have a major impact on the management of these animals worldwide. Elephant endotheliotropic herpesvirus (EEHV) can cause lethal hemorrhagic disease in juvenile Asian elephants, both in captivity and in the wild. Most deaths associated with the virus are caused by two chimeric variants of EEHV1 (EEHV1A and EEHV1B), while two other EEHVs endemic within Asian elephants (EEHV4 and EEHV5) have been recognized but cause death less often. Whether lethal EEHV infections are due to primary infection or reactivation of latent virus remains unknown, and knowledge of the anti-EEHV antibody levels in young elephants is limited. To close these gaps, we sought to develop a serologic assay capable of distinguishing among infections with different EEHVs using a luciferase immunoprecipitation system (LIPS) for antibody profiling and a panel of conserved EEHV recombinant proteins and proteins unique to EEHV1. The results showed that elephants dying from EEHV1 hemorrhagic disease or ill from EEHV infection were seronegative for the EEHV species that caused the disease or illness, indicating that the events were associated with primary infection rather than reactivation of latent virus. We also demonstrated that waning of EEHV1-specific antibodies can occur in the first 2 years of life, when a threshold protective level of antibody may be needed to prevent severe EEHV1-related disease. Use of the LIPS assay to identify putative “diagnostic” proteins would be a valuable asset in determining the EEHV immune status of young elephants and responses to candidate EEHV vaccines in the future. IMPORTANCE Whether clinical illness and deaths associated with elephant endotheliotropic herpesvirus (EEHV) infection result from primary infection or reactivation of latent virus is a longstanding question in the field. By applying a relatively new assay, the luciferase immunoprecipitation system (LIPS), combined with the genomic sequences of the viruses, we gained the insights and tools needed to resolve this issue. Our EEHV1-specific LIPS assay should be useful for assessing the vulnerability of elephant calves to infection with different EEHVs and evaluating antibody responses to anti-EEHV vaccines. A significant proportion of the Asian elephant population is under some form of human care. Hence, the ability to screen for EEHV immune status in elephant calves should have a major impact on the management of these animals worldwide.
Collapse
|
17
|
Boonprasert K, Punyapornwithaya V, Tankaew P, Angkawanish T, Sriphiboon S, Titharam C, Brown JL, Somgird C. Survival analysis of confirmed elephant endotheliotropic herpes virus cases in Thailand from 2006 - 2018. PLoS One 2019; 14:e0219288. [PMID: 31276571 PMCID: PMC6611605 DOI: 10.1371/journal.pone.0219288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/20/2019] [Indexed: 11/19/2022] Open
Abstract
The elephant endotheliotropic herpesvirus (EEHV) has been a known cause of death of young elephants in Thailand for over a decade. In this study, we report on the demography, disease characteristics and mortality of 58 elephants with confirmed EEHV hemorrhagic disease between January 2006 and August 2018 using retrospective data subjected to survival analysis. Median age of EEHV presentation was 29 months, and the mortality rate was 68.97% with a median survival time of 36 h. Most EEHV cases occurred in the north of Thailand, the region where most of the country’s captive elephants reside. The hazard ratio analysis identified application of medical procedures and antiviral medications as being significant factors correlated to the risk of death. Our results indicate a need to focus EEHV monitoring efforts on young elephants and to follow current protocols that advise starting treatments before clinical signs appear.
Collapse
Affiliation(s)
| | - Veerasak Punyapornwithaya
- Center of Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pallop Tankaew
- Center of Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
| | - Taweepoke Angkawanish
- Elephant Hospital, National Elephant Institute, Forest Industry Organization, Lampang, Thailand
| | - Supaphen Sriphiboon
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakornpathom, Thailand
| | - Chatchote Titharam
- Center of Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Companion Animal and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Janine L. Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia, United State of America
| | - Chaleamchat Somgird
- Center of Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Companion Animal and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
18
|
Azab W, Dayaram A, Greenwood AD, Osterrieder N. How Host Specific Are Herpesviruses? Lessons from Herpesviruses Infecting Wild and Endangered Mammals. Annu Rev Virol 2018; 5:53-68. [PMID: 30052491 DOI: 10.1146/annurev-virology-092917-043227] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesviruses are ubiquitous and can cause disease in all classes of vertebrates but also in animals of lower taxa, including molluscs. It is generally accepted that herpesviruses are primarily species specific, although a species can be infected by different herpesviruses. Species specificity is thought to result from host-virus coevolutionary processes over the long term. Even with this general concept in mind, investigators have recognized interspecies transmission of several members of the Herpesviridae family, often with fatal outcomes in non-definitive hosts-that is, animals that have no or only a limited role in virus transmission. We here summarize herpesvirus infections in wild mammals that in many cases are endangered, in both natural and captive settings. Some infections result from herpesviruses that are endemic in the species that is primarily affected, and some result from herpesviruses that cause fatal disease after infection of non-definitive hosts. We discuss the challenges of such infections in several endangered species in the absence of efficient immunization or therapeutic options.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Zentrum für Infektionsmedizin, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Anisha Dayaram
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany;
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany;
| | - Nikolaus Osterrieder
- Institut für Virologie, Zentrum für Infektionsmedizin, Freie Universität Berlin, 14163 Berlin, Germany;
| |
Collapse
|
19
|
Production of antibody against elephant endotheliotropic herpesvirus (EEHV) unveils tissue tropisms and routes of viral transmission in EEHV-infected Asian elephants. Sci Rep 2018; 8:4675. [PMID: 29549315 PMCID: PMC5856810 DOI: 10.1038/s41598-018-22968-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 01/06/2023] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) is one of the most devastating viral infectious diseases in elephants worldwide. To date, it remains unclear how elephants get infected by the virus, where the virus persists, and what mechanisms drive the pathogenesis of the disease. The present study was aimed to develop an antibody against glycoprotein B (gB) of EEHV, investigate the EEHV tissue tropisms, and provide the possible routes of EEHV transmission in Asian elephants. Samples from elephant organs that had died from EEHV1A and EEHV4 infections, peripheral blood mononuclear cells (PBMC) from EEHV4- and non-EEHV-infected calves were used in this study. The results of western immunoblotting indicated that the antibody can be used for detection of gB antigens in both EEHV1A- and EEHV4-infected samples. Immunohistochemical detection indicated that the EEHV gB antigens were distributed mainly in the epithelial cells of the salivary glands, stomach and intestines. Immunofluorescence test of PBMC for EEHV gB in the EEHV4-infected calf indicated that the virus was observed predominantly in the mononuclear phagocytic cells. The findings in the present study unveil tissue tropisms in the EEHV1A- and EEHV4-infected calves and point out that saliva and intestinal content are likely sources for virus transmission in EEHV-infected Asian elephants.
Collapse
|