1
|
Stroud JT, Ratcliff WC. Long-term studies provide unique insights into evolution. Nature 2025; 639:589-601. [PMID: 40108318 DOI: 10.1038/s41586-025-08597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
From experimental evolution in the laboratory to sustained measurements of natural selection in the wild, long-term studies have revolutionized our understanding of evolution. By directly investigating evolutionary dynamics in real time, these approaches have provided unparallelled insights into the complex interplay between evolutionary process and pattern. These approaches can reveal oscillations, stochastic fluctuations and systematic trends that unfold over extended periods, expose critical time lags between environmental shifts and population responses, and illuminate how subtle effects may accumulate into significant evolutionary patterns. Long-term studies can also reveal otherwise cryptic trends that unfold over extended periods, and offer the potential for serendipity: observing rare events that spur new evolutionary hypotheses and research directions. Despite the challenges of conducting long-term research, exacerbated by modern funding landscapes favouring short-term projects, the contributions of long-term studies to evolutionary biology are indispensable. This is particularly true in our rapidly changing, human-dominated world, where such studies offer a crucial window into how environmental changes and altered species interactions shape evolutionary trajectories. In this Review article, we showcase the groundbreaking discoveries of long-term evolutionary studies, underscoring their crucial role in advancing our understanding of the complex nature of evolution across multiple systems and timescales.
Collapse
Affiliation(s)
- James T Stroud
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Longman EK, Sanford E. An experimental test of eco-evolutionary dynamics on rocky shores. Ecology 2025; 106:e4505. [PMID: 39814598 PMCID: PMC11735340 DOI: 10.1002/ecy.4505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 01/18/2025]
Abstract
A growing body of theoretical studies and laboratory experiments has focused attention on reciprocal feedbacks between ecological and evolutionary processes. However, uncertainty remains about whether such eco-evolutionary feedbacks have an important or negligible influence on natural communities. Thus, recent discussions call for field experiments that explore whether selection on phenotypic variation within populations leads to contemporaneous effects on community dynamics. To help fill this gap, in this study, we test the hypothesis that selection on consumer traits in a population of predatory drilling snails can drive eco-evolutionary dynamics in a rocky intertidal community in California, USA. We first conducted a laboratory selection experiment to raise newly hatched dogwhelks (Nucella canaliculata) on four diet treatments encompassing a range of prey species and shell thicknesses. Snails that survived to adulthood under these diet treatments differed in their capacity to drill thick-shelled mussels. Dogwhelks from these treatment groups were then outplanted to intertidal field cages for 1 year to test whether groups experiencing selection differed in their effects on mussel bed succession. As expected, succession proceeded most rapidly in the reference treatment with dogwhelks excluded. However, successional patterns differed minimally among dogwhelks raised under the different diet treatments. Thus, although our laboratory results suggest that prey can impose selection that leads to rapid adaptation and divergent consumer traits, these feedbacks were not strong enough to result in clear community effects in the field. We propose that a limited range of variation in functional traits within populations, moderate strengths of selection, and a background of substantial abiotic and biotic variation may all act to dampen the potential for strong eco-evolutionary dynamics in this and many other natural communities.
Collapse
Affiliation(s)
- Emily K. Longman
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
- Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
- Present address:
Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - Eric Sanford
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
- Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
3
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Kolbe JJ, Giery ST, Lapiedra O, Lyberger KP, Pita-Aquino JN, Moniz HA, Leal M, Spiller DA, Losos JB, Schoener TW, Piovia-Scott J. Experimentally simulating the evolution-to-ecology connection: Divergent predator morphologies alter natural food webs. Proc Natl Acad Sci U S A 2023; 120:e2221691120. [PMID: 37276393 PMCID: PMC10268251 DOI: 10.1073/pnas.2221691120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/29/2023] [Indexed: 06/07/2023] Open
Abstract
The idea that changing environmental conditions drive adaptive evolution is a pillar of evolutionary ecology. But, the opposite-that adaptive evolution alters ecological processes-has received far less attention yet is critical for eco-evolutionary dynamics. We assessed the ecological impact of divergent values in a key adaptive trait using 16 populations of the brown anole lizard (Anolis sagrei). Mirroring natural variation, we established islands with short- or long-limbed lizards at both low and high densities. We then monitored changes in lower trophic levels, finding that on islands with a high density of short-limbed lizards, web-spider densities decreased and plants grew more via an indirect positive effect, likely through an herbivore-mediated trophic cascade. Our experiment provides strong support for evolution-to-ecology connections in nature, likely closing an otherwise well-characterized eco-evolutionary feedback loop.
Collapse
Affiliation(s)
- Jason J. Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, RI02881
| | - Sean T. Giery
- Department of Biology, The Pennsylvania State University, University Park, PA16802
| | - Oriol Lapiedra
- Centre for Research in Ecology and Applied Forestry (CREAF), Cerdanyola del Valles, Catalonia08193, Spain
| | - Kelsey P. Lyberger
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | | | - Haley A. Moniz
- Department of Biology, University of Nevada, Reno, NV89557
| | - Manuel Leal
- Department of Biological Sciences, University of Missouri, Columbia, MO65211
| | - David A. Spiller
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Jonathan B. Losos
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO63130
| | - Thomas W. Schoener
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA98686
| |
Collapse
|
5
|
An Experimental Analysis of Perch Diameter and Substrate Preferences of Anolis Lizards from Natural Forest and Urban Habitats. J HERPETOL 2021. [DOI: 10.1670/0022-1511-55.3.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Attenuated phenotypic responses of lizard morphology to logging and fire-related forest disturbance. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Wright AN, Yang LH, Piovia-Scott J, Spiller DA, Schoener TW. Consumer Responses to Experimental Pulsed Subsidies in Isolated versus Connected Habitats. Am Nat 2020; 196:369-381. [PMID: 32813995 DOI: 10.1086/710040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIncreases in consumer abundance following a resource pulse can be driven by diet shifts, aggregation, and reproductive responses, with combined responses expected to result in faster response times and larger numerical increases. Previous work in plots on large Bahamian islands has shown that lizards (Anolis sagrei) increased in abundance following pulses of seaweed deposition, which provide additional prey (i.e., seaweed detritivores). Numerical responses were associated with rapid diet shifts and aggregation, followed by increased reproduction. These dynamics are likely different on isolated small islands, where lizards cannot readily immigrate or emigrate. To test this, we manipulated the frequency and magnitude of seaweed resource pulses on whole small islands and in plots within large islands, and we monitored lizard diet and numerical responses over 4 years. We found that seaweed addition caused persistent increases in lizard abundance on small islands regardless of pulse frequency or magnitude. Increased abundance may have occurred because the initial pulse facilitated population establishment, possibly via enhanced overwinter survival. In contrast with a previous experiment, we did not detect numerical responses in plots on large islands, despite lizards consuming more marine resources in subsidized plots. This lack of a numerical response may be due to rapid aggregation followed by disaggregation or to stronger suppression of A. sagrei by their predators on the large islands in this study. Our results highlight the importance of habitat connectivity in governing ecological responses to resource pulses and suggest that disaggregation and changes in survivorship may be underappreciated drivers of pulse-associated dynamics.
Collapse
|
8
|
Rabe AM, Herrmann NC, Culbertson KA, Donihue CM, Prado-Irwin SR. Post-hurricane shifts in the morphology of island lizards. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractHurricanes are expected to increase in both frequency and intensity as a result of climate change, but the impacts of these disturbances on the evolutionary trajectories of the species they affect are not yet well understood. In this project, we investigated population-level changes in morphology in the lizard Anolis carolinensis after Hurricane Irma in 2017. We found that anole populations were morphologically distinct after the hurricane, exhibiting significantly longer forelimbs and hindlimbs compared with pre-hurricane measurements. These morphological changes were consistent across two replicate islands and between males and females. The observed morphological shifts were potentially driven by positive selection from Hurricane Irma on clinging capacity. In this opportunistic study, we documented post-hurricane changes in the morphology of island lizards and suggest the potential for increasingly frequent and intense hurricanes to play an important role in natural selection and anole evolution.
Collapse
Affiliation(s)
- Allison M Rabe
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
| | - Nicholas C Herrmann
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
| | | | - Colin M Donihue
- Department of Biology, Washington University, St Louis, MO, USA
| | - Sofia R Prado-Irwin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
| |
Collapse
|
9
|
Reynolds RG, Kolbe JJ, Glor RE, López-Darias M, Gómez Pourroy CV, Harrison AS, de Queiroz K, Revell LJ, Losos JB. Phylogeographic and phenotypic outcomes of brown anole colonization across the Caribbean provide insight into the beginning stages of an adaptive radiation. J Evol Biol 2020; 33:468-494. [PMID: 31872929 DOI: 10.1111/jeb.13581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023]
Abstract
Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest that Anolis sagrei is a candidate for understanding the origins of the Caribbean Anolis adaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range of A. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post-colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor-poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.
Collapse
Affiliation(s)
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Richard E Glor
- Herpetology Division, Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KA, USA
| | | | | | - Alexis S Harrison
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA.,Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Jonathan B Losos
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, USA
| |
Collapse
|
10
|
Close encounters of the urban kind: predators influence prey body size variation in an urban landscape. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10008-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Reznick DN, Losos J, Travis J. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol Lett 2018; 22:233-244. [PMID: 30478871 DOI: 10.1111/ele.13189] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Experimental studies of evolution performed in nature and the associated demonstration of rapid evolution, observable on a time scale of months to years, were an acclaimed novelty in the 1980-1990s. Contemporary evolution is now considered ordinary and is an integrated feature of many areas of research. This shift from extraordinary to ordinary reflects a change in the perception of evolution. It was formerly thought of as a historical process, perceived through the footprints left in the fossil record or living organisms. It is now seen as a contemporary process that acts in real time. Here we review how this shift occurred and its consequences for fields as diverse as wildlife management, conservation biology, and ecosystems ecology. Incorporating contemporary evolution in these fields has caused old questions to be recast, changed the answers, caused new and previously inconceivable questions to be addressed, and inspired the development of new subdisciplines. We argue further that the potential of contemporary evolution has yet to be fulfilled. Incorporating evolutionary dynamics in any research program can provide a better assessment of how and why organisms and communities came to be as they are than is attainable without an explicit treatment of these dynamics.
Collapse
Affiliation(s)
- David N Reznick
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, 92521
| | - Jonathan Losos
- Department of Biology, Washington University, St. Louis, MO, 63130
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4340
| |
Collapse
|
12
|
Hurricane-induced selection on the morphology of an island lizard. Nature 2018; 560:88-91. [DOI: 10.1038/s41586-018-0352-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
|
13
|
|
14
|
Brady SP, Goedert D. Positive Sire Effects and Adaptive Genotype by Environment Interaction Occur despite Pattern of Local Maladaptation in Roadside Populations of an Amphibian. COPEIA 2017. [DOI: 10.1643/cg-16-535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Urban MC, Richardson JL, Freidenfelds NA, Drake DL, Fischer JF, Saunders PP. Microgeographic Adaptation of Wood Frog Tadpoles to an Apex Predator. COPEIA 2017. [DOI: 10.1643/cg-16-534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
|