1
|
Robinson S, Wegner NC, Sepulveda CA, Franck JPC. Relative sarcolipin (SLN) and sarcoplasmic reticulum Ca 2+ ATPase (SERCA1) transcripts levels in closely related endothermic and ectothermic scombrid fishes: Implications for molecular basis of futile calcium cycle non-shivering thermogenesis (NST). Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111667. [PMID: 38782254 DOI: 10.1016/j.cbpa.2024.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Regional endothermy is the ability of an animal to elevate the temperature of specific regions of the body above that of the surrounding environment and has evolved independently among several fish lineages. Sarcolipin (SLN) is a small transmembrane protein that uncouples the sarcoplasmic reticulum calcium ATPase pump (SERCA1b) resulting in futile Ca2+ cycling and is thought to play a role in non-shivering thermogenesis (NST) in cold-challenged mammals and possibly some fishes. This study investigated the relative expression of sln and serca1 transcripts in three regionally-endothermic fishes (the skipjack, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, both of which elevate the temperatures of their slow-twitch red skeletal muscle (RM) and extraocular muscles (EM), as well as the cranial endothermic swordfish, Xiphias gladius), and closely related ectothermic scombrids (the Eastern Pacific bonito, Sarda chiliensis, and Pacific chub mackerel, Scomber japonicus). Using Reverse Transcription quantitative PCR (RT-qPCR) and species-specific primers, relative sln expression trended higher in both the RM and EM for all four scombrid species compared to white muscle. In addition, relative serca1 expression was found to be higher in RM of skipjack and yellowfin tuna in comparison to white muscle. However, neither sln nor serca1 transcripts were higher in swordfish RM, EM or cranial heater tissue in comparison to white muscle. A key phosphorylation site in sarcolipin, threonine 5, is conserved in the swordfish, but is mutated to alanine or valine in tunas and the endothermic smalleye Pacific opah, Lampris incognitus, which should result in increased uncoupling of the SERCA pump. Our results support the role of potential SLN-NST in endothermic tunas and the lack thereof for swordfish.
Collapse
Affiliation(s)
- Sean Robinson
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada. https://twitter.com/swm_robinson
| | - Nicholas C Wegner
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | | | - Jens P C Franck
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.
| |
Collapse
|
2
|
Deeken D, Macdonald C, Gainsbury A, Green ML, Cassill DL. Maternal risk-management elucidates the evolution of reproductive adaptations in sharks by means of natural selection. Sci Rep 2024; 14:20088. [PMID: 39209898 PMCID: PMC11362299 DOI: 10.1038/s41598-024-70677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Maternal investment theory is the study of how breeding females allocate resources between offspring size and brood size to achieve reproductive success. In classical trade-off models, r/K-selection and bet-hedging selection, the primary predictors of maternal investments in offspring are population density and resource stability. In crowded, stable environments, K-selected females invest in large offspring at an equivalent cost in brood size. In uncrowded, unstable environments, r-selected females invest in large broods at an equivalent cost in offspring size. In unpredictable resource environments, bet-hedging females invest moderately in brood size and offspring size. The maternal risk-management model represents a profound departure from classical trade-off models. Maternal investments in offspring size, brood size, and brood number are shaped independently by autonomous risk factors: the duration of gaps in resources during seasonal cycles, rates of predation, and unpredictable catastrophic events. To date, no single model has risen to a position of preeminence. Here in sharks, we show that maternal investments within and across species do not agree with the predictions of trade-off models and instead agree with the predictions of the maternal risk-management model. Within and across shark species, offspring size and brood size were independent maternal investment strategies. The risk of starvation favored investments in larger offspring. The risk of predation favored investments in larger broods. If empirical studies continue to confirm its predictions, maternal-risk management may yet emerge as a unifying model of diverse reproductive adaptations by means of natural selection.
Collapse
Affiliation(s)
- Dennis Deeken
- University of South Florida, St. Petersburg Campus, St. Petersburg, FL, 33701, USA
| | | | - Alison Gainsbury
- University of South Florida, St. Petersburg Campus, St. Petersburg, FL, 33701, USA
| | - Michelle L Green
- University of South Florida, St. Petersburg Campus, St. Petersburg, FL, 33701, USA
| | - Deby L Cassill
- University Research Lab, 108, Department of Integrative Biology, USF, St. Petersburg Campus, 140 7th Ave. S., St. Petersburg, FL, 33701, USA.
| |
Collapse
|
3
|
VanderWright WJ, Bigman JS, Iliou AS, Dulvy NK. Ecological lifestyle and gill slit height across sharks. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231867. [PMID: 39076816 PMCID: PMC11285898 DOI: 10.1098/rsos.231867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 07/31/2024]
Abstract
Metabolic morphology-the morphological features related to metabolic rate-offers broad comparative insights into the physiological performance and ecological function of species. However, some metabolic morphological traits, such as gill surface area, require costly and lethal sampling. Measurements of gill slit height from anatomically accurate drawings, such as those in field guides, offer the opportunity to understand physiological and ecological function without the need for lethal sampling. Here, we examine the relationship between gill slit height and each of the three traits that comprise ecological lifestyle: activity, maximum body size, and depth across nearly all sharks (n = 455). We find that gill slit heights are positively related to activity (measured by the aspect ratio of the caudal fin) and maximum size but negatively related to depth. Overall, gill slit height is best explained by the suite of ecological lifestyle traits rather than any single trait. These results suggest that more active, larger and shallower species (and endothermic species) have higher metabolic throughput as indexed by gill slit height (oxygen uptake) and ecological lifestyle (oxygen expenditure). We show that meaningful ecophysiological relationships can be revealed through measurable metabolic morphological traits from anatomically accurate drawings, which offers the opportunity to estimate class-wide traits for analyses of life history theory and the relationship between biodiversity and ecological function.
Collapse
Affiliation(s)
- Wade J. VanderWright
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | | | - Anthony S. Iliou
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Nicholas K. Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| |
Collapse
|
4
|
Dolton HR, Snelling EP, Deaville R, Jackson AL, Perkins MW, Bortoluzzi JR, Purves K, Curnick DJ, Pimiento C, Payne NL. Centralized red muscle in Odontaspis ferox and the prevalence of regional endothermy in sharks. Biol Lett 2023; 19:20230331. [PMID: 37935371 PMCID: PMC10645071 DOI: 10.1098/rsbl.2023.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
The order Lamniformes contains charismatic species such as the white shark Carcharodon carcharias and extinct megatooth shark Otodus megalodon, and is of particular interest given their influence on marine ecosystems, and because some members exhibit regional endothermy. However, there remains significant debate surrounding the prevalence and evolutionary origin of regional endothermy in the order, and therefore the development of phenomena such as gigantism and filter-feeding in sharks generally. Here we show a basal lamniform shark, the smalltooth sand tiger shark Odontaspis ferox, has centralized skeletal red muscle and a thick compact-walled ventricle; anatomical features generally consistent with regionally endothermy. This result, together with the recent discovery of probable red muscle endothermy in filter feeding basking sharks Cetorhinus maximus, suggests that this thermophysiology is more prevalent in the Lamniformes than previously thought, which in turn has implications for understanding the evolution of regional endothermy, gigantism, and extinction risk of warm-bodied shark species both past and present.
Collapse
Affiliation(s)
- Haley R. Dolton
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Edward P. Snelling
- Department of Anatomy and Physiology, and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng 0110, South Africa
| | - Robert Deaville
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Andrew L. Jackson
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew W. Perkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Jenny R. Bortoluzzi
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Kevin Purves
- School of Veterinary Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David J. Curnick
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Catalina Pimiento
- Department of Paleontology, University of Zurich, Zurich, Switzerland
- Department of Biosciences, Swansea University, Swansea, UK
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Nicholas L. Payne
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Morrison PR, Bernal D, Sepulveda CA, Brauner CJ. The effect of temperature on haemoglobin-oxygen binding affinity in regionally endothermic and ectothermic sharks. J Exp Biol 2023; 226:286204. [PMID: 36576038 DOI: 10.1242/jeb.244979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Haemoglobin (Hb)-O2 binding affinity typically decreases with increasing temperature, but several species of ectothermic and regionally endothermic fishes exhibit reduced Hb thermal sensitivity. Regionally endothermic sharks, including the common thresher shark (Alopias vulpinus) and lamnid sharks such as the shortfin mako shark (Isurus oxyrinchus), can maintain select tissues and organs warmer than ambient temperature by retaining metabolic heat with vascular heat exchangers. In the ectothermic bigeye thresher shark (Alopias superciliosus), diurnal movements above and below the thermocline subject the tissues, including the blood, to a wide range of operating temperatures. Therefore, blood-O2 transport must occur across internal temperature gradients in regionally endothermic species, and over the range of environmental temperatures encountered by the ectothermic bigeye thresher shark. While previous studies have shown temperature-independent Hb-O2 affinity in lamnid sharks, including shortfin mako, the Hb-O2 affinity of the common and bigeye thresher sharks is unknown. Therefore, we examined the effect of temperature on whole-blood Hb-O2 affinity in common thresher shark and bigeye thresher shark. For comparison, analyses were also conducted on the shortfin mako shark and two ectothermic species, blue shark (Prionace glauca) and spiny dogfish (Squalus acanthias). Blood-O2 binding affinity was temperature independent for common thresher shark and shortfin mako shark, which should prevent internal temperature gradients from negatively affecting blood-O2 transport. Blue shark and spiny dogfish blood-O2 affinity decreased with increasing temperature, as expected, but bigeye thresher shark blood exhibited both a reduced temperature dependence and a high Hb-O2 affinity, which likely prevents large changes in environment temperature and low environmental oxygen from affecting O2 uptake.
Collapse
Affiliation(s)
- Phillip R Morrison
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Diego Bernal
- Department of Biology, University of Massachusetts, Dartmouth, MA 02747, USA
| | | | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
6
|
Cooper JA, Hutchinson JR, Bernvi DC, Cliff G, Wilson RP, Dicken ML, Menzel J, Wroe S, Pirlo J, Pimiento C. The extinct shark Otodus megalodon was a transoceanic superpredator: Inferences from 3D modeling. SCIENCE ADVANCES 2022; 8:eabm9424. [PMID: 35977007 PMCID: PMC9385135 DOI: 10.1126/sciadv.abm9424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Although shark teeth are abundant in the fossil record, their bodies are rarely preserved. Thus, our understanding of the anatomy of the extinct Otodus megalodon remains rudimentary. We used an exceptionally well-preserved fossil to create the first three-dimensional model of the body of this giant shark and used it to infer its movement and feeding ecology. We estimate that an adult O. megalodon could cruise at faster absolute speeds than any shark species today and fully consume prey the size of modern apex predators. A dietary preference for large prey potentially enabled O. megalodon to minimize competition and provided a constant source of energy to fuel prolonged migrations without further feeding. Together, our results suggest that O. megalodon played an important ecological role as a transoceanic superpredator. Hence, its extinction likely had large impacts on global nutrient transfer and trophic food webs.
Collapse
Affiliation(s)
- Jack A. Cooper
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - David C. Bernvi
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
| | - Geremy Cliff
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Durban, KZN, South Africa
| | - Rory P. Wilson
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - Matt L. Dicken
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Jan Menzel
- JanMenzelArt, Stellenbosch 7600, South Africa
| | - Stephen Wroe
- Function, Evolution, and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Jeanette Pirlo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Biological Sciences, California State University Stanislaus, Turlock, CA 95382, USA
| | - Catalina Pimiento
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
- Paleontological Institute and Museum, University of Zurich, Zurich CH-8006, Switzerland
- Smithsonian Tropical Research Institution, Balboa, Panama
| |
Collapse
|
7
|
Steele LM, Okihiro MS, Berlemont R, Dillon JG, Young KA, Hesami S, Sommeran SV, Lowe CG. Carnobacterium maltaromaticum associated with meningoencephalitis and otitis in stranded common thresher sharks ( Alopias vulpinus). Vet Pathol 2022; 59:850-859. [DOI: 10.1177/03009858221102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Juvenile common thresher sharks ( Alopias vulpinus) have been recently stranding along the California coastline. Using Illumina sequencing of the bacterial 16S rRNA gene along with necropsy, cytological, bacteriological, and histological techniques, we screened microbial communities and described lesions characterizing affected sharks with the purpose of identifying potential pathogen sources and pathologic processes. Histopathological assessment of moribund sharks revealed severe meningoencephalitis, as previously described in stranded salmon sharks ( Lamna ditropis), along with inflammation of the inner ear and subcutaneous tissues surrounding the endolymphatic ducts. Furthermore, inflamed areas were characterized by the prevalence of Carnobacterium maltaromaticum, suggesting this bacterium as a potential pathogen that gains access to the inner ear through the endolymphatic ducts, with subsequent spread into the brain. The absence or low abundance of this bacterium in the spiral valve in both healthy and infected sharks suggests that Carnobacterium is not a commensal member of their digestive communities and the spiral valve is unlikely to be the source of the pathogen. Furthermore, phylogenetic analysis suggests that C. maltaromaticum strains isolated from diseased sharks have minimal genetic variation and differ from other strains originating from food or diseased teleosts. While a C. maltaromaticum–like organism has previously been associated with meningoencephalitis in salmon shark strandings, this is the first study to report common thresher shark strandings associated with C. maltaromaticum, involving the endolymphatic ducts as portals of entry to the brain.
Collapse
|
8
|
Stoehr AA, Donley JM, Aalbers SA, Syme DA, Sepulveda C, Bernal D. Thermal effects on red muscle contractile performance in deep-diving, large-bodied fishes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1833-1845. [PMID: 32588156 DOI: 10.1007/s10695-020-00831-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Bigeye thresher sharks (Alopias superciliosus) and swordfish (Xiphias gladius) are large, pelagic fishes, which make long-duration, diurnal foraging dives from warm, surface waters (18-24 °C) to cold waters beneath the thermocline (5-10 °C). In bigeye thresher sharks, the subcutaneous position of the red, aerobic swimming muscles (RM) suggests that RM temperature mirrors ambient during dives (i.e., ectothermy). In swordfish, the RM is closer to the vertebrae and its associated with vascular counter-current heat exchangers that maintain RM temperature above ambient (i.e., RM endothermy). Here, we sought to determine how exposure to a wide range of ambient temperatures (8, 16, 24 °C) impacted peak power output and optimum cycle (i.e., tailbeat) frequency (0.25, 0.5, 1 Hz) in RM isolated from both species. Bigeye thresher shark RM did not produce substantial power at high cycle frequencies, even at high temperatures; but it did produce relatively high power at slow cycle frequencies regardless of temperature. Swordfish RM produced more power when operating at a combination of fast cycle frequencies and higher temperatures. This suggests that swordfish RM benefits considerably more from warming than bigeye thresher shark RM, while the RM of both species was able to produce power at cold temperatures and slow cycle frequencies. Despite different thermal strategies (i.e., ectothermy vs. RM endothermy), the ability of the RM to power sustained swimming during foraging-related search behaviors may contribute to the unique ability of these fishes to successfully exploit food resources in deep, cold water.
Collapse
Affiliation(s)
| | | | - Scott A Aalbers
- Pfleger Institute of Environmental Research, Oceanside, CA, USA
| | | | | | - Diego Bernal
- University of Massachusetts Dartmouth, Dartmouth, MA, USA.
| |
Collapse
|
9
|
Pimiento C, Leprieur F, Silvestro D, Lefcheck JS, Albouy C, Rasher DB, Davis M, Svenning JC, Griffin JN. Functional diversity of marine megafauna in the Anthropocene. SCIENCE ADVANCES 2020; 6:eaay7650. [PMID: 32494601 PMCID: PMC7164949 DOI: 10.1126/sciadv.aay7650] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/13/2020] [Indexed: 05/10/2023]
Abstract
Marine megafauna, the largest animals in the oceans, serve key roles in ecosystem functioning. Yet, one-third of these animals are at risk of extinction. To better understand the potential consequences of megafaunal loss, here we quantify their current functional diversity, predict future changes under different extinction scenarios, and introduce a new metric [functionally unique, specialized and endangered (FUSE)] that identifies threatened species of particular importance for functional diversity. Simulated extinction scenarios forecast marked declines in functional richness if current trajectories are maintained during the next century (11% globally; up to 24% regionally), with more marked reductions (48% globally; up to 70% at the poles) beyond random expectations if all threatened species eventually go extinct. Among the megafaunal groups, sharks will incur a disproportionate loss of functional richness. We identify top FUSE species and suggest a renewed focus on these species to preserve the ecosystem functions provided by marine megafauna.
Collapse
Affiliation(s)
- C. Pimiento
- Department of Biosciences, Swansea University, Wallace Building, Singleton Park, Swansea SA2 8PP, UK
- Smithsonian Tropical Research Institute, Box 2072, Balboa, Panama
- Corresponding author.
| | - F. Leprieur
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - D. Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg and Global Gothenburg Biodiversity Centre, 41319 Gothenburg, Sweden
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - J. S. Lefcheck
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| | - C. Albouy
- IFREMER, Unité Ecologie et Modèles pour l’Halieutique, Nantes Cedex 3, France
| | - D. B. Rasher
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME 04544, USA
| | - M. Davis
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) and Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, USA
| | - J.-C. Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) and Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - J. N. Griffin
- Department of Biosciences, Swansea University, Wallace Building, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
10
|
Legendre LJ, Davesne D. The evolution of mechanisms involved in vertebrate endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190136. [PMID: 31928191 DOI: 10.1098/rstb.2019.0136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endothermy, i.e. the endogenous production of metabolic heat, has evolved multiple times among vertebrates, and several strategies of heat production have been studied extensively by physiologists over the course of the twentieth century. The independent acquisition of endothermy by mammals and birds has been the subject of many hypotheses regarding their origin and associated evolutionary constraints. Many groups of vertebrates, however, are thought to possess other mechanisms of heat production, and alternative ways to regulate thermogenesis that are not always considered in the palaeontological literature. Here, we perform a review of the mechanisms involved in heat production, with a focus on cellular and molecular mechanisms, in a phylogenetic context encompassing the entire vertebrate diversity. We show that endothermy in mammals and birds is not as well defined as commonly assumed by evolutionary biologists and consists of a vast array of physiological strategies, many of which are currently unknown. We also describe strategies found in other vertebrates, which may not always be considered endothermy, but nonetheless correspond to a process of active thermogenesis. We conclude that endothermy is a highly plastic character in vertebrates and provides a guideline on terminology and occurrences of the different types of heat production in vertebrate evolution. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Lucas J Legendre
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Donald Davesne
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Lyons K, Kacev D, Preti A, Gillett D, Dewar H, Kohin S. Species-Specific Characteristics Influence Contaminant Accumulation Trajectories and Signatures Across Ontogeny in Three Pelagic Shark Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6997-7006. [PMID: 31090417 DOI: 10.1021/acs.est.8b07355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Factors influencing organic contaminant accumulation in sharks, especially across ontogeny, are not well-known. Contaminant concentrations were measured in three species of sharks (Blue, Shortfin Mako, and Common Thresher) across a range of size classes (neonatal to adult) that vary in their ecological and physiological characteristics. Empirical data was compared to a theoretical framework that predicted the shape of lifetime accumulation curves. We found that a one-size-fits-all accumulation model was not appropriate as species-specific characteristics had a significant effect on contaminant accumulation trajectories. Maternal offloading likely has an important effect on determining neonatal shark contaminant starting points, and trophic ecology and physiology may interact to affect the shape of species' contaminant accumulation curves. Makos were found to have the highest accumulation potential and Blues the lowest, with Threshers being intermediate in accumulation potential. Changes in species' ecology and/or physiology were also reflected in contaminant signature changes over ontogeny. If contaminant concentrations are to be used as a proxy for risk, species-specific characteristics need to be taken into account when estimating contaminant exposure and its potential negative effects on shark health and human consumption safety.
Collapse
Affiliation(s)
- Kady Lyons
- Georgia Aquarium , 225 Baker Street NW , Atlanta , Georgia 30313 , United States
| | - Dovi Kacev
- Southwest Fisheries Science Center , La Jolla , California 92037 , United States
- Southern California Coastal Water Research Project , Costa Mesa , California 92626 , United States
| | - Antonella Preti
- Southwest Fisheries Science Center , La Jolla , California 92037 , United States
- University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - David Gillett
- Southern California Coastal Water Research Project , Costa Mesa , California 92626 , United States
| | - Heidi Dewar
- Southwest Fisheries Science Center , La Jolla , California 92037 , United States
| | - Suzanne Kohin
- Southwest Fisheries Science Center , La Jolla , California 92037 , United States
| |
Collapse
|
12
|
Pimiento C, Cantalapiedra JL, Shimada K, Field DJ, Smaers JB. Evolutionary pathways toward gigantism in sharks and rays. Evolution 2019; 73:588-599. [DOI: 10.1111/evo.13680] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/04/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Catalina Pimiento
- Department of BiosciencesSwansea University Swansea SA28PP United Kingdom
- Museum für NaturkundeLeibniz Institute for Evolution and Biodiversity Science Berlin 10115 Germany
- Smithsonian Tropical Research Institute Balboa Panama
| | - Juan L. Cantalapiedra
- Museum für NaturkundeLeibniz Institute for Evolution and Biodiversity Science Berlin 10115 Germany
- Departamento Ciencias de la VidaUniversidad de Alcalá Madrid Spain
| | - Kenshu Shimada
- Department of Environmental Science and Studies and Department of Biological SciencesDePaul University Chicago IL 60614
| | - Daniel J. Field
- Department of Earth SciencesUniversity of Cambridge Cambridge Cambridgeshire CB2 3EQ UK
| | - Jeroen B. Smaers
- Department of AnthropologyStony Brook University New York NY 11794
| |
Collapse
|
13
|
Ferrón HG. Regional endothermy as a trigger for gigantism in some extinct macropredatory sharks. PLoS One 2017; 12:e0185185. [PMID: 28938002 PMCID: PMC5609766 DOI: 10.1371/journal.pone.0185185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
Otodontids include some of the largest macropredatory sharks that ever lived, the most extreme case being Otodus (Megaselachus) megalodon. The reasons underlying their gigantism, distribution patterns and extinction have been classically linked with climatic factors and the evolution, radiation and migrations of cetaceans during the Paleogene. However, most of these previous proposals are based on the idea of otodontids as ectothermic sharks regardless of the ecological, energetic and body size constraints that this implies. Interestingly, a few recent studies have suggested the possible existence of endothermy in these sharks thus opening the door to a series of new interpretations. Accordingly, this work proposes that regional endothermy was present in otodontids and some closely related taxa (cretoxyrhinids), playing an important role in the evolution of gigantism and in allowing an active mode of live. The existence of regional endothermy in these groups is supported here by three different approaches including isotopic-based approximations, swimming speed inferences and the application of a novel methodology for assessing energetic budget and cost of swimming in extinct taxa. In addition, this finding has wider implications. It calls into question some previous paleotemperature estimates based partially on these taxa, suggests that the existing hypothesis about the evolution of regional endothermy in fishes requires modification, and provides key evidence for understanding the evolution of gigantism in active macropredators.
Collapse
Affiliation(s)
- Humberto G. Ferrón
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, University of Valencia, Burjassot, Spain
| |
Collapse
|
14
|
Newton KC, Wraith J, Dickson KA. Digestive enzyme activities are higher in the shortfin mako shark, Isurus oxyrinchus, than in ectothermic sharks as a result of visceral endothermy. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:887-898. [PMID: 25893905 DOI: 10.1007/s10695-015-0055-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Lamnid sharks are regionally endothermic fishes that maintain visceral temperatures elevated above the ambient water temperature. Visceral endothermy is thought to increase rates of digestion and food processing and allow thermal niche expansion. We tested the hypothesis that, at in vivo temperatures, the endothermic shortfin mako shark, Isurus oxyrinchus, has higher specific activities of three digestive enzymes-gastric pepsin and pancreatic trypsin and lipase-than the thresher shark, Alopias vulpinus, and the blue shark, Prionace glauca, neither of which can maintain elevated visceral temperatures. Homogenized stomach or pancreas tissue obtained from sharks collected by pelagic longline was incubated at both 15 and 25 °C, at saturating substrate concentrations, to quantify tissue enzymatic activity. The mako had significantly higher enzyme activities at 25 °C than did the thresher and blue sharks at 15 °C. This difference was not a simple temperature effect, because at 25 °C the mako had higher trypsin activity than the blue shark and higher activities for all enzymes than the thresher shark. We also hypothesized that the thermal coefficient, or Q 10 value, would be higher for the mako shark than for the thresher and blue sharks because of its more stable visceral temperature. However, the mako and thresher sharks had similar Q 10 values for all enzymes, perhaps because of their closer phylogenetic relationship. The higher in vivo digestive enzyme activities in the mako shark should result in higher rates of food processing and may represent a selective advantage of regional visceral endothermy.
Collapse
Affiliation(s)
- Kyle C Newton
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, Fullerton, CA, 92834, USA
| | | | | |
Collapse
|
15
|
Nudds RL, John EL, Keen AN, Shiels HA. Rainbow trout provide the first experimental evidence for adherence to a distinct Strouhal number during animal oscillatory propulsion. ACTA ACUST UNITED AC 2015; 217:2244-9. [PMID: 25141343 DOI: 10.1242/jeb.102236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The relationship between tail (or wing) beat frequency (f(tail)), amplitude (A) and forward velocity (U) in animals using oscillatory propulsion, when moving at a constant cruising speed, converges upon an optimum range of the Strouhal number (St = f(tail) · A/U). Previous work, based on observational data and supported by theory, shows St falling within the broad optimum range (0.2<St<0.4) and considers this adequate to indicate its importance in governing wing or tail kinematics. This study presents the first evidence using an experimental manipulation that supports the importance of maintaining kinematics at a single optimum (or preferred) St. The tail beat kinematics of rainbow trout, Oncorhynchus mykiss, were disturbed by increasing water temperature (T(water)) from 11 ± 1 to 20 ± 1 °C. Elevated T(water) increased f(tail) and decreased A, whilst St at any given U was conserved. St increased with U, driven by concomitant increases in A, whilst f(tail) was unaffected by U. An increase in T(water) also increased basal metabolic costs, but did not affect the incremental increase in metabolic cost with increasing U. Predicted future changes to T(water) of lakes and rivers (5-10 °C over the next 100 years) may not present major locomotory problems to salmonids.
Collapse
Affiliation(s)
- Robert L Nudds
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Emma L John
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Adam N Keen
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Holly A Shiels
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
16
|
Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes. Proc Natl Acad Sci U S A 2015; 112:6104-9. [PMID: 25902489 DOI: 10.1073/pnas.1500316112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite long evolutionary separations, several sharks and tunas share the ability to maintain slow-twitch, aerobic red muscle (RM) warmer than ambient water. Proximate causes of RM endothermy are well understood, but ultimate causes are unclear. Two advantages often proposed are thermal niche expansion and elevated cruising speeds. The thermal niche hypothesis is generally supported, because fishes with RM endothermy often exhibit greater tolerance to broad temperature ranges. In contrast, whether fishes with RM endothermy cruise faster, and achieve any ecological benefits from doing so, remains unclear. Here, we compiled data recorded by modern animal-tracking tools for a variety of free-swimming marine vertebrates. Using phylogenetically informed allometry, we show that both cruising speeds and maximum annual migration ranges of fishes with RM endothermy are 2-3 times greater than fishes without it, and comparable to nonfish endotherms (i.e., penguins and marine mammals). The estimated cost of transport of fishes with RM endothermy is twice that of fishes without it. We suggest that the high energetic cost of RM endothermy in fishes is offset by the benefit of elevated cruising speeds, which not only increase prey encounter rates, but also enable larger-scale annual migrations and potentially greater access to seasonally available resources.
Collapse
|
17
|
Wootton TP, Sepulveda CA, Wegner NC. Gill morphometrics of the thresher sharks (GenusAlopias): Correlation of gill dimensions with aerobic demand and environmental oxygen. J Morphol 2015; 276:589-600. [DOI: 10.1002/jmor.20369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 12/17/2014] [Accepted: 01/02/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Thomas P. Wootton
- Center for Marine Biotechnology and Biomedicine; Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego; La Jolla CA 92093
| | | | - Nicholas C. Wegner
- Center for Marine Biotechnology and Biomedicine; Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego; La Jolla CA 92093
- Fisheries Resource Division; Southwest Fisheries Science Center, NOAA Fisheries; La Jolla CA 92037
| |
Collapse
|
18
|
Field Studies of Elasmobranch Physiology. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-12-801289-5.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
19
|
Donley JM, Sepulveda CA, Aalbers SA, McGillivray DG, Syme DA, Bernal D. Effects of temperature on power output and contraction kinetics in the locomotor muscle of the regionally endothermic common thresher shark (Alopias vulpinus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1507-1519. [PMID: 22527612 DOI: 10.1007/s10695-012-9641-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/28/2012] [Indexed: 05/31/2023]
Abstract
The common thresher shark (Alopias vulpinus) is a pelagic species with medially positioned red aerobic swimming musculature (RM) and regional RM endothermy. This study tested whether the contractile characteristics of the RM are functionally similar along the length of the body and assessed how the contractile properties of the common thresher shark compare with those of other sharks. Contractile properties of the RM were examined at 8, 16 and 24 °C from anterior and posterior axial positions (0.4 and 0.6 fork length, respectively) using the work loop technique. Experiments were performed to determine whether the contractile properties of the RM are similar along the body of the common thresher shark and to document the effects of temperature on muscle power. Axial differences in contractile properties of RM were found to be small or absent. Isometric twitch kinetics of RM were ~fivefold slower than those of white muscle, with RM twitch durations of about 1 s at 24 °C and exceeding 5 s at 8 °C, a Q(10) of nearly 2.5. Power increased approximately tenfold with the 16 °C increase in temperature, while the cycle frequency for maximal power only increased from about 0.5-1.0 Hz over this temperature range. These data support the hypothesis that the RM is functionally similar along the body of the common thresher shark and corroborate previous findings from shark species both with and without medial RM. While twitch kinetics suggest the endothermic RM is not unusually temperature sensitive, measures of power suggest that the RM is not well suited to function at cool temperatures. The cycle frequency at which power is maximized appeared relatively insensitive to temperature in RM, which may reflect the relatively cooler temperature of the thresher RM compared to that observed in lamnid sharks as well as the relatively slow RM phenotype in these large fish.
Collapse
Affiliation(s)
- Jeanine M Donley
- Department of Biological Sciences, MiraCosta College, 1 Barnard Dr., Oceanside, CA 92056, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The locomotor system in sharks has been investigated for many decades, starting with the earliest kinematic studies by Sir James Gray in the 1930s. Early work on axial muscle anatomy also included sharks, and the first demonstration of the functional significance of red and white muscle fibre types was made on spinal preparations in sharks. Nevertheless, studies on teleosts dominate the literature on fish swimming. The purpose of this article is to review the current knowledge of muscle function and swimming in sharks, by considering their morphological features related to swimming, the anatomy and physiology of the axial musculature, kinematics and muscle dynamics, and special features of warm-bodied lamnids. In addition, new data are presented on muscle activation in fast-starts. Finally, recent developments in tracking technology that provide insights into shark swimming performance in their natural environment are highlighted.
Collapse
Affiliation(s)
- R E Shadwick
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada.
| | | |
Collapse
|
21
|
Syme DA, Shadwick RE. Red muscle function in stiff-bodied swimmers: there and almost back again. Philos Trans R Soc Lond B Biol Sci 2011; 366:1507-15. [PMID: 21502122 DOI: 10.1098/rstb.2010.0322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fishes with internalized and endothermic red muscles (i.e. tunas and lamnid sharks) are known for a stiff-bodied form of undulatory swimming, based on unique muscle-tendon architecture that limits lateral undulation to the tail region even though the red muscle is shifted anteriorly. A strong convergence between lamnid sharks and tunas in these features suggests that thunniform swimming might be evolutionarily tied to this specialization of red muscle, but recent observations on the common thresher shark (Alopias vulpinus) do not support this view. Here, we review the fundamental features of the locomotor systems in lamnids and tunas, and present data on in vivo muscle function and swimming mechanics in thresher sharks. These results suggest that the presence of endothermic and internalized red muscles alone in a fish does not predict or constrain the swimming mode to be thunniform and, indeed, that the benefits of this type of muscle may vary greatly as a consequence of body size.
Collapse
Affiliation(s)
- Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
22
|
Patterson JC, Sepulveda CA, Bernal D. The vascular morphology and in vivo muscle temperatures of thresher sharks (Alopiidae). J Morphol 2011; 272:1353-64. [DOI: 10.1002/jmor.10989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 11/11/2022]
|
23
|
Cartamil DP, Sepulveda CA, Wegner NC, Aalbers SA, Baquero A, Graham JB. Archival tagging of subadult and adult common thresher sharks ( Alopias vulpinus) off the coast of southern California. MARINE BIOLOGY 2011; 158:935-944. [PMID: 24391264 PMCID: PMC3873052 DOI: 10.1007/s00227-010-1620-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 12/30/2010] [Indexed: 05/31/2023]
Abstract
The common thresher shark (Alopias vulpinus) is a secondary target species of the California drift gillnet fishery (CA-DGN) and supports a growing recreational fishery in California waters. This study used archival tags to examine the movement patterns and habitat preferences of common threshers of the size range captured in the CA-DGN (>120 cm fork length). Depth and temperature-logging archival tags were deployed on 57 subadult and adult common threshers in the Southern California Bight. Tags from five individuals (8.8%) were recovered, and 154 days of data were successfully obtained from four of these. By night, shark movements were primarily limited to waters above the thermocline, which ranged in depth from 15 to 20 m. Sharks were significantly deeper by day, and daytime vertical distribution consisted of two distinct modes: a 'shallow mode' (wherein sharks occupied only the upper 20 m of the water column) and a 'deep mode' (characterized by frequent vertical excursions below the thermocline). This modal switch is interpreted as relating to regional differences in abundance of surface-oriented prey and prey in deeper water. Maximum dive depth was 320 m, greatest dive duration was 712 min, minimum temperature experienced during a dive was 9.1°C, and dive descent rate was significantly greater than ascent rate. Sharks inhabited waters corresponding to a sea surface temperature range of 16 to 21°C. The nocturnal depth distribution of common threshers has implications for management of drift gillnet deployment depths in the CA-DGN.
Collapse
Affiliation(s)
- Daniel P. Cartamil
- Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - Chugey A. Sepulveda
- Pfleger Institute of Environmental Research, 315 N. Clementine St., Oceanside, CA USA
| | - Nicholas C. Wegner
- Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - Scott A. Aalbers
- Pfleger Institute of Environmental Research, 315 N. Clementine St., Oceanside, CA USA
| | - Andres Baquero
- Fundacion Equilibrio Azul, P.O. Box 17116025, Quito, Ecuador
| | - Jeffrey B. Graham
- Scripps Institution of Oceanography, University of California, San Diego, CA USA
| |
Collapse
|
24
|
Bernal D, Donley JM, McGillivray DG, Aalbers SA, Syme DA, Sepulveda C. Function of the medial red muscle during sustained swimming in common thresher sharks: Contrast and convergence with thunniform swimmers. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:454-63. [DOI: 10.1016/j.cbpa.2010.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 11/25/2022]
|
25
|
Reduced and reversed temperature dependence of blood oxygenation in an ectothermic scombrid fish: implications for the evolution of regional heterothermy? J Comp Physiol B 2009; 180:73-82. [DOI: 10.1007/s00360-009-0388-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
26
|
Runcie RM, Dewar H, Hawn DR, Frank LR, Dickson KA. Evidence for cranial endothermy in the opah (Lampris guttatus). ACTA ACUST UNITED AC 2009; 212:461-70. [PMID: 19181893 DOI: 10.1242/jeb.022814] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cranial endothermy evolved independently in lamnid sharks, billfishes and tunas, and is thought to minimize the effects of ambient temperature change on both vision and neural function during deep dives. The opah, Lampris guttatus, is a large epipelagic-mesopelagic predator that makes repeated dives into cool waters to forage. To determine if L. guttatus exhibits cranial endothermy, we measured cranial temperatures in live, decked fish and identified potential sources of heat and mechanisms to conserve heat. In 40 opah (95.1+/-7.6 cm fork length), the temperature of the tissue behind the eye was elevated by a mean (+/-s.e.m.) of 2.1+/-0.3 degrees C and a maximum of 6.3 degrees C above myotomal muscle temperature (T(m)), used as a proxy for ambient temperature. Cranial temperature varied significantly with T(m) and temperature elevation was greater at lower T(m). The proximal region of the paired lateral rectus extraocular muscle appears to be the primary source of heat. This muscle is the largest extraocular muscle, is adjacent to the optic nerve and brain and is separated from the brain only by a thin layer of bone. The proximal lateral rectus muscle is darker red in color and has a higher citrate synthase activity, indicating a higher capacity for aerobic heat production, than all other extraocular muscles. Furthermore, this muscle has a layer of fat insulating it from the gill cavity and is perfused by a network of arteries and veins that forms a putative counter-current heat exchanger. Taken together, these results support the hypothesis that the opah can maintain elevated cranial temperatures.
Collapse
Affiliation(s)
- Rosa M Runcie
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92834, USA
| | | | | | | | | |
Collapse
|
27
|
Sepulveda CA, Wegner NC, Bernal D, Graham JB. The red muscle morphology of the thresher sharks (family Alopiidae). J Exp Biol 2005; 208:4255-61. [PMID: 16272248 DOI: 10.1242/jeb.01898] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYA more medial and anterior position of the red aerobic myotomal muscle (RM)and the presence of a vascular counter-current heat exchange system provide the functional elements that facilitate regional RM endothermy in tunas,lamnid sharks and the common thresher shark (Alopias vulpinus). The convergent RM morphology among all species capable of RM endothermy suggests that RM position is a strong predictor of fish endothermic capacity. The present study investigated the comparative RM morphology of the other two thresher shark species (bigeye thresher, Alopias superciliosus, and the pelagic thresher, Alopias pelagicus), for which there is no information regarding their capacity for RM endothermy, and compared these data with published works on A. vulpinus. The digitization of transverse sections along the body of A. superciliosus and A. pelagicus enabled quantification of the relative amount of RM and the position and placement of the RM along the body. The RM in both A. superciliosus and A. pelagicus is positioned subcutaneously,along the lateral edges of the myotomes, and is distributed relatively evenly over the trunk of the body. The position of maximum RM area is at 50% fork length (FL) for A. superciliosus and at 75% FL for A. pelagicus. The amount of RM (mean ± s.e.m.) is 2.31±0.11% and 3.01±0.10% in A. superciliosus and A. pelagicus, respectively. When compared with A. vulpinus,all three alopiid sharks have a similar amount of RM. However, A. superciliosus and A. pelagicus differ from A. vulpinusin that they do not possess the medial and anterior RM arrangement that would likely facilitate metabolic heat conservation (RM endothermy).
Collapse
Affiliation(s)
- C A Sepulveda
- Center for Marine Biotechnology and Biomedicine and Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0204, USA.
| | | | | | | |
Collapse
|