1
|
Hughes R, Francisco R, Garrett K, Willitts K, Munk B, Brown J, Rodriguez C, von Dohlen AR, McCarrall S, Dennard T, Champion T, Brown-Fox T, Strules J, Olfenbuttel C, DePerno C, Hamer SA, Yabsley MJ. Trypanosoma cruzi infection in American black bears (Ursus americanus): A case report in a cub from California and serologic survey for exposure in wild black bears from several states. Vet Parasitol Reg Stud Reports 2024; 56:101129. [PMID: 39550185 DOI: 10.1016/j.vprsr.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 11/18/2024]
Abstract
Trypanosoma cruzi is an important cause of disease and death in humans and dogs, and although wildlife infections are common, less is known about disease manifestations. A 12-week-old male American black bear (Ursus americanus) cub with mild lethargy and anorexia presented to a wildlife rehabilitation center in Lake Tahoe, California. The cub continued to become increasingly weak and showed decreasing interest in play and other activities. The cub was anemic and had increased γ-glutamyltransferase (GGT) liver enzymes. A large number of trypanosomes were noted on a thin blood smear. Trypanosoma cruzi was isolated in culture from a subsequent blood collection. Proliferative bony lesions were noted on radiographs, but this finding was considered unrelated to the T. cruzi infection. The number of parasites observed in thin blood smears dramatically dropped over time, but it remained PCR positive until at least nine months. The cub continued to gain weight and became increasingly active. Serum samples from the cub were positive with three different serologic assays (IFA, ELISA, and ICT). The bear was not treated because of the decreasing parasitemia and the improvement in activity and appetite. Although the bear could not be released due to issues unrelated to T. cruzi, it remains healthy in a captive facility. Sequence analysis of the DHFR-TS and COII-ND1 gene sequences confirmed the bear was infected with DTC TcIV. Following the detection of this clinical case, a serologic survey was conducted to determine the prevalence of T. cruzi exposure of black bears in California, North Carolina, and Pennsylvania. Because no serologic assay has been validated for use in bears, three different assays were used. Marked differences in apparent seroprevalence range from 1% (requiring all three assays to be positive) to ∼20.7% (requiring only one assay to be positive). Black bears are naturally exposed to T. cruzi across the United States. Future studies using PCR testing of tissues or blood would be needed to better understand the prevalence of T. cruzi in wild black bears, lineages most commonly associated with infection, and if T. cruzi represents a health threat to bears.
Collapse
Affiliation(s)
- Reece Hughes
- Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA 30602, USA; Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Raquel Francisco
- Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA 30602, USA; Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Kayla Garrett
- Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA 30602, USA; Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Kevin Willitts
- Lake Tahoe Wildlife Care, 1551 Al Tahoe Blvd, South Lake Tahoe, CA 96150, USA
| | - Brandon Munk
- California Department of Fish and Wildlife, Wildlife Health Laboratory, 1701 Nimbus Road, Suite D, Rancho Cordova, CA 95670, USA
| | - Justin Brown
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Carlos Rodriguez
- Texas A&M Veterinary Medical Diagnostic Laboratory, P.O. Drawer 3040, College Station, TX 77843, USA
| | - Alexa Rosypal von Dohlen
- Department of Natural Sciences and Mathematics, College of Science, Technology, Engineering and Mathematics, Johnson C. Smith University, Charlotte, NC 28216, USA
| | - Sterling McCarrall
- Department of Natural Sciences and Mathematics, College of Science, Technology, Engineering and Mathematics, Johnson C. Smith University, Charlotte, NC 28216, USA
| | - T'Keyah Dennard
- Department of Natural Sciences and Mathematics, College of Science, Technology, Engineering and Mathematics, Johnson C. Smith University, Charlotte, NC 28216, USA
| | - Timothy Champion
- Department of Natural Sciences and Mathematics, College of Science, Technology, Engineering and Mathematics, Johnson C. Smith University, Charlotte, NC 28216, USA
| | - Tracy Brown-Fox
- Department of Natural Sciences and Mathematics, College of Science, Technology, Engineering and Mathematics, Johnson C. Smith University, Charlotte, NC 28216, USA
| | - Jennifer Strules
- Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, NC 27606, USA
| | - Colleen Olfenbuttel
- Wildlife Management Division, North Carolina Wildlife Resources Commission, Raleigh, NC 27669, USA
| | - Christopher DePerno
- Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, NC 27606, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael J Yabsley
- Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA 30602, USA; Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
McCain S, Sim RR, Weidner B, Rivas AE, White B, Auckland LD, Tarleton RL, Hamer S. DIAGNOSIS AND TREATMENT OF A NATURAL INFECTION WITH TRYPANOSOMA CRUZI (CHAGAS DISEASE) IN A SYMPTOMATIC DE BRAZZA'S MONKEY ( CERCOPITHECUS NEGLECTUS) IN ALABAMA. J Zoo Wildl Med 2023; 54:412-416. [PMID: 37428708 PMCID: PMC10874614 DOI: 10.1638/2022-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 07/12/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a zoonotic, vector-borne, protozoan hemoflagellate with a wide host range. An 11-yr-old, captive-bred male De Brazza's monkey (Cercopithecus neglecus) presented with weight loss despite normal appetite. Examination revealed hypoglycemia, nonregenerative anemia, and many trypanosomes on a blood smear. A whole blood sample was PCR-positive for T. cruzi discrete typing unit TcIV and the monkey seroconverted using two different methods. The monkey was treated with the standard human dose of benznidazole twice daily for 60 d; however, blood obtained over the next 1.5 yr posttreatment remained PCR-positive for T. cruzi. A second course of benznidazole at a higher dose but lower frequency for 26 wk was required for the monkey to convert to sustained PCR-negative status. The monkey recovered with no apparent lasting effects.
Collapse
Affiliation(s)
| | | | | | | | - Brooke White
- University of Georgia Center for Tropical and Emerging Global Diseases, Athens, GA 30602, USA
| | - Lisa D Auckland
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Rick L Tarleton
- University of Georgia Center for Tropical and Emerging Global Diseases, Athens, GA 30602, USA
| | - Sarah Hamer
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Kiehl WM, Hodo CL, Hamer GL, Hamer SA, Wilkerson GK. Exclusion of Horizontal and Vertical Transmission as Major Sources of Trypanosoma Cruzi Infections in a Breeding Colony of Rhesus Macaques ( Macaca Mulatta). Comp Med 2023; 73:229-241. [PMID: 37268411 PMCID: PMC10290485 DOI: 10.30802/aalas-cm-23-000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 06/04/2023]
Abstract
The vector-borne protozoal parasite Trypanosoma cruzi causes Chagas disease in humans and animals. This parasite is endemic to the southern United States where outdoor-housed NHP at biomedical facilities are at risk of infection. In addi- tion to the direct morbidity caused by T. cruzi, infected animals are of limited biomedical research use because infections can produce confounding pathophysiologic changes even in animals with no clinical disease. In part due to concerns for direct T. cruzi transmission between animals, infected NHP at some institutions have been culled, removed, or otherwise isolated from uninfected animal populations. However, data that document horizontal or vertical transmission in captive NHP in the United States are not available. To evaluate the potential for inter-animal transmission and to identify environmental factors that affect the distribution of new infections in NHPs, we conducted a retrospective epidemiologic study of a rhesus macaque ( Macaca mulatta ) breeding colony in south Texas. We used archived biologic samples and husbandry records to identify the time and location of macaque seroconversion. These data were used to perform a spatial analysis of how geographic location and animal associations affected the spread of disease and to infer the importance of horizontal or vertical routes of transmission. The majority of T. cruzi infections were spatially clustered, suggesting that environmental factors promoted vector exposure in various areas of the facility. Although we cannot not rule out horizontal transmission, our data suggest that horizontal transmission was not a critical route for spread for the disease. Vertical transmission was not a contributing factor in this colony. In conclusion, our findings suggest that local triatome vectors were the major source of T. cruzi infections in captive macaques in our colony. Therefore, limiting contact with vectors, rather than segregation of infected macaques, is a key strategy for disease prevention at institutions that house macaques outdoors in the southern United States.
Collapse
Affiliation(s)
- Whitney M Kiehl
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Carolyn L Hodo
- MD Anderson Cancer Center, Michale E Keeling Center for Comparative Medicine and Research, Bastrop, Texas; Departments of Veterinary Integrative Biosciences
| | | | | | - Gregory K Wilkerson
- MD Anderson Cancer Center, Michale E Keeling Center for Comparative Medicine and Research, Bastrop, Texas; Department of Clinal Sciences, North Carolina State University, Raleigh, North Carolina;,
| |
Collapse
|
4
|
Wilson AC, Anderson CJ, Carter C, Romagosa CM. Abundance of introduced rhesus macaques (Macaca mulatta) in central Florida. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Busselman RE, Hamer SA. Chagas Disease Ecology in the United States: Recent Advances in Understanding Trypanosoma cruzi Transmission Among Triatomines, Wildlife, and Domestic Animals and a Quantitative Synthesis of Vector-Host Interactions. Annu Rev Anim Biosci 2021; 10:325-348. [PMID: 34758274 DOI: 10.1146/annurev-animal-013120-043949] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chagas disease, a neglected tropical disease present in the Americas, is caused by the parasite Trypanosoma cruzi and is transmitted by triatomine kissing bug vectors. Hundreds of vertebrate host species are involved in the ecology of Chagas disease. The sylvatic nature of most triatomines found in the United States accounts for high levels of animal infections but few reports of human infections. This review focuses on triatomine distributions and animal infections in the southern United States. A quantitative synthesis of available US data from triatomine bloodmeal analysis studies shows that dogs, humans, and rodents are key taxa for feeding triatomines. Imperfect and unvalidated diagnostic tools in wildlife complicate the study of animal T. cruzi infections, and integrated vector management approaches are needed to reduce parasite transmission in nature. The diversity of animal species involved in Chagas disease ecology underscores the importance of a One Health approach for disease research and management. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rachel E Busselman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA;
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
6
|
El Saadi N, Bah A, Mahdjoub T, Kribs C. On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: a view from an agent-based model. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Hodo CL, Hamer SA. Toward an Ecological Framework for Assessing Reservoirs of Vector-Borne Pathogens: Wildlife Reservoirs of Trypanosoma cruzi across the Southern United States. ILAR J 2018; 58:379-392. [PMID: 29106561 PMCID: PMC6019048 DOI: 10.1093/ilar/ilx020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/09/2017] [Indexed: 12/27/2022] Open
Abstract
Wildlife species are critical for both feeding vectors and serving as reservoirs of zoonotic vector-borne pathogens. Transmission pathways leading to disease in humans or other target taxa might be better understood and managed given a complete understanding of the relative importance of different reservoir species in nature. Using the conceptual framework of “reservoir potential,” which considers elements of both reservoir competence and vector-host contact, we review the wildlife reservoirs of Trypanosoma cruzi in the southern United States, where many species of triatomine vectors occur and wildlife maintain enzootic cycles that create a risk of spillover to humans, domestic dogs, and captive nonhuman primates that may develop Chagas disease. We reviewed 77 published reports of T. cruzi infection in at least 26 wildlife species across 15 southern states. Among the most well-studied and highly infected reservoirs are raccoon (Procyon lotor), woodrat (Neotoma spp.), and opossum (Didelphis virginiana), with aggregate overall infection prevalences of 36.4, 34.7, and 22.9%, respectively. Just over 60% of studies utilized methods from which an infectiousness index could be generated and show that raccoons and striped skunk (Mephitis mephitis) are among the most infectious wildlife hosts. Triatomine-host contact has sparsely been quantified in the southern United States, but 18 of the 24 host species previously identified to have been fed upon by triatomines are wildlife. Future studies to parameterize the reservoir potential model, especially to quantify wildlife infectiousness, vector-host contact, and the epidemiological importance of parasite strains maintained by wildlife, could open new doors for managing enzootic cycles and reducing T. cruzi spillover risk.
Collapse
Affiliation(s)
- Carolyn L Hodo
- Carolyn L. Hodo, DVM, DACVP, is a PhD candidate in the department of Veterinary Pathobiology at the Texas A&M University College of Veterinary Medicine and Biomedical Sciences in College Station, Texas. Sarah A. Hamer, PhD, DVM, DACVPM, is an assistant professor in the department of Veterinary Integrative Biosciences at the Texas A&M University College of Veterinary Medicine and Biomedical Sciences in College Station, Texas
| | - Sarah A Hamer
- Carolyn L. Hodo, DVM, DACVP, is a PhD candidate in the department of Veterinary Pathobiology at the Texas A&M University College of Veterinary Medicine and Biomedical Sciences in College Station, Texas. Sarah A. Hamer, PhD, DVM, DACVPM, is an assistant professor in the department of Veterinary Integrative Biosciences at the Texas A&M University College of Veterinary Medicine and Biomedical Sciences in College Station, Texas
| |
Collapse
|
8
|
Browne AJ, Guerra CA, Alves RV, da Costa VM, Wilson AL, Pigott DM, Hay SI, Lindsay SW, Golding N, Moyes CL. The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Sci Data 2017; 4:170050. [PMID: 28398292 PMCID: PMC5387921 DOI: 10.1038/sdata.2017.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/13/2017] [Indexed: 01/19/2023] Open
Abstract
Chagas is a potentially fatal chronic disease affecting large numbers of people across the Americas and exported throughout the world through human population movement. It is caused by the Trypanosoma cruzi parasite, which is transmitted by triatomine vectors to humans and a wide range of alternative host species. The database described here was compiled to allow the risk of vectorial transmission to humans to be mapped using geospatial models. The database collates all available records, published since 2003, for prevalence and occurrence of infection in humans, vectors and alternative hosts, and links each record to a defined time and location. A total of 16,802 records of infection have been extracted from the published literature and unpublished sources. The resulting database can be used to improve our understanding of the geographic variation in vector infection prevalence and to estimate the risk of vectorial transmission of T. cruzi to humans.
Collapse
Affiliation(s)
- Annie J Browne
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK
| | - Carlos A Guerra
- Sanaria Institute for Global Health and Tropical Medicine, Rockville, Maryland 20850, USA
| | - Renato Vieira Alves
- Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal 70058-900, Brasil
| | - Veruska Maia da Costa
- Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal 70058-900, Brasil
| | - Anne L Wilson
- School of Biosciences, Durham University, Durham DH1 3LE, UK
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington 98121, USA
| | - Simon I Hay
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK.,Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington 98121, USA
| | - Steve W Lindsay
- School of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Nick Golding
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Catherine L Moyes
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
9
|
Anderson CJ, Hostetler ME, Johnson SA. History and Status of Introduced Non-Human PrimatePopulations in Florida. SOUTHEAST NAT 2017. [DOI: 10.1656/058.016.0103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C. Jane Anderson
- School of Natural Resources and Environment, University of Florida, 110 Newins-Ziegler Hall PO Box 110430 Gainesville, FL 32611-0430
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, PO Box 110430, Gainesville, FL 32611-0430
| | - Mark E. Hostetler
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, PO Box 110430, Gainesville, FL 32611-0430
| | - Steve A. Johnson
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, PO Box 110430, Gainesville, FL 32611-0430
| |
Collapse
|
10
|
Acosta N, Miret J, López E, Schinini A. First report of Sapajus cay naturally infected by Trypanosoma cruzi in San Pedro Department, Paraguay. ACTA ACUST UNITED AC 2016; 25:327-332. [PMID: 27579529 DOI: 10.1590/s1984-29612016052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/27/2016] [Indexed: 11/22/2022]
Abstract
To verify the occurrence of natural Trypanosoma cruzi infection in non-human primates from a rural endemic area of the east region of Paraguay, xenodiagnosis was performed in 35 animals belonging to two species. For genotyping and T. cruzi discrete typing unit (DTU) assignment, a combination of four markers was used, including amplification products of the small (18S) and large (24Sα) subunits of ribosomal ribonucleic acid gene, the intergenic region of mini-exon gene and the heat shock protein 60 Eco-RV polymerase chain reaction-restriction fragment length polymorphism (HSP60/EcoRV-PCR-RFLP). One specimen of Sapajus cay was found positive and infected by the DTU TcII. This result constitutes the first record of natural T. cruzi infection in a sylvatic monkey in Paraguay, harbouring a DTU associated with severe Chagas disease in humans.
Collapse
Affiliation(s)
- Nidia Acosta
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción - UNA, San Lorenzo, Paraguay
| | - Jorge Miret
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción - UNA, San Lorenzo, Paraguay
| | - Elsa López
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción - UNA, San Lorenzo, Paraguay
| | - Alicia Schinini
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción - UNA, San Lorenzo, Paraguay
| |
Collapse
|
11
|
Minuzzi-Souza TTC, Nitz N, Knox MB, Reis F, Hagström L, Cuba CAC, Hecht MM, Gurgel-Gonçalves R. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo. Parasit Vectors 2016; 9:39. [PMID: 26813657 PMCID: PMC4727406 DOI: 10.1186/s13071-016-1334-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates. Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil. ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a zoo located in the Brazilian Savannah. METHODS We assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-phosphate isomerase (G6pi) gene sequences. RESULTS Trypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI. CONCLUSIONS Our findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB - with vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should be of special importance for captive-breeding programs involving endangered mammals, and would reduce the risk of accidental T. cruzi transmission to keepers and veterinarians.
Collapse
Affiliation(s)
- Thaís Tâmara Castro Minuzzi-Souza
- Laboratório de Parasitologia Médica e Biologia de Vetores, Área de Patologia, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, 70910-900, Distrito Federal, Brazil.
| | - Nadjar Nitz
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília, Federal District, Brazil.
| | - Monique Britto Knox
- Diretoria de Vigilância Ambiental do Distrito Federal, Secretaria de Saúde, Brasília, Federal District, Brazil.
| | - Filipe Reis
- Fundação Jardim Zoológico de Brasília, Brasília, Federal District, Brazil.
| | - Luciana Hagström
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília, Federal District, Brazil.
| | - César A Cuba Cuba
- Laboratório de Parasitologia Médica e Biologia de Vetores, Área de Patologia, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, 70910-900, Distrito Federal, Brazil.
| | - Mariana Machado Hecht
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília, Federal District, Brazil.
| | - Rodrigo Gurgel-Gonçalves
- Laboratório de Parasitologia Médica e Biologia de Vetores, Área de Patologia, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, 70910-900, Distrito Federal, Brazil.
| |
Collapse
|
12
|
Kribs CM, Mitchell C. Host switching vs. host sharing in overlapping sylvatic Trypanosoma cruzi transmission cycles. JOURNAL OF BIOLOGICAL DYNAMICS 2015; 9:247-277. [PMID: 26364539 DOI: 10.1080/17513758.2015.1075611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The principle of competitive exclusion is well established for multiple populations competing for the same resource, and simple models for multistrain infection exhibit it as well when cross-immunity precludes coinfections. However, multiple hosts provide niches for different pathogens to occupy simultaneously. This is the case for the vector-borne parasite Trypanosoma cruzi in overlapping sylvatic transmission cycles in the Americas, where it is enzootic. This study uses cycles in the USA involving two different hosts but the same vector species as a context for the study of the mechanisms behind the communication between the two cycles. Vectors dispersing in search of new hosts may be considered to move between the two cycles (host switching) or, more simply, to divide their time between the two host types (host sharing). Analysis considers host switching as an intermediate case between isolated cycles and intermingled cycles (host sharing) in order to examine the role played by the host-switching rate in permitting coexistence of multiple strains in a single-host population. Results show that although the population dynamics (demographic equilibria) in host-switching models align well with those in the limiting models (host sharing or isolated cycles), infection dynamics differ significantly, in ways that sometimes illuminate the underlying epidemiology (such as differing host susceptibilities to infection) and sometimes reveal model limitations (such as host switching dominating the infection dynamics). Numerical work suggests that the model explains the trace presence of TcI in raccoons but not the more significant co-persistence observed in woodrats.
Collapse
Affiliation(s)
- Christopher M Kribs
- a Mathematics Department , University of Texas at Arlington , Arlington, TX , USA
| | - Christopher Mitchell
- a Mathematics Department , University of Texas at Arlington , Arlington, TX , USA
| |
Collapse
|
13
|
Sartor PA, Ceballos LA, Orozco MM, Cardinal MV, Gürtler RE, Leguizamón MS. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species. Vector Borne Zoonotic Dis 2013; 13:581-5. [PMID: 23930975 DOI: 10.1089/vbz.2012.1125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts.
Collapse
Affiliation(s)
- Paula A Sartor
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Argentina
| | | | | | | | | | | |
Collapse
|
14
|
Roellig DM, Savage MY, Fujita AW, Barnabé C, Tibayrenc M, Steurer FJ, Yabsley MJ. Genetic variation and exchange in Trypanosoma cruzi isolates from the United States. PLoS One 2013; 8:e56198. [PMID: 23457528 PMCID: PMC3572986 DOI: 10.1371/journal.pone.0056198] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/10/2013] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a multiclonal parasite with high levels of genetic diversity and broad host and geographic ranges. Molecular characterization of South American isolates of T. cruzi has demonstrated homologous recombination and nuclear hybridization, as well as the presence of 6 main genetic clusters or "discrete typing units" (DTUs). Few studies have extensively investigated such exchange events and genetic diversity in North American isolates. In the current study, we genetically characterized over 50 US isolates from wildlife reservoirs (e.g., raccoons, opossums, armadillos, skunks), domestic dogs, humans, nonhuman primates, and reduviid vectors from nine states (TX, CA, OK, SC, FL, GA, MD, LA, TN) using a multilocus sequencing method. Single nucleotide polymorphisms were identified in sequences of the mismatch-repair class 2 (MSH2) and Tc52 genes. Typing based on the two genes often paralleled genotyping by classic methodologies using mini-exon and 18S and 24Sα rRNA genes. Evidence for genetic exchange was obtained by comparing sequence phylogenies of nuclear and mitochondrial gene targets, dihydrofolate reductase-thymidylate synthase (DHFR-TS) and the cytochrome oxidase subunit II- NADH dehydrogenase subunit I region (COII-ND1), respectively. We observed genetic exchange in several US isolates as demonstrated by incongruent mitochondrial and nuclear genes phylogenies, which confirms a previous finding of a single genetic exchange event in a Florida isolate. The presence of SNPs and evidence of genetic exchange illustrates that strains from the US are genetically diverse, even though only two phylogenetic lineages have been identified in this region.
Collapse
Affiliation(s)
- Dawn M Roellig
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | | | | | | | |
Collapse
|
15
|
Charles RA, Kjos S, Ellis AE, Barnes JC, Yabsley MJ. Southern plains woodrats (Neotoma micropus) from southern Texas are important reservoirs of two genotypes of Trypanosoma cruzi and host of a putative novel Trypanosoma species. Vector Borne Zoonotic Dis 2013; 13:22-30. [PMID: 23127189 PMCID: PMC3540927 DOI: 10.1089/vbz.2011.0817] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease, is an important public health and veterinary pathogen. Although human cases are rare in the United States, infections in wildlife, and in some areas domestic dogs, are common. In 2008 and 2010, we investigated T. cruzi prevalence in possible vertebrate reservoirs in southern Texas, with an emphasis on southern plains woodrats (Neotoma micropus). Infection status was determined using a combination of culture isolation, polymerase chain reaction (PCR), and serologic testing. Based on PCR and/or culture, T. cruzi was detected in 35 of 104 (34%) woodrats, 3 of 4 (75%) striped skunks (Mephitis mephitis), 12 of 20 (60%) raccoons (Procyon lotor), and 5 of 28 (18%) other rodents including a hispid cotton rat (Sigmodon hispidus), rock squirrel (Otospermophilus variegatus), black rat (Rattus rattus), and two house mice (Mus musculus). Additionally, another Trypanosoma species was detected in 41 woodrats, of which 27 were co-infected with T. cruzi. Genetic characterization of T. cruzi revealed that raccoon, rock squirrel, and cotton rat isolates were genotype TcIV, while woodrats and skunks were infected with TcI and TcIV. Based on the Chagas Stat-Pak assay, antibodies were detected in 27 woodrats (26%), 13 raccoons (65%), 4 skunks (100%), and 5 other rodents (18%) (two white-ankled mice [Peromyscus pectoralis laceianus], two house mice, and a rock squirrel). Seroprevalence based on indirect immunofluorescence antibody testing was higher for both woodrats (37%) and raccoons (90%), compared with the Chagas Stat-Pak. This is the first report of T. cruzi in a hispid cotton rat, black rat, rock squirrel, and white-ankled mouse. These data indicate that based on culture and PCR testing, the prevalence of T. cruzi in woodrats is comparable with other common reservoirs (i.e., raccoons and opossums) in the United States. However, unlike raccoons and opossums, which tend to be infected with a particular genotype, southern plains woodrats were infected with TcI and TcIV at near equal frequencies.
Collapse
Affiliation(s)
- Roxanne A. Charles
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, Georgia
| | - Sonia Kjos
- Marshfield Clinic Research Foundation, Marshfield, Wisconsin
| | - Angela E. Ellis
- Athens Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - John C. Barnes
- Southwest Texas Veterinary Medical Center, Uvalde, Texas
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, Georgia
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia
| |
Collapse
|
16
|
Pelosse P, Kribs-Zaleta CM. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi. J Theor Biol 2012; 312:133-42. [PMID: 22892441 DOI: 10.1016/j.jtbi.2012.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/26/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022]
Abstract
Pathogens may use different routes of transmission to maximize their spread among host populations. Theoretical and empirical work conducted on directly transmitted diseases suggest that horizontal (i.e., through host contacts) and vertical (i.e., from mother to offspring) transmission modes trade off, on the ground that highly virulent pathogens, which produce larger parasite loads, are more efficiently transmitted horizontally, and that less virulent pathogens, which impair host fitness less significantly, are better transmitted vertically. Other factors than virulence such as host density could also select for different transmission modes, but they have barely been studied. In vector-borne diseases, pathogen transmission rate is strongly affected by host-vector relative densities and by processes of saturation in contacts between hosts and vectors. The parasite Trypanosoma cruzi which is transmitted by triatomine bugs to several vertebrate hosts is responsible for Chagas' disease in Latin America. It is also widespread in sylvatic cycles in the southeastern U.S. in which it typically induces no mortality costs to its customary hosts. Besides classical transmission via vector bites, alternative ways to generate infections in hosts such as vertical and oral transmission (via the consumption of vectors by hosts) have been reported in these cycles. The two major T. cruzi strains occurring in the U.S. seem to exhibit differential efficiencies at vertical and classical horizontal transmissions. We investigated whether the vector-host ratio affects the outcome of the competition between the two parasite strains using an epidemiological two-strain model considering all possible transmission routes for sylvatic T. cruzi. We were able to show that the vector-host ratio influences the evolution of transmission modes providing that oral transmission is included in the model as a possible transmission mode, that oral and classical transmissions saturate at different vector-host ratios and that the vector-host ratio is between the two saturation thresholds. Even if data on parasite strategies and demography of hosts and vectors in the field are crucially lacking to test to what extent the conditions needed for the vector-host ratio to influence evolution of transmission modes are plausible, our results open new perspectives for understanding the specialization of the two major T. cruzi strains occurring in the U.S. Our work also provides an original theoretical framework to investigate the evolution of alternative transmission modes in vector-borne diseases.
Collapse
Affiliation(s)
- Perrine Pelosse
- Mathematics Department, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408, USA
| | | |
Collapse
|
17
|
Kribs-Zaleta CM, Mubayi A. The role of adaptations in two-strain competition for sylvatic Trypanosoma cruzi transmission. JOURNAL OF BIOLOGICAL DYNAMICS 2012; 6:813-835. [PMID: 22877420 DOI: 10.1080/17513758.2012.710339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study presents a continuous-time model for the sylvatic transmission dynamics of two strains of Trypanosoma cruzi enzootic in North America, in order to study the role that adaptations of each strain to distinct modes of transmission (classical stercorarian transmission on the one hand, and vertical and oral transmission on the other) may play in the competition between the two strains. A deterministic model incorporating contact process saturation predicts competitive exclusion, and reproductive numbers for the infection provide a framework for evaluating the competition in terms of adaptive trade-off between distinct transmission modes. Results highlight the importance of oral transmission in mediating the competition between horizontal (stercorarian) and vertical transmission; its presence as a competing contact process advantages vertical transmission even without adaptation to oral transmission, but such adaptation appears necessary to explain the persistence of (vertically-adapted) T. cruzi IV in raccoons and woodrats in the southeastern United States.
Collapse
|
18
|
Bern C, Kjos S, Yabsley MJ, Montgomery SP. Trypanosoma cruzi and Chagas' Disease in the United States. Clin Microbiol Rev 2011; 24:655-81. [PMID: 21976603 PMCID: PMC3194829 DOI: 10.1128/cmr.00005-11] [Citation(s) in RCA: 491] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and causes potentially life-threatening disease of the heart and gastrointestinal tract. The southern half of the United States contains enzootic cycles of T. cruzi, involving 11 recognized triatomine vector species. The greatest vector diversity and density occur in the western United States, where woodrats are the most common reservoir; other rodents, raccoons, skunks, and coyotes are also infected with T. cruzi. In the eastern United States, the prevalence of T. cruzi is highest in raccoons, opossums, armadillos, and skunks. A total of 7 autochthonous vector-borne human infections have been reported in Texas, California, Tennessee, and Louisiana; many others are thought to go unrecognized. Nevertheless, most T. cruzi-infected individuals in the United States are immigrants from areas of endemicity in Latin America. Seven transfusion-associated and 6 organ donor-derived T. cruzi infections have been documented in the United States and Canada. As improved control of vector- and blood-borne T. cruzi transmission decreases the burden in countries where the disease is historically endemic and imported Chagas' disease is increasingly recognized outside Latin America, the United States can play an important role in addressing the altered epidemiology of Chagas' disease in the 21st century.
Collapse
Affiliation(s)
- Caryn Bern
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
19
|
Minning TA, Weatherly DB, Flibotte S, Tarleton RL. Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization. BMC Genomics 2011; 12:139. [PMID: 21385342 PMCID: PMC3060142 DOI: 10.1186/1471-2164-12-139] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/07/2011] [Indexed: 12/20/2022] Open
Abstract
Background Trypanosoma cruzi is a protozoan parasite and the etiologic agent of Chagas disease, an important public health problem in Latin America. T. cruzi is diploid, almost exclusively asexual, and displays an extraordinarily diverse population structure both genetically and phenotypically. Yet, to date the genotypic diversity of T. cruzi and its relationship, if any, to biological diversity have not been studied at the whole genome level. Results In this study, we used whole genome oligonucleotide tiling arrays to compare gene content in biologically disparate T. cruzi strains by comparative genomic hybridization (CGH). We observed that T. cruzi strains display widespread and focal copy number variations (CNV) and a substantially greater level of diversity than can be adequately defined by the current genetic typing methods. As expected, CNV were particularly frequent in gene family-rich regions containing mucins and trans-sialidases but were also evident in core genes. Gene groups that showed little variation in copy numbers among the strains tested included those encoding protein kinases and ribosomal proteins, suggesting these loci were less permissive to CNV. Moreover, frequent variation in chromosome copy numbers were observed, and chromosome-specific CNV signatures were shared by genetically divergent T. cruzi strains. Conclusions The large number of CNV, over 4,000, reported here uphold at a whole genome level the long held paradigm of extraordinary genome plasticity among T. cruzi strains. Moreover, the fact that these heritable markers do not parse T. cruzi strains along the same lines as traditional typing methods is strongly suggestive of genetic exchange playing a major role in T. cruzi population structure and biology.
Collapse
Affiliation(s)
- Todd A Minning
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
20
|
Brown EL, Roellig DM, Gompper ME, Monello RJ, Wenning KM, Gabriel MW, Yabsley MJ. Seroprevalence of Trypanosoma cruzi among eleven potential reservoir species from six states across the southern United States. Vector Borne Zoonotic Dis 2010; 10:757-63. [PMID: 20020815 PMCID: PMC2976638 DOI: 10.1089/vbz.2009.0009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease, is a substantial public health concern in Latin America. Although rare in humans and domestic animals in the United States, T. cruzi is commonly detected in some wildlife species, most commonly raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana). To increase our understanding of the reservoir host species range and geographic distribution, 11 species of mammals from six states spanning the known range of T. cruzi (Arizona, California, Florida, Georgia, Missouri, and Virginia) were tested for antibodies to T. cruzi using indirect immunofluorescent antibody testing. In addition, culture isolation attempts were conducted on a limited number of animals from Georgia and Florida. Evidence of T. cruzi was found in every state except California; however, low numbers of known reservoirs were tested in California. In general, the highest seroprevalence rates were found in raccoons (0-68%) and opossums (17-52%), but antibodies to T. cruzi were also detected in small numbers of striped skunks (Mephitis mephitis) from Arizona and Georgia, bobcats (Lynx rufus) from Georgia, two coyotes (Canis latrans) from Georgia and Virginia, and a ringtail (Bassariscus astutus) from Arizona. Culture-based prevalence rates for raccoons were significantly greater than those for opossums; however, seroprevalences of raccoons and opossums from several geographic locations in Georgia and Florida were not different, indicating that exposure rates of these two species are similar within these areas. For both raccoons and opossums, seroprevalence was significantly higher in females than in males. No difference was detected in seroprevalence between adults and juveniles and between animals caught in urban and rural locations. Our results indicate that T. cruzi prevalence varies by host species, host characteristics, and geographic region and provides data to guide future studies on the natural history of T. cruzi in the United States.
Collapse
Affiliation(s)
- Emily L. Brown
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Dawn M. Roellig
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Matthew E. Gompper
- Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, Missouri
| | - Ryan J. Monello
- Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, Missouri
| | - Krista M. Wenning
- Wildlife Services, U.S. Department of Agriculture-Animal and Plant Health Inspection Service, Phoenix, Arizona
| | - Mourad W. Gabriel
- Department of Veterinary Medicine and Epidemiology, Center for Vector-Borne Diseases, University of California Davis, Davis, California
| | - Michael J. Yabsley
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
21
|
Kribs-Zaleta C. Estimating contact process saturation in sylvatic transmission of Trypanosoma cruzi in the United States. PLoS Negl Trop Dis 2010; 4:e656. [PMID: 20436914 PMCID: PMC2860507 DOI: 10.1371/journal.pntd.0000656] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 03/02/2010] [Indexed: 11/18/2022] Open
Abstract
Although it has been known for nearly a century that strains of Trypanosoma cruzi, the etiological agent for Chagas' disease, are enzootic in the southern U.S., much remains unknown about the dynamics of its transmission in the sylvatic cycles that maintain it, including the relative importance of different transmission routes. Mathematical models can fill in gaps where field and lab data are difficult to collect, but they need as inputs the values of certain key demographic and epidemiological quantities which parametrize the models. In particular, they determine whether saturation occurs in the contact processes that communicate the infection between the two populations. Concentrating on raccoons, opossums, and woodrats as hosts in Texas and the southeastern U.S., and the vectors Triatoma sanguisuga and Triatoma gerstaeckeri, we use an exhaustive literature review to derive estimates for fundamental parameters, and use simple mathematical models to illustrate a method for estimating infection rates indirectly based on prevalence data. Results are used to draw conclusions about saturation and which population density drives each of the two contact-based infection processes (stercorarian/bloodborne and oral). Analysis suggests that the vector feeding process associated with stercorarian transmission to hosts and bloodborne transmission to vectors is limited by the population density of vectors when dealing with woodrats, but by that of hosts when dealing with raccoons and opossums, while the predation of hosts on vectors which drives oral transmission to hosts is limited by the population density of hosts. Confidence in these conclusions is limited by a severe paucity of data underlying associated parameter estimates, but the approaches developed here can also be applied to the study of other vector-borne infections. The parasite Trypanosoma cruzi, transmitted by insect vectors, causes Chagas' disease, which affects millions of people throughout the Americas and over 100 other mammalian species. In the United States, infection in humans is believed rare, but prevalence is high in hosts like raccoons and opossums in the southeast and woodrats in Texas and northern Mexico. The principal U.S. vector species appear inefficient, however, so hosts may be primarily infected by congenital transmission and oral transmission caused by eating infected vectors. Mathematical models can evaluate the importance of each transmission route but require as inputs estimates for basic contact rates and demographic information. We estimate basic quantities via an exhaustive review of T. cruzi transmission in the southern and southeastern U.S., and use properties of mathematical models to estimate infection rates and the threshold (saturation) population-density ratios that govern whether each infection process depends on host or vector density. Results (based on extremely limited data) suggest that oral transmission is always driven by host density, while transmission to vectors depends upon host density in cycles involving raccoons and opossums, but upon vector density in cycles involving woodrats, which live in higher concentrations.
Collapse
Affiliation(s)
- Christopher Kribs-Zaleta
- Mathematics Department, University of Texas at Arlington, Arlington, Texas, United States of America.
| |
Collapse
|
22
|
Experimental infection of two South American reservoirs with four distinct strains of Trypanosoma cruzi. Parasitology 2010; 137:959-66. [PMID: 20128943 DOI: 10.1017/s0031182009991995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trypanosoma cruzi (Tc), the causative agent of Chagas disease, is a diverse species with 2 primary genotypes, TcI and TcII, with TcII further subdivided into 5 subtypes (IIa-e). This study evaluated infection dynamics of 4 genetically and geographically diverse T. cruzi strains in 2 South American reservoirs, degus (Octodon degus) and grey short-tailed opossums (Monodelphis domestica). Based on prior suggestions of a genotype-host association, we hypothesized that degus (placental) would more readily become infected with TcII strains while short-tailed opossums (marsupial) would be a more competent reservoir for a TcI strain. Individuals (n=3) of each species were intraperitoneally inoculated with T. cruzi trypomastigotes of TcIIa [North America (NA)-raccoon (Procyon lotor) origin], TcI [NA-Virginia opossum (Didelphis virginiana)], TcIIb [South America (SA)-human], TcIIe (SA-Triatoma infestans), or both TcI and TcIIa. Parasitaemias in experimentally infected degus peaked earlier (7-14 days post-inoculation (p.i.)) compared with short-tailed opossums (21-84 days p.i.). Additionally, peak parasitaemias were higher in degus; however, the duration of detectable parasitaemias for all strains, except TcIIa, was greater in short-tailed opossums. Infections established in both host species with all genotypes, except for TcIIa, which did not establish a detectable infection in short-tailed opossums. These results indicate that both South American reservoirs support infections with these isolates from North and South America; however, infection dynamics differed with host and parasite strain.
Collapse
|
23
|
Roellig DM, Ellis AE, Yabsley MJ. Genetically different isolates of Trypanosoma cruzi elicit different infection dynamics in raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana). Int J Parasitol 2009; 39:1603-10. [PMID: 19607833 PMCID: PMC2760633 DOI: 10.1016/j.ijpara.2009.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 11/20/2022]
Abstract
Trypanosoma cruzi is a genetically and biologically diverse species. In the current study we determined T. cruzi infection dynamics in two common North American reservoirs, Virginia opossums (Didelphis virginiana) and raccoons (Procyon lotor). Based on previous molecular and culture data from naturally-exposed animals, we hypothesised that raccoons would have a longer patent period than opossums, and raccoons would be competent reservoirs for both genotypes T. cruzi I (TcI) and TcIIa, while opossums would only serve as hosts for TcI. Individuals (n=2 or 3) of each species were inoculated with 1x10(6) culture-derived T. cruzi trypomastigotes of TcIIa (North American (NA) - raccoon), TcI (NA - opossum), TcIIb (South American - human), or both TcI and TcIIa. Parasitemias in opossums gradually increased and declined rapidly, whereas parasitemias peaked sooner in raccoons and they maintained relatively high parasitemia for 5weeks. Raccoons became infected with all three T. cruzi strains, while opossums only became infected with TcI and TcIIb. Although opossums were susceptible to TcIIb, infection dynamics were dramatically different compared with TcI. Opossums inoculated with TcIIb seroconverted, but parasitemia duration was short and only detectable by PCR. In addition, raccoons seroconverted sooner (3-7days post inoculation) than opossums (10days post inoculation). These data suggest that infection dynamics of various T. cruzi strains can differ considerably in different wildlife hosts.
Collapse
Affiliation(s)
- Dawn M Roellig
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30606, USA.
| | | | | |
Collapse
|
24
|
Abstract
BACKGROUND Chagas disease (CD) or American trypanosomiasis is caused by a hemoflagellate protozoan, Trypanosoma cruzi. This organism has been isolated from more than 100 mammalian species and several insect vectors demonstrating a wide host distribution and low host specificity. METHODS A 23-year-old male chimpanzee died acutely and a complete necropsy was performed to evaluate gross and microscopic pathologic changes. After observation of trypanosomal amastigotes in the myocardium, PCR and immunohistochemistry was employed to confirm the diagnosis of T. cruzi. RESULTS Gross findings were consistent with mild congestive heart failure. Microscopic findings included multifocal myocardial necrosis associated with severe lymphocytic to mixed inflammatory infiltrates, edema, and mild chronic interstitial fibrosis. Multifocal intracytoplasmic amastigotes morphologically consistent with T. cruzi were observed in cardiac myofibers. Trypanosoma cruzi was confirmed by PCR and immunohistochemistry. CONCLUSION We report, to the best of our knowledge, the first fatal spontaneous case of T. cruzi infection in a chimpanzee.
Collapse
Affiliation(s)
- Yugendar R. Bommineni
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 7600549, San Antonio, Texas 78245-0549 USA
| | - Edward J. Dick
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 7600549, San Antonio, Texas 78245-0549 USA
| | - J. Scot Estep
- US Army Institute of Surgical Research, 3400 Rawley E. Chambers Avenue, Fort Sam Houston, TX, 78234 USA
| | - John L. Van de Berg
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 7600549, San Antonio, Texas 78245-0549 USA
| | - Gene B. Hubbard
- Southwest National Primate Research Center at the Southwest Foundation for Biomedical Research, P.O. Box 7600549, San Antonio, Texas 78245-0549 USA
| |
Collapse
|
25
|
Ibarra-Cerdeña CN, Sánchez-Cordero V, Townsend Peterson A, Ramsey JM. Ecology of North American Triatominae. Acta Trop 2009; 110:178-86. [PMID: 19084490 DOI: 10.1016/j.actatropica.2008.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/07/2008] [Accepted: 11/06/2008] [Indexed: 11/24/2022]
Abstract
In all, 40 native triatomine species and subspecies occur in NA, belonging to six genera from the Triatomini (Triatoma, Paratriatoma, Panstrongylus, Dipetalogaster, Belminus, Eratyrus), and one genus from the Rhodniini (represented by one non-native species Rhodnius prolixus, formerly occurring exclusively in domestic habitats); 28 species are found exclusively in Mexico (and/or Central America), eight are shared between the United States (US) and Mexico, and four occur exclusively in the US. The genus Triatoma is the most diverse with 26 species belonging to the species groups protracta, including the species complexes protracta and lecticularia, and rubrofasciata, which includes the species complexes rubida, phyllosoma and dimidiata. Triatomine species richness declined both at higher (south US) and lower (south of the Istmus of Tehuantepec, Mexico) latitudes. Triatoma species are found predominantly in cropland, grassland, wooded grassland and woodland landscapes. Land cover types were most similar among the lecticularia, protracta, and rubida complexes, in contrast to the phyllosoma and dimidiata species complexes. The land cover types having highest suitability for most species were wooded grassland, followed by woodland for the phyllosoma and dimidiata species complexes, and open and closed shrubland and cropland for the remaining three species complexes. A principal component analysis was used to demonstrate differences in the potential range for use of environmental conditions: protracta and phyllosoma complexes occupy the broadest niches. The present study represents a primary stratification of potential triatomine dispersal areas, based on species and species complexes, and based on predicted niche, a method which has already proven to be highly significant epidemiologically.
Collapse
|
26
|
Roellig DM, Ellis AE, Yabsley MJ. Oral transmission of Trypanosoma cruzi with opposing evidence for the theory of carnivory. J Parasitol 2009; 95:360-4. [PMID: 18763853 PMCID: PMC2911628 DOI: 10.1645/ge-1740.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/15/2008] [Indexed: 11/10/2022] Open
Abstract
We present the first demonstration of oral transmission of Trypanosoma cruzi to raccoons (Procyon lotor), a natural reservoir host in the United States, by ingestion of trypomastigotes and infected bugs, but not infected tissue. To investigate an alternative, non-vector-based transmission method, we tested the hypothesis that raccoons scavenging on infected hosts results in patent infection. Macerated tissue from selected organs infected with amastigote stages of T. cruzi was orally administered to experimental groups of raccoons (n = 2/group) at 2, 12, or 24 hr after collection of the tissue samples. Additionally, raccoons (n=1) in control groups were inoculated intravenously or per os with trypomastigotes. To further elucidate transmission routes of T. cruzi to raccoons, infected Rhodnius prolixus were fed to raccoons (n=2). Raccoons did not become infected after ingestion of amastigote-infected tissues as evidenced by negative polymerase chain reaction results from blood and tissue, lack of seroconversion, and negative parasitemias. However, per os transmission can occur by ingestion of the infective trypomastigote stage or infected reduviid bugs. We conclude from these findings that oral transmission of T. cruzi may be a route of infection for wildlife in sylvatic cycles, but the scavenging behavior of animals is not likely a significant transmission route.
Collapse
Affiliation(s)
- Dawn M Roellig
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
27
|
Milei J, Guerri-Guttenberg RA, Grana DR, Storino R. Prognostic impact of Chagas disease in the United States. Am Heart J 2009; 157:22-9. [PMID: 19081392 DOI: 10.1016/j.ahj.2008.08.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 08/25/2008] [Indexed: 11/28/2022]
Abstract
A prior publication from our group reported the fact that Chagas disease is underdiagnosed. This review will summarize several aspects of Chagas disease in the United States including modes of transmission, which will demonstrate that clinicians should be more aware of the disease and its consequences. Trypanosoma cruzi is present in many animal species spread throughout most of the United States. Chagas disease also reaches the North American continent through immigration, making it more frequent than expected. Apart from immigration, non-endemic countries should be aware of transmissions through blood transfusions, organ transplantations, or mother-to-child infections. In conclusion, it is possible that many chagasic cardiomyopathies are being misdiagnosed as "primary dilated idiopathic cardiomyopathies." Recognizing that there is an evident threat of Chagas disease present in the United States will allow an increase of clinician's awareness and hence will permit to correctly diagnose and treat this cardiomyopathy. Health authorities should guarantee a generalized screening of T cruzi of blood donors, before organ donations, and of pregnant women who were born or have lived in endemic areas.
Collapse
Affiliation(s)
- José Milei
- Instituto de Investigaciones Cardiológicas Prof Dr Alberto C Taquini (ININCA), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
28
|
Trypanosoma cruzi in Brazilian Amazonia: Lineages TCI and TCIIa in wild primates, Rhodnius spp. and in humans with Chagas disease associated with oral transmission. Int J Parasitol 2008; 39:615-23. [PMID: 19041313 DOI: 10.1016/j.ijpara.2008.09.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/20/2008] [Accepted: 09/22/2008] [Indexed: 11/20/2022]
Abstract
In this study, we provide phylogenetic and biogeographic evidence that the Trypanosoma cruzi lineages T. cruzi I (TCI) and T. cruzi IIa (TCIIa) circulate amongst non-human primates in Brazilian Amazonia, and are transmitted by Rhodnius species in overlapping arboreal transmission cycles, sporadically infecting humans. TCI presented higher prevalence rates, and no lineages other than TCI and TCIIa were found in this study in wild monkeys and Rhodnius from the Amazonian region. We characterised TCI and TCIIa from wild primates (16 TCI and five TCIIa), Rhodnius spp. (13 TCI and nine TCIIa), and humans with Chagas disease associated with oral transmission (14 TCI and five TCIIa) in Brazilian Amazonia. To our knowledge, TCIIa had not been associated with wild monkeys until now. Polymorphisms of ssrDNA, cytochrome b gene sequences and randomly amplified polymorphic DNA (RAPD) patterns clearly separated TCIIa from TCIIb-e and TCI lineages, and disclosed small intra-lineage polymorphisms amongst isolates from Amazonia. These data are important in understanding the complexity of the transmission cycles, genetic structure, and evolutionary history of T. cruzi populations circulating in Amazonia, and they contribute to both the unravelling of human infection routes and the pathological peculiarities of Chagas disease in this region.
Collapse
|