1
|
Forde E, Van den Berghe L, Buijs M, Cardone A, Daly J, Franco P, Julka-Anderson N, Lechner W, Marignol L, Marvaso G, Nisbet H, O'Donovan A, Russell NS, Scherer P. Practical recommendations for the management of radiodermatitis: on behalf of the ESTRO RTT committee. Radiat Oncol 2025; 20:46. [PMID: 40158149 PMCID: PMC11954187 DOI: 10.1186/s13014-025-02624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND There is a substantial body of literature addressing the prevention, acute management, and follow-up care of radiation induced dermatitis (RID). The quality and application of this evidence, however, is inconsistent and its interpretation varies widely. While several national guidelines have been developed to standardise practices locally, many of these resources are not publicly available. On behalf of the European Society for Radiotherapy and Oncology (ESTRO) Radiation Therapist (RTT) Committee, an international writing group consisting of 12 experts from radiotherapy and two patient representatives composed a recommendation document for the management of RID. MAIN BODY The consensus for these recommendations was generated based on available international guidelines, and supplemented with evidence-based review articles on the topic. These recommendations focus on the prevention and practical management of early stage RID by avoiding skin trauma and maintaining hygiene. Addressing pain and inflammation in higher grades is also covered. The current literature refutes some of the traditional recommendations, especially restricting washing as well as the use of deodorant or the potential dose build-up of lotions which has been included and rectified in recent guidelines. In addition, the importance of grading the severity, including a baseline assessment is presented. The benefit of clear, and non-contradictory communication within the multidisciplinary team as well as patient involvement (e.g. PROMs or similar) is highlighted. Furthermore, the importance of recognising different skin types and skin tones, and the impact on how RID changes these in their appearance is stressed. CONCLUSION This document provides practical, actionable recommendations for the clinical management of RID, referencing the supporting literature. These recommendations have, however, identified a lack of high-level evidence, especially for agent-specific recommendations.
Collapse
Affiliation(s)
- Elizabeth Forde
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin, Ireland.
- Trinity St. James's Cancer Institute, Dublin, Ireland.
| | | | - Monica Buijs
- University of Applied Sciences InHolland, Haarlem, The Netherlands
| | | | - Jacqueline Daly
- East Galway and Midlands Cancer Support, Ballinasloe, Co Galway, Ireland
| | - Pierfrancesco Franco
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy
- Department of Radiation Oncology, 'Maggiore della Carità' University Hospital, Novara, Italy
| | | | - Wolfgang Lechner
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Laure Marignol
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, Dublin, Ireland
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Anita O'Donovan
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, Dublin, Ireland
| | - Nicola S Russell
- Department of Radiotherapy, The Netherlands Cancer Institute- Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Philipp Scherer
- University Clinic for Radiotherapy and RadioOncology of the PMU at the County Hospital Salzburg, Salzburg, Austria.
| |
Collapse
|
2
|
Lin N, Abbas-Aghababazadeh F, Su J, Wu AJ, Lin C, Shi W, Xu W, Haibe-Kains B, Liu FF, Kwan JYY. Development of Machine Learning Models for Predicting Radiation Dermatitis in Breast Cancer Patients Using Clinical Risk Factors, Patient-Reported Outcomes, and Serum Cytokine Biomarkers. Clin Breast Cancer 2025:S1526-8209(25)00048-5. [PMID: 40155248 DOI: 10.1016/j.clbc.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Radiation dermatitis (RD) is a significant side effect of radiotherapy experienced by breast cancer patients. Severe symptoms include desquamation or ulceration of irradiated skin, which impacts quality of life and increases healthcare costs. Early identification of patients at risk for severe RD can facilitate preventive management and reduce severe symptoms. This study evaluated the utility of subjective and objective factors, such as patient-reported outcomes (PROs) and serum cytokines, for predicting RD in breast cancer patients. The performance of machine learning (ML) and logistic regression-based models were compared. PATIENTS AND METHODS Data from 147 breast cancer patients who underwent radiotherapy was analyzed to develop prognostic models. ML algorithms, including neural networks, random forest, XGBoost, and logistic regression, were employed to predict clinically significant Grade 2+ RD. Clinical factors, PROs, and cytokine biomarkers were incorporated into the risk models. Model performance was evaluated using nested cross-validation with separate loops for hyperparameter tuning and calculating performance metrics. RESULTS Feature selection identified 18 predictors of Grade 2+ RD including smoking, radiotherapy boost, reduced motivation, and the cytokines interleukin-4, interleukin-17, interleukin-1RA, interferon-gamma, and stromal cell-derived factor-1a. Incorporating these predictors, the XGBoost model achieved the highest performance with an area under the curve (AUC) of 0.780 (95% CI: 0.701-0.854). This was not significantly improved over the logistic regression model, which demonstrated an AUC of 0.714 (95% CI: 0.629-0.798). CONCLUSION Clinical risk factors, PROs, and serum cytokine levels provide complementary prognostic information for predicting severe RD in breast cancer patients undergoing radiotherapy. ML and logistic regression models demonstrated comparable performance for predicting clinically significant RD with AUC>0.70.
Collapse
Affiliation(s)
- Neil Lin
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Farnoosh Abbas-Aghababazadeh
- Princess Margaret Bioinformatics and Computational Genomics Laboratory, University Health Network, Toronto, Canada
| | - Jie Su
- Biostatistics Division, Princess Margaret Cancer Centre, Toronto, Canada
| | - Alison J Wu
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Cherie Lin
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Wei Shi
- Research Institute, Princess Margaret Cancer Centre, Toronto, Canada
| | - Wei Xu
- Biostatistics Division, Princess Margaret Cancer Centre, Toronto, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Bioinformatics and Computational Genomics Laboratory, University Health Network, Toronto, Canada; Research Institute, Princess Margaret Cancer Centre, Toronto, Canada; Department of Computer Science, University of Toronto, Toronto, Canada; Ontario Institute for Cancer Research, Toronto, Canada; Vector Institute for Artificial Intelligence, Toronto, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Fei-Fei Liu
- Research Institute, Princess Margaret Cancer Centre, Toronto, Canada; Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Jennifer Y Y Kwan
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Research Institute, Princess Margaret Cancer Centre, Toronto, Canada; Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.
| |
Collapse
|
3
|
Chen H, Xia X, Shi K, Xie T, Sun X, Xu Z, Ge X. Bidirectional Mendelian Randomization Analysis to Study the Relationship Between Human Skin Microbiota and Radiation-Induced Skin Toxicity. Microorganisms 2025; 13:194. [PMID: 39858962 PMCID: PMC11767967 DOI: 10.3390/microorganisms13010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Radiation-induced skin toxicity, resulting from ionizing or nonionizing radiation, is a common skin disorder. However, the underlying relationship between skin microbiota and radiation-induced skin toxicity remains largely unexplored. Herein, we uncover the microbiota-skin interaction based on a genome-wide association study (GWAS) featuring 150 skin microbiota and three types of skin microenvironment. Summary datasets of human skin microbiota were extracted from the GWAS catalog database, and summary datasets of radiation-induced skin toxicity from the FinnGen biobank. Mendelian Randomization (MR) analysis was leveraged to sort out the causal link between skin microbiota and radiation-induced skin toxicity. We identified 33 causal connections between human skin microbiota and radiation-induced skin toxicity, including 19 positive and 14 negative causative directions. Among these potential associations, the genus Staphylococcus could serve as a common risk factor for radiation-induced skin toxicity, especially for radiodermatitis. And Streptococcus salivarius was identified as a potential protective factor against radiation-induced skin toxicity. Additional analysis indicated no pleiotropy, heterogeneity, or reverse causal relationship in the results. We comprehensively assessed potential associations of skin microbiota with radiation-induced skin toxicity and identified several suggestive links. Our results provide promising targets for the prevention and treatment of radiation-induced skin toxicity.
Collapse
Affiliation(s)
- Hui Chen
- Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; (H.C.); (X.X.); (K.S.); (X.S.)
| | - Xiaojie Xia
- Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; (H.C.); (X.X.); (K.S.); (X.S.)
| | - Kexin Shi
- Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; (H.C.); (X.X.); (K.S.); (X.S.)
| | - Tianyi Xie
- Department of Neuroscience, Kenneth P. Dietrich School of Arts & Science, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Xinchen Sun
- Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; (H.C.); (X.X.); (K.S.); (X.S.)
| | - Zhipeng Xu
- Department of Urology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China
| | - Xiaolin Ge
- Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; (H.C.); (X.X.); (K.S.); (X.S.)
| |
Collapse
|
4
|
Tewary G, Freyter B, Al-Razaq MA, Auerbach H, Laschke MW, Kübelbeck T, Kolb A, Mangelinck A, Mann C, Kramer D, Rübe CE. Immunomodulatory Effects of Histone Variant H2A.J in Ionizing Radiation Dermatitis. Int J Radiat Oncol Biol Phys 2024; 118:801-816. [PMID: 37758068 DOI: 10.1016/j.ijrobp.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Histone variant H2A.J is associated with premature senescence after ionizing radiation (IR) and modulates senescence-associated secretory phenotype (SASP). Using constitutive H2A.J knock-out mice, the role of H2A.J was investigated in radiation dermatitis. METHODS AND MATERIALS H2A.J wild-type (WT) and knock-out (KO) mice were exposed to moderate or high IR doses (≤20 Gy, skinfold IR). Radiation-induced skin reactions were investigated up to 2 weeks post-IR at macroscopic and microscopic levels. H2A.J and other senescence markers, as well as DNA damage and proliferation markers, were studied by immunohistochemistry, immunofluorescence, and electron microscopy. After high-dose IR, protein-coding transcriptomes were analyzed by RNA sequencing, immune cell infiltration by flow cytometry, and gene expression by reverse transcription polymerase chain reaction in (non-) irradiated WT versus KO skin. RESULTS In WT skin, epidermal keratinocytes showed time- and dose-dependent H2A.J accumulation after IR exposure. Unexpectedly, stronger inflammatory reactions with increased epidermal thickness and progressive hair follicle loss were observed in irradiated KO versus WT skin. Clearly more radiation-induced senescence was observed in keratinocyte populations of KO skin after moderate and high doses, with hair follicle stem cells being particularly badly damaged, leading to follicle atrophy. After high-dose IR, transcriptomic analysis revealed enhanced senescence-associated signatures in irradiated KO skin, with intensified release of SASP factors. Flow cytometric analysis indicated increased immune cell infiltration in both WT and KO skin; however, specific chemokine-mediated signaling in irradiated KO skin led to more neutrophil recruitment, thereby aggravating radiation toxicities. Increased skin damage in irradiated KO skin led to hyperproliferation, abnormal differentiation, and cornification of keratinocytes, accompanied by increased upregulation of transcription-factor JunB. CONCLUSIONS Lack of radiation-induced H2A.J expression in keratinocytes is associated with increased senescence induction, modulation of SASP expression, and exacerbated inflammatory skin reactions. Hence, epigenetic H2A.J-mediated gene expression in response to IR regulates keratinocyte immune functions and plays an essential role in balancing the inflammatory response during radiation dermatitis.
Collapse
Affiliation(s)
- Gargi Tewary
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Benjamin Freyter
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Mutaz Abd Al-Razaq
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Hendrik Auerbach
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Tanja Kübelbeck
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Antonia Kolb
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Adèle Mangelinck
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Carl Mann
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Daniela Kramer
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Claudia E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany.
| |
Collapse
|
5
|
Hsieh CC, Yu CC, Chu CH, Chen WC, Chen MF. Radiation-induced skin and heart toxicity in patients with breast cancer treated with adjuvant proton radiotherapy: a comparison with photon radiotherapy. Am J Cancer Res 2023; 13:4783-4793. [PMID: 37970351 PMCID: PMC10636671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/27/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to investigate the dose parameters and incidence of radiotherapy (RT)-associated toxicity in patients with left breast cancer (LBC) treated with proton-RT, compared with photon-RT. We collected data from 111 patients with LBC who received adjuvant RT in our department between August 2021 and March 2023. Among these patients, 24 underwent proton-RT and 87 underwent photon-RT. In addition to the dosimetric analysis for organs at risk (OARs), we measured NT-proBNP levels before and after RT. Our data showed that proton-RT improved dose conformity and reduced doses to the heart and lungs and was associated with a lower rate of increased NT-proBNP than did photon-RT. Regarding skin toxicity, the Dmax for 1 c.c. and 10 c.c. and the average dose to the skin-OAR had predictive roles in the risk of developing radiation-induced dermatitis. Although pencil beam proton-RT with skin optimization had a dose similar to that of skin-OAR compared with photon-RT, proton-RT still had a higher rate of radiation dermatitis (29%) than did photon RT (11%). Using mice 16 days after irradiation, we demonstrated that proton-RT induced a greater increase in interleukin 6 and transforming growth factor-β1 levels than did photon-RT. Furthermore, topical steroid ointment reduced the inflammatory response and severity of dermatitis induced by RT. In conclusion, we suggest that proton-RT with skin optimization spares high doses to OARs with acceptable skin toxicity. Furthermore, prophylactic topical steroid treatment may decrease radiation dermatitis by alleviating proton-induced inflammatory responses in vivo.
Collapse
Affiliation(s)
- Ching-Chuan Hsieh
- Department of General Surgery, Chang Gung Memorial HospitalChiayi, Taiwan
| | - Chi-Chang Yu
- Department of General Surgery, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Chia-Hui Chu
- Department of General Surgery, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Wen-Cheng Chen
- Department of Radiation Oncology, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial HospitalTaoyuan, Taiwan
| |
Collapse
|
6
|
Linley H, Ogden A, Jaigirdar S, Buckingham L, Cox J, Priestley M, Saunders A. CD200R1 promotes interleukin-17 production by group 3 innate lymphoid cells by enhancing signal transducer and activator of transcription 3 activation. Mucosal Immunol 2023; 16:167-179. [PMID: 36623588 PMCID: PMC10270648 DOI: 10.1016/j.mucimm.2023.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
Psoriasis is a common chronic inflammatory skin disease with no cure. It is driven by the interleukin (IL)-23/IL-17A axis and type 17 T helper cells; however, recently, group 3 innate lymphoid cells (ILC3s) have also been implicated. Despite being the focus of much research, factors regulating the activity of ILC3s remain incompletely understood. Immune regulatory pathways are particularly important at barrier sites, such as the skin, gut, and lungs, which are exposed to environmental substances and microbes. CD200R1 is an immune regulatory cell surface receptor that inhibits proinflammatory cytokine production in myeloid cells. CD200R1 is also highly expressed on ILCs, where its function remains largely unexplored. We previously observed reduced CD200R1 signaling in psoriasis-affected skin, suggesting that dysregulation may promote disease. Here, we show that contrary to this, psoriasis models are less severe in CD200R1-deficient mice due to reduced IL-17 production. Here, we uncover a key cell-intrinsic role for CD200R1 in promoting IL-23-driven IL-17A production by ILC3s by promoting signal transducer and activator of transcription 3 activation. Therefore, contrary to its inhibitory role in myeloid cells, CD200R1 is required on ILC3 to promote IL-23-stimulated signal transducer and activator of transcription 3 activation, triggering optimal IL-17 production.
Collapse
Affiliation(s)
- Holly Linley
- Manchester Collaborative Centre for Inflammation Research, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alice Ogden
- Manchester Collaborative Centre for Inflammation Research, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shafqat Jaigirdar
- Manchester Collaborative Centre for Inflammation Research, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Lucy Buckingham
- Manchester Collaborative Centre for Inflammation Research, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Joshua Cox
- Manchester Collaborative Centre for Inflammation Research, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Megan Priestley
- Manchester Collaborative Centre for Inflammation Research, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Amy Saunders
- Manchester Collaborative Centre for Inflammation Research, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
7
|
Paldor M, Levkovitch-Siany O, Eidelshtein D, Adar R, Enk CD, Marmary Y, Elgavish S, Nevo Y, Benyamini H, Plaschkes I, Klein S, Mali A, Rose-John S, Peled A, Galun E, Axelrod JH. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med 2022; 14:e15653. [PMID: 35785521 PMCID: PMC9358397 DOI: 10.15252/emmm.202115653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022] Open
Abstract
Irradiation‐induced alopecia and dermatitis (IRIAD) are two of the most visually recognized complications of radiotherapy, of which the molecular and cellular basis remains largely unclear. By combining scRNA‐seq analysis of whole skin‐derived irradiated cells with genetic ablation and molecular inhibition studies, we show that senescence‐associated IL‐6 and IL‐1 signaling, together with IL‐17 upregulation and CCR6+‐mediated immune cell migration, are crucial drivers of IRIAD. Bioinformatics analysis colocalized irradiation‐induced IL‐6 signaling with senescence pathway upregulation largely within epidermal hair follicles, basal keratinocytes, and dermal fibroblasts. Loss of cytokine signaling by genetic ablation in IL‐6−/− or IL‐1R−/− mice, or by molecular blockade, strongly ameliorated IRIAD, as did deficiency of CCL20/CCR6‐mediated immune cell migration in CCR6−/− mice. Moreover, IL‐6 deficiency strongly reduced IL‐17, IL‐22, CCL20, and CCR6 upregulation, whereas CCR6 deficiency reciprocally diminished IL‐6, IL‐17, CCL3, and MHC upregulation, suggesting that proximity‐dependent cellular cross talk promotes IRIAD. Therapeutically, topical application of Janus kinase blockers or inhibition of T‐cell activation by cyclosporine effectively reduced IRIAD, suggesting the potential of targeted approaches for the treatment of dermal side effects in radiotherapy patients.
Collapse
Affiliation(s)
- Mor Paldor
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Orr Levkovitch-Siany
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Dana Eidelshtein
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Revital Adar
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Claes D Enk
- Department of Dermatology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Yitzhak Marmary
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Klein
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Alex Mali
- Department of Pathology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Amnon Peled
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Eithan Galun
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jonathan H Axelrod
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
8
|
Chung L, Maestas DR, Lebid A, Mageau A, Rosson GD, Wu X, Wolf MT, Tam AJ, Vanderzee I, Wang X, Andorko JI, Zhang H, Narain R, Sadtler K, Fan H, Čiháková D, Le Saux CJ, Housseau F, Pardoll DM, Elisseeff JH. Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans. Sci Transl Med 2021; 12:12/539/eaax3799. [PMID: 32295900 DOI: 10.1126/scitranslmed.aax3799] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Medical devices and implants made of synthetic materials can induce an immune-mediated process when implanted in the body called the foreign body response, which results in formation of a fibrous capsule around the implant. To explore the immune and stromal connections underpinning the foreign body response, we analyzed fibrotic capsules surrounding surgically excised human breast implants from 12 individuals. We found increased numbers of interleukin 17 (IL17)-producing γδ+ T cells and CD4+ T helper 17 (TH17) cells as well as senescent stromal cells in the fibrotic capsules. Further analysis in a murine model demonstrated an early innate IL17 response to implanted synthetic material (polycaprolactone) particles that was mediated by innate lymphoid cells and γδ+ T cells. This was followed by a chronic adaptive CD4+ TH17 cell response that was antigen dependent. Synthetic materials with varying chemical and physical properties implanted either in injured muscle or subcutaneously induced similar IL17 responses in mice. Mice deficient in IL17 signaling established that IL17 was required for the fibrotic response to implanted synthetic materials and the development of p16INK4a senescent cells. IL6 produced by senescent cells was sufficient for the induction of IL17 expression in T cells. Treatment with a senolytic agent (navitoclax) that killed senescent cells reduced IL17 expression and fibrosis in the mouse implant model. Discovery of a feed-forward loop between the TH17 immune response and the senescence response to implanted synthetic materials introduces new targets for therapeutic intervention in the foreign body response.
Collapse
Affiliation(s)
- Liam Chung
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - David R Maestas
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Andriana Lebid
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ashlie Mageau
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Gedge D Rosson
- Division of Plastic Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Xinqun Wu
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Matthew T Wolf
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ada J Tam
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Isabel Vanderzee
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Xiaokun Wang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - James I Andorko
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hong Zhang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Radhika Narain
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kaitlyn Sadtler
- Section on Immuno-Engineering, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Hongni Fan
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Franck Housseau
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jennifer H Elisseeff
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. .,Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
9
|
Wang G, Sweren E, Liu H, Wier E, Alphonse MP, Chen R, Islam N, Li A, Xue Y, Chen J, Park S, Chen Y, Lee S, Wang Y, Wang S, Archer NK, Andrews W, Kane MA, Dare E, Reddy SK, Hu Z, Grice EA, Miller LS, Garza LA. Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe 2021; 29:777-791.e6. [PMID: 33798492 PMCID: PMC8122070 DOI: 10.1016/j.chom.2021.03.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Environmental factors that enhance regeneration are largely unknown. The immune system and microbiome are attributed roles in repairing and regenerating structure but their precise interplay is unclear. Here, we assessed the function of skin bacteria in wound healing and wound-induced hair follicle neogenesis (WIHN), a rare adult organogenesis model. WIHN levels and stem cell markers correlate with bacterial counts, being lowest in germ-free (GF), intermediate in conventional specific pathogen-free (SPF), and highest in wild-type mice, even those infected with pathogenic Staphylococcus aureus. Reducing skin microbiota via cage changes or topical antibiotics decreased WIHN. Inflammatory cytokine IL-1β and keratinocyte-dependent IL-1R-MyD88 signaling are necessary and sufficient for bacteria to promote regeneration. Finally, in a small trial, a topical broad-spectrum antibiotic also slowed skin wound healing in adult volunteers. These results demonstrate a role for IL-1β to control morphogenesis and support the need to reconsider routine applications of topical prophylactic antibiotics.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Evan Sweren
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Eric Wier
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Ruosi Chen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Nasif Islam
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Ang Li
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Yingchao Xue
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Sam Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Saifeng Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Nate K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - William Andrews
- Department of Pharmaceutical Sciences, School of Pharmacy Mass Spectrometry Center, University of Maryland, MD 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy Mass Spectrometry Center, University of Maryland, MD 21201, USA
| | - Erika Dare
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Elizabeth A Grice
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
10
|
Okano J, Nakae Y, Nakagawa T, Katagi M, Terashima T, Nagakubo D, Nakayama T, Yoshie O, Suzuki Y, Kojima H. A novel role for bone marrow-derived cells to recover damaged keratinocytes from radiation-induced injury. Sci Rep 2021; 11:5653. [PMID: 33707490 PMCID: PMC7952382 DOI: 10.1038/s41598-021-84818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Exposure to moderate doses of ionizing radiation (IR), which is sufficient for causing skin injury, can occur during radiation therapy as well as in radiation accidents. Radiation-induced skin injury occasionally recovers, although its underlying mechanism remains unclear. Moderate-dose IR is frequently utilized for bone marrow transplantation in mice; therefore, this mouse model can help understand the mechanism. We had previously reported that bone marrow-derived cells (BMDCs) migrate to the epidermis-dermis junction in response to IR, although their role remains unknown. Here, we investigated the role of BMDCs in radiation-induced skin injury in BMT mice and observed that BMDCs contributed to skin recovery after IR-induced barrier dysfunction. One of the important mechanisms involved the action of CCL17 secreted by BMDCs on irradiated basal cells, leading to accelerated proliferation and recovery of apoptosis caused by IR. Our findings suggest that BMDCs are key players in IR-induced skin injury recovery.
Collapse
Affiliation(s)
- Junko Okano
- Department of Plastic and Reconstructive Surgery, Shiga University of Medical Science, Shiga, Japan.
| | - Yuki Nakae
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Daisuke Nagakubo
- Faculty of Pharmaceutical Sciences, Division of Health and Hygienic Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | | | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
11
|
Camargo CP, Carvalho HA, Maluf FC, Sousa AADC, Perin POM, Perin MM, Morais-Besteiro J, Gemperli R. Light-emitting diode stimulates radiodermatitis recovery. Acta Cir Bras 2021; 36:e360301. [PMID: 33656099 PMCID: PMC7909943 DOI: 10.1590/acb360301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate the effect of light-emitting diode (LED) in an experimental model of radiodermatitis. Methods Ten male Wistar rats weighing 200–250 g were analyzed. Radiation was delivered in a single dose (20 Gy with Strontium-90 dermatological plaques), two areas per animal. After 15 days, they were divided into two groups: control group (n = 5) and LED group (n = 5), which was treated during 21 days later (LED 660 nm, 10 min in alternate days). The endpoints were radiodermatitis scale, histological analysis HE, Picrius Sirius and the gene expression of interleukin-10 (IL-10) and matrix metalloproteinase-9 (MMP-9). Results The LED group showed a higher number of dermal appendages (p = 0.04) and angiogenesis(p = 0.007), a tendency towards higher IL-10 (p = 0.06) and an increase in MMP-9 (p = 0.004) when compared to the control group. Conclusions This study suggested that the use of LED for radiodermatitis increased skin regeneration.
Collapse
|
12
|
Ionizing Radiation Mediates Dose Dependent Effects Affecting the Healing Kinetics of Wounds Created on Acute and Late Irradiated Skin. SURGERIES 2021. [DOI: 10.3390/surgeries2010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy for cancer treatment is often associated with skin damage that can lead to incapacitating hard-to-heal wounds. No permanent curative treatment has been identified for radiodermatitis. This study provides a detailed characterization of the dose-dependent impact of ionizing radiation on skin cells (45, 60, or 80 grays). We evaluated both early and late effects on murine dorsal skin with a focus on the healing process after two types of surgical challenge. The irradiated skin showed moderate to severe damage increasing with the dose. Four weeks after irradiation, the epidermis featured increased proliferation status while the dermis was hypovascular with abundant α-SMA intracellular expression. Excisional wounds created on these tissues exhibited delayed global wound closure. To assess potential long-lasting side effects of irradiation, radiodermatitis features were followed until macroscopic healing was notable (over 8 to 22 weeks depending on the dose), at which time incisional wounds were made. Severity scores and biomechanical analyses of the scar tissues revealed that seemingly healed irradiated skin still displayed altered functionality. Our detailed investigation of both the acute and chronic repercussions of radiotherapy on skin healing provides a relevant new in vivo model that will instruct future studies evaluating the efficacy of new treatments for radiodermatitis.
Collapse
|
13
|
Huth S, Marquardt Y, Huth L, Schmitt L, Prescher K, Winterhalder P, Steiner T, Hölzle F, Eble M, Malte Baron J. Molecular effects of photon irradiation and subsequent aftercare treatment with dexpanthenol-containing ointment or liquid in 3D models of human skin and non-keratinized oral mucosa. Exp Dermatol 2021; 30:745-750. [PMID: 33403711 DOI: 10.1111/exd.14266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the molecular effects of radiation and subsequent aftercare treatment with dexpanthenol-containing ointment and liquid on established full-thickness 3D skin models depicting acute radiodermatitis and mucositis. To mimic radiomucositis and radiodermatitis, non-keratinized mucous membrane and normal human skin models were irradiated with 5 Gray. Afterwards, models were treated topically every second day with dexpanthenol-containing ointment or liquid in comparison with placebo and untreated controls. On day 7 after irradiation, histological examination showed impairments in irradiated models. In contrast, models treated with dexpanthenol-containing ointment or liquid showed a completely restored epidermal part. While gene expression profiling revealed an induction of genes related to a pro-inflammatory milieu, oxidative stress and an impaired epidermal differentiation after irradiation of the models, aftercare treatment with dexpanthenol-containing ointment or liquid revealed anti-oxidative and anti-inflammatory effects and had a positive effect on epidermal differentiation and structures important for physical and antimicrobial barrier function. Our findings confirm the potential of our established models as in vitro tools for the replacement of pharmacological in vivo studies regarding radiation-induced skin injuries and give indications of the positive effects of dexpanthenol-containing externals after radiation treatments as part of supportive tumor treatment.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Laurenz Schmitt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kirsten Prescher
- Department of Radiation Oncology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Philipp Winterhalder
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Timm Steiner
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Frank Hölzle
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Eble
- Department of Radiation Oncology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
DiCarlo AL, Bandremer AC, Hollingsworth BA, Kasim S, Laniyonu A, Todd NF, Wang SJ, Wertheimer ER, Rios CI. Cutaneous Radiation Injuries: Models, Assessment and Treatments. Radiat Res 2020; 194:315-344. [PMID: 32857831 PMCID: PMC7525796 DOI: 10.1667/rade-20-00120.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Many cases of human exposures to high-dose radiation have been documented, including individuals exposed during the detonation of atomic bombs in Hiroshima and Nagasaki, nuclear power plant disasters (e.g., Chernobyl), as well as industrial and medical accidents. For many of these exposures, injuries to the skin have been present and have played a significant role in the progression of the injuries and survivability from the radiation exposure. There are also instances of radiation-induced skin complications in routine clinical radiotherapy and radiation diagnostic imaging procedures. In response to the threat of a radiological or nuclear mass casualty incident, the U.S. Department of Health and Human Services tasked the National Institute of Allergy and Infectious Diseases (NIAID) with identifying and funding early- to mid-stage medical countermeasure (MCM) development to treat radiation-induced injuries, including those to the skin. To appropriately assess the severity of radiation-induced skin injuries and determine efficacy of different approaches to mitigate/treat them, it is necessary to develop animal models that appropriately simulate what is seen in humans who have been exposed. In addition, it is important to understand the techniques that are used in other clinical indications (e.g., thermal burns, diabetic ulcers, etc.) to accurately assess the extent of skin injury and progression of healing. For these reasons, the NIAID partnered with two other U.S. Government funding and regulatory agencies, the Biomedical Advanced Research and Development Authority (BARDA) and the Food and Drug Administration (FDA), to identify state-of-the-art methods in assessment of skin injuries, explore animal models to better understand radiation-induced cutaneous damage and investigate treatment approaches. A two-day workshop was convened in May 2019 highlighting talks from 28 subject matter experts across five scientific sessions. This report provides an overview of information that was presented and the subsequent guided discussions.
Collapse
Affiliation(s)
- Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Aaron C. Bandremer
- Biomedical Advanced Research and Development Authority (BARDA), Department of Health and Human Services (HHS), Washington, DC
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Suhail Kasim
- U.S. Food and Drug Administration (FDA), White Oak, Maryland
| | | | - Nushin F. Todd
- U.S. Food and Drug Administration (FDA), White Oak, Maryland
| | - Sue-Jane Wang
- U.S. Food and Drug Administration (FDA), White Oak, Maryland
| | | | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
15
|
Comparison of time and dose dependent gene expression and affected pathways in primary human fibroblasts after exposure to ionizing radiation. Mol Med 2020; 26:85. [PMID: 32907548 PMCID: PMC7488023 DOI: 10.1186/s10020-020-00203-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Exposure to ionizing radiation induces complex stress responses in cells, which can lead to adverse health effects such as cancer. Although a variety of studies investigated gene expression and affected pathways in human fibroblasts after exposure to ionizing radiation, the understanding of underlying mechanisms and biological effects is still incomplete due to different experimental settings and small sample sizes. Therefore, this study aims to identify the time point with the highest number of differentially expressed genes and corresponding pathways in primary human fibroblasts after irradiation at two preselected time points. Methods Fibroblasts from skin biopsies of 15 cell donors were exposed to a high (2Gy) and a low (0.05Gy) dose of X-rays. RNA was extracted and sequenced 2 h and 4 h after exposure. Differentially expressed genes with an adjusted p-value < 0.05 were flagged and used for pathway analyses including prediction of upstream and downstream effects. Principal component analyses were used to examine the effect of two different sequencing runs on quality metrics and variation in expression and alignment and for explorative analysis of the radiation dose and time point of analysis. Results More genes were differentially expressed 4 h after exposure to low and high doses of radiation than after 2 h. In experiments with high dose irradiation and RNA sequencing after 4 h, inactivation of the FAT10 cancer signaling pathway and activation of gluconeogenesis I, glycolysis I, and prostanoid biosynthesis was observed taking p-value (< 0.05) and (in) activating z-score (≥2.00 or ≤ − 2.00) into account. Two hours after high dose irradiation, inactivation of small cell lung cancer signaling was observed. For low dose irradiation experiments, we did not detect any significant (p < 0.05 and z-score ≥ 2.00 or ≤ − 2.00) activated or inactivated pathways for both time points. Conclusions Compared to 2 h after irradiation, a higher number of differentially expressed genes were found 4 h after exposure to low and high dose ionizing radiation. Differences in gene expression were related to signal transduction pathways of the DNA damage response after 2 h and to metabolic pathways, that might implicate cellular senescence, after 4 h. The time point 4 h will be used to conduct further irradiation experiments in a larger sample.
Collapse
|
16
|
Wang Y, Tu W, Tang Y, Zhang S. Prevention and treatment for radiation-induced skin injury during radiotherapy. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
17
|
Chaouni S, Lecomte DD, Stefan D, Leduc A, Barraux V, Leconte A, Grellard JM, Habrand JL, Guillamin M, Sichel F, Laurent C. The Possibility of Using Genotoxicity, Oxidative Stress and Inflammation Blood Biomarkers to Predict the Occurrence of Late Cutaneous Side Effects after Radiotherapy. Antioxidants (Basel) 2020; 9:antiox9030220. [PMID: 32156042 PMCID: PMC7139389 DOI: 10.3390/antiox9030220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the progresses performed in the field of radiotherapy, toxicity to the healthy tissues remains a major limiting factor. The aim of this work was to highlight blood biomarkers whose variations could predict the occurrence of late cutaneous side effects. Two groups of nine patients treated for Merkel Cell Carcinoma (MCC) were established according to the grade of late skin toxicity after adjuvant irradiation for MCC: grade 0, 1 or 2 and grade 3 or 4 of RTOG (Radiation Therapy Oncology Group)/EORTC (European Organization for Research and Treatment of Cancer). To try to discriminate these 2 groups, biomarkers of interest were measured on the different blood compartments after ex vivo irradiation. In lymphocytes, cell cycle, apoptosis and genotoxicity were studied. Oxidative stress was evaluated by the determination of the erythrocyte antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, reduced and oxidized glutathione) as well as degradation products (protein carbonylation, lipid peroxidation). Inflammation was assessed in the plasma by the measurement of 14 cytokines. The most radiosensitive patients presented a decrease in apoptosis, micronucleus frequency, antioxidant enzyme activities, glutathione and carbonyls; and an increase in TNF-a (Tumor Necrosis Factor a), IL-8 (Interleukin 8) and TGF-β1 (Transforming Growth Factor β1) levels. These findings have to be confirmed on a higher number of patients and before radiotherapy and could allow to predict the occurrence of late skin side effects after radiotherapy.
Collapse
Affiliation(s)
- Samia Chaouni
- ABTE-EA4651, ToxEMAC, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France, (S.C.)
| | - Delphine Dumont Lecomte
- ABTE-EA4651, ToxEMAC, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France, (S.C.)
- Radiotherapy Department, Hôpital Haut-Lévêque, CHU de Bordeaux, 33600 Pessac, France
| | - Dinu Stefan
- ABTE-EA4651, ToxEMAC, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France, (S.C.)
- Radiotherapy Department, Cancer Centre François Baclesse, 14000 Caen France
| | - Alexandre Leduc
- ABTE-EA4651, ToxEMAC, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France, (S.C.)
| | - Victor Barraux
- Medical Physics Department, Cancer Centre François Baclesse, 14000 Caen, France,
| | - Alexandra Leconte
- Clinical Research Department, Cancer Centre François Baclesse, 14000 Caen, France, (A.L.)
| | - Jean-Michel Grellard
- Clinical Research Department, Cancer Centre François Baclesse, 14000 Caen, France, (A.L.)
| | - Jean-Louis Habrand
- ABTE-EA4651, ToxEMAC, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France, (S.C.)
- Radiotherapy Department, Cancer Centre François Baclesse, 14000 Caen France
| | - Marilyne Guillamin
- IFR ICORE-Flow Cytometry Platform, Normandie University, UNICAEN, 14000 Caen, France,
| | - François Sichel
- ABTE-EA4651, ToxEMAC, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France, (S.C.)
- Cancer Centre François Baclesse, 14000 Caen, France
| | - Carine Laurent
- ABTE-EA4651, ToxEMAC, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France, (S.C.)
- SAPHYN/ARCHADE (Advanced Resource Centre for HADrontherapy in Europe), Cancer Centre François Baclesse, 14000 Caen, France
| |
Collapse
|
18
|
Ionizing radiation induces cutaneous lipid remolding and skin adipocytes confer protection against radiation-induced skin injury. J Dermatol Sci 2020; 97:152-160. [PMID: 32001116 DOI: 10.1016/j.jdermsci.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Radiation-induced skin injury is a serious concern during radiotherapy and radiation accidents. Skin fat represents the dominant architectural component of the human skin. However, the interplay between skin fat and the progression of radiation-induced skin injury remains largely unexplored. OBJECTIVE This study aims to elucidate the interplay between skin fat and the progression of radiation-induced skin injury. METHODS SD rats were irradiated with an electron beam. mRNA profiles were determined by RNA-Seq. The skin lipid mass was monitored by magnetic resonance imaging (MRI) and lipid profiles were measured by liquid chromatography-mass spectrometry (LC-MS). Human mature adipocytes isolated from dermal and subcutaneous white adipose tissues (WATs) were co-cultured with human keratinocytes (HaCaT) and skin fibroblasts (WS1) in the transwell culture system. Cell migration ability was measured by migration assay. RESULTS Radiation modulated cutaneous lipid metabolism by downregulating multiple pathways. Moreover, radiation decreased skin fat mass with altered lipid metabolite profiles. The rats fed with a high-fat diet showed resistance to radiogenic skin injury compared with that with a control diet, indicating that skin lipid plays a radioprotective role. Mature adipocytes promoted the migration but not the proliferation of co-cultured skin keratinocytes and fibroblasts. Palmitic acid, the most abundant fatty acid in skin tissues, facilitated the migration of WS1 cells. Moreover, fatty acid-binding protein 4 (FABP4) could be incorporated into skin cells and promote DNA damage repair in irradiated skin fibroblasts. CONCLUSION Radiation induces cutaneous lipid remolding, and skin adipocytes confer a protective role against radiation-induced skin injury.
Collapse
|
19
|
Ejaz A, Greenberger JS, Rubin PJ. Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol Ther 2019; 204:107399. [DOI: 10.1016/j.pharmthera.2019.107399] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
|
20
|
Sammer M, Zahnbrecher E, Dobiasch S, Girst S, Greubel C, Ilicic K, Reindl J, Schwarz B, Siebenwirth C, Walsh DWM, Combs SE, Dollinger G, Schmid TE. Proton pencil minibeam irradiation of an in-vivo mouse ear model spares healthy tissue dependent on beam size. PLoS One 2019; 14:e0224873. [PMID: 31765436 PMCID: PMC6876838 DOI: 10.1371/journal.pone.0224873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Proton radiotherapy using minibeams of sub-millimeter dimensions reduces side effects in comparison to conventional proton therapy due to spatial fractionation. Since the proton minibeams widen with depth, the homogeneous irradiation of a tumor can be ensured by adjusting the beam distances to tumor size and depth to maintain tumor control as in conventional proton therapy. The inherent advantages of protons in comparison to photons like a limited range that prevents a dosage of distal tissues are maintained by proton minibeams and can even be exploited for interlacing from different beam directions. A first animal study was conducted to systematically investigate and quantify the tissue-sparing effects of proton pencil minibeams as a function of beam size and dose distributions, using beam widths between σ = 95, 199, 306, 411, 561 and 883 μm (standard deviation) at a defined center-to-center beam distance (ctc) of 1.8 mm. The average dose of 60 Gy was distributed in 4x4 minibeams using 20 MeV protons (LET ~ 2.7 keV/μm). The induced radiation toxicities were measured by visible skin reactions and ear swelling for 90 days after irradiation. The largest applied beam size to ctc ratio (σ/ctc = 0.49) is similar to a homogeneous irradiation and leads to a significant 3-fold ear thickness increase compared to the control group. Erythema and desquamation was also increased significantly 3–4 weeks after irradiation. With decreasing beam sizes and thus decreasing σ/ctc, the maximum skin reactions are strongly reduced until no ear swelling or other visible skin reactions should occur for σ/ctc < 0.032 (extrapolated from data). These results demonstrate that proton pencil minibeam radiotherapy has better tissue-sparing for smaller σ/ctc, corresponding to larger peak-to-valley dose ratios PVDR, with the best effect for σ/ctc < 0.032. However, even quite large σ/ctc (e.g. σ/ctc = 0.23 or 0.31, i.e. PVDR = 10 or 2.7) show less acute side effects than a homogeneous dose distribution. This suggests that proton minibeam therapy spares healthy tissue not only in the skin but even for dose distributions appearing in deeper layers close to the tumor enhancing its benefits for clinical proton therapy.
Collapse
Affiliation(s)
- Matthias Sammer
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Esther Zahnbrecher
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Stefanie Girst
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Christoph Greubel
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Katarina Ilicic
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Judith Reindl
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Benjamin Schwarz
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Christian Siebenwirth
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany.,Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Dietrich W M Walsh
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany.,Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Günther Dollinger
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany
| |
Collapse
|
21
|
de Leve S, Wirsdörfer F, Jendrossek V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers (Basel) 2019; 11:cancers11101578. [PMID: 31623231 PMCID: PMC6827091 DOI: 10.3390/cancers11101578] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a central component of standard treatment for many cancer patients. RT alone or in multimodal treatment strategies has a documented contribution to enhanced local control and overall survival of cancer patients, and cancer cure. Clinical RT aims at maximizing tumor control, while minimizing the risk for RT-induced adverse late effects. However, acute and late toxicities of IR in normal tissues are still important biological barriers to successful RT: While curative RT may not be tolerable, sub-optimal tolerable RT doses will lead to fatal outcomes by local recurrence or metastatic disease, even when accepting adverse normal tissue effects that decrease the quality of life of irradiated cancer patients. Technical improvements in treatment planning and the increasing use of particle therapy have allowed for a more accurate delivery of IR to the tumor volume and have thereby helped to improve the safety profile of RT for many solid tumors. With these technical and physical strategies reaching their natural limits, current research for improving the therapeutic gain of RT focuses on innovative biological concepts that either selectively limit the adverse effects of RT in normal tissues without protecting the tumor or specifically increase the radiosensitivity of the tumor tissue without enhancing the risk of normal tissue complications. The biology-based optimization of RT requires the identification of biological factors that are linked to differential radiosensitivity of normal or tumor tissues, and are amenable to therapeutic targeting. Extracellular adenosine is an endogenous mediator critical to the maintenance of homeostasis in various tissues. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (NT5E, CD73) that catabolize ATP to adenosine. Recent work revealed a role of the immunoregulatory CD73/adenosine system in radiation-induced fibrotic disease in normal tissues suggesting a potential use as novel therapeutic target for normal tissue protection. The present review summarizes relevant findings on the pathologic roles of CD73 and adenosine in radiation-induced fibrosis in different organs (lung, skin, gut, and kidney) that have been obtained in preclinical models and proposes a refined model of radiation-induced normal tissue toxicity including the disease-promoting effects of radiation-induced activation of CD73/adenosine signaling in the irradiated tissue environment. However, expression and activity of the CD73/adenosine system in the tumor environment has also been linked to increased tumor growth and tumor immune escape, at least in preclinical models. Therefore, we will discuss the use of pharmacologic inhibition of CD73/adenosine-signaling as a promising strategy for improving the therapeutic gain of RT by targeting both, malignant tumor growth and adverse late effects of RT with a focus on fibrotic disease. The consideration of the therapeutic window is particularly important in view of the increasing use of RT in combination with various molecularly targeted agents and immunotherapy to enhance the tumor radiation response, as such combinations may result in increased or novel toxicities, as well as the increasing number of cancer survivors.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
22
|
Acute Skin Damage and Late Radiation-Induced Fibrosis and Inflammation in Murine Ears after High-Dose Irradiation. Cancers (Basel) 2019; 11:cancers11050727. [PMID: 31130616 PMCID: PMC6562452 DOI: 10.3390/cancers11050727] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023] Open
Abstract
The use of different scoring systems for radiation-induced toxicity limits comparability between studies. We examined dose-dependent tissue alterations following hypofractionated X-ray irradiation and evaluated their use as scoring criteria. Four dose fractions (0, 5, 10, 20, 30 Gy/fraction) were applied daily to ear pinnae. Acute effects (ear thickness, erythema, desquamation) were monitored for 92 days after fraction 1. Late effects (chronic inflammation, fibrosis) and the presence of transforming growth factor beta 1 (TGFβ1)-expressing cells were quantified on day 92. The maximum ear thickness displayed a significant positive correlation with fractional dose. Increased ear thickness and erythema occurred simultaneously, followed by desquamation from day 10 onwards. A significant dose-dependency was observed for the severity of erythema, but not for desquamation. After 4 × 20 and 4 × 30 Gy, inflammation was significantly increased on day 92, whereas fibrosis and the abundance of TGFβ1-expressing cells were only marginally increased after 4 × 30 Gy. Ear thickness significantly correlated with the severity of inflammation and fibrosis on day 92, but not with the number of TGFβ1-expressing cells. Fibrosis correlated significantly with inflammation and fractional dose. In conclusion, the parameter of ear thickness can be used as an objective, numerical and dose-dependent quantification criterion to characterize the severity of acute toxicity and allow for the prediction of late effects.
Collapse
|
23
|
Perraud AL, Rao DM, Kosmacek EA, Dagunts A, Oberley-Deegan RE, Gally F. The ion channel, TRPM2, contributes to the pathogenesis of radiodermatitis. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:89-98. [PMID: 30483886 PMCID: PMC6394656 DOI: 10.1007/s00411-018-0769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Radiodermatitis is a painful side effect for cancer patients undergoing radiotherapy. Irradiation of the skin causes inflammation and breakdown of the epidermis and can lead to significant morbidity and mortality in severe cases, as seen in exposure from accidents or weapons such as "dirty bombs" and ultimately leads to tissue fibrosis. However, the pathogenesis of radiodermatitis is not fully understood. Using a mouse model of radiodermatitis, we showed that the Transient Receptor Potential Melastatin 2 (TRPM2) ion channel plays a significant role in the development of dermatitis following exposure to ionizing radiation. Irradiated TRPM2-deficient mice developed less inflammation, fewer severe skin lesions and decreased fibrosis when compared to wild type mice. The TRPM2-deficient mice also showed a faster recovery period as seen by their increased weight gain post irradiation. Finally, TRPM2-deficient mice exhibited lower systemic inflammation with a reduction in inflammatory cytokines present in the serum. These findings suggest that TRPM2 may be a potential therapeutic target for reducing the severity of radiodermatitis.
Collapse
Affiliation(s)
- Anne-Laure Perraud
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO, 80206, USA
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, USA
| | - Deviyani M Rao
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO, 80206, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, USA
| | - Aleksandra Dagunts
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, USA
| | - Fabienne Gally
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO, 80206, USA.
| |
Collapse
|
24
|
Mylle S, Grine L, Speeckaert R, Lambert JLW, van Geel N. Targeting the IL-23/IL-17 Pathway in Psoriasis: the Search for the Good, the Bad and the Ugly. Am J Clin Dermatol 2018; 19:625-637. [PMID: 30003497 DOI: 10.1007/s40257-018-0366-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New promising treatments have been developed for psoriasis that target different parts of the interleukin (IL)-23/IL-17 pathway. This approach is believed to be more disease specific, and sparing the T helper 1 pathway might prevent serious long-term adverse events. Moreover, superior Psoriasis Area and Severity Index improvements are observed, which has redefined treatment goals in psoriasis. The new molecules can be divided into different categories, according to the target: blocking agents can target the upstream cytokine IL-23 or the downstream IL-17. In the latter, a variety of targets exist, such as the ligands IL-17A and IL-17F, or a combination thereof, or a subunit of the receptor, IL-17RA. Each target seems to have its own set of advantages and pitfalls, which will impact the treatment decision in clinical practice. In this review, we summarize the current knowledge on the different inhibitors of the IL-23/IL-17 pathway. Furthermore, we briefly discuss the role of IL-17 in other diseases and comorbidities. Finally, we discuss how comprehensive knowledge is needed for the prescribing physician in order to make the most appropriate therapeutic choice for each individual patient.
Collapse
Affiliation(s)
- Sofie Mylle
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Lynda Grine
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Jo L W Lambert
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| |
Collapse
|
25
|
Bravatà V, Minafra L, Cammarata FP, Pisciotta P, Lamia D, Marchese V, Petringa G, Manti L, Cirrone GA, Gilardi MC, Cuttone G, Forte GI, Russo G. Gene expression profiling of breast cancer cell lines treated with proton and electron radiations. Br J Radiol 2018; 91:20170934. [PMID: 29888960 DOI: 10.1259/bjr.20170934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Technological advances in radiation therapy are evolving with the use of hadrons, such as protons, indicated for tumors where conventional radiotherapy does not give significant advantages or for tumors located in sensitive regions, which need the maximum of dose-saving of the surrounding healthy tissues. The genomic response to conventional and non-conventional linear energy transfer exposure is a poor investigated topic and became an issue of radiobiological interest. The aim of this work was to analyze and compare molecular responses in term of gene expression profiles, induced by electron and proton irradiation in breast cancer cell lines. METHODS We studied the gene expression profiling differences by cDNA microarray activated in response to electron and proton irradiation with different linear energy transfer values, among three breast cell lines (the tumorigenic MCF7 and MDA-MB-231 and the non-tumorigenic MCF10A), exposed to the same sublethal dose of 9 Gy. RESULTS Gene expression profiling pathway analyses showed the activation of different signaling and molecular networks in a cell line and radiation type-dependent manner. MCF10A and MDA-MB-231 cell lines were found to induce factors and pathways involved in the immunological process control. CONCLUSION Here, we describe in a detailed way the gene expression profiling and pathways activated after electron and proton irradiation in breast cancer cells. Summarizing, although specific pathways are activated in a radiation type-dependent manner, each cell line activates overall similar molecular networks in response to both these two types of ionizing radiation. Advances in knowledge: In the era of personalized medicine and breast cancer target-directed intervention, we trust that this study could drive radiation therapy towards personalized treatments, evaluating possible combined treatments, based on the molecular characterization.
Collapse
Affiliation(s)
- Valentina Bravatà
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy
| | - Luigi Minafra
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy
| | - Francesco Paolo Cammarata
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy
| | - Pietro Pisciotta
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy.,2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy.,3 Department of Physics and Astronomy, University of Catania , Catania , Italy
| | - Debora Lamia
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy
| | - Valentina Marchese
- 2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy
| | - Giada Petringa
- 2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy
| | - Lorenzo Manti
- 4 Department of Physics, University of Naples Federico II, via Cintia, I-80126 Naples , Italy
| | - Giuseppe Ap Cirrone
- 2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy
| | - Maria Carla Gilardi
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy.,5 Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca , Milan , Italy
| | - Giacomo Cuttone
- 2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy
| | - Giusi Irma Forte
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy
| | - Giorgio Russo
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy.,2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy
| |
Collapse
|
26
|
The Th1/Th17 balance dictates the fibrosis response in murine radiation-induced lung disease. Sci Rep 2017; 7:11586. [PMID: 28912510 PMCID: PMC5599556 DOI: 10.1038/s41598-017-11656-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
Radiotherapy can result in lung diseases pneumonitis or fibrosis dependent on patient susceptibility. Herein we used inbred and genetically altered mice to investigate whether the tissue adaptive immune response to radiation injury influences the development of radiation-induced lung disease. Six inbred mouse strains were exposed to 18 Gy whole thorax irradiation and upon respiratory distress strains prone to pneumonitis with fibrosis presented an increased pulmonary frequency of Thelper (Th)17 cells which was not evident in strains prone solely to pneumonitis. The contribution of Th17 cells to fibrosis development was supported as the known enhanced fibrosis of toll-like receptor 2&4 deficient mice, compared to C57BL/6J mice, occurred with earlier onset neutrophilia, and with increased levels of pulmonary Th17, but not Th1, cells following irradiation. Irradiated Il17−/− mice lacked Th17 cells, and were spared both fibrosis and pneumonitis, as they survived to the end of the experiment with a significantly increased pulmonary Th1 cell frequency, only. Interferon-γ−/− mice, deficient in Th1 cells, developed a significantly enhanced fibrosis response compared to that of C57BL/6J mice. The tissue adaptive immune response influences the pulmonary disease response to radiotherapy, as an increased Th17 cell frequency enhanced and a Th1 response spared, fibrosis in mice.
Collapse
|